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Genetic loci of beta-aminoisobutyric acid are associated with
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We studied the genetic associations of a previously developed Metabolomic Risk Score (MRS) for Mild Cognitive Impairment (MCI)
and beta-aminoisobutyric acid metabolite (BAIBA)—the metabolite highlighted by results from a genome-wide association study
(GWAS) of the MCI-MRS, and assessed their association with MCl in datasets of diverse race/ethnicities. We first performed a GWAS
for the MCI-MRS and BAIBA, in Hispanic/Latino adults (n = 3890) from the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL). We identified ten independent genome-wide significant (p value <5 x 108) variants associated with MCI-MRS or
BAIBA. Variants associated with the MCI-MRS are located in the Alanine-Glyoxylate Aminotransferase 2 (AGXT2 gene), which is
known to be associated with BAIBA metabolism. Variants associated with BAIBA are located in the AGXT2 gene and in the SLC6A13
gene. Next, we tested the variants’ association with MCl in independent datasets of n = 3178 HCHS/SOL older individuals, n = 3775
European Americans, and n = 1032 African Americans from the Atherosclerosis Risk In Communities (ARIC) study. Variants were
considered associated with MCI if their p value <0.05 in the meta-analysis of the three datasets and their direction of association
was consistent with expectation. Rs16899972 and rs37369 from the AGXT2 region were associated with MCI. Mediation analysis
supported the mediation effect of BAIBA between the two genetic variants and MCI (p value = 0.004 for causal mediated effect). In

summary, genetic variants in the AGXT2 region are associated with MCI in Hispanic/Latino, African, and European American
populations in the USA, and their effect is likely mediated by changes in BAIBA levels.
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INTRODUCTION

Hispanic/Latino older adults suffer from a higher risk for mild
cognitive impairment (MCl) compared to non-Hispanic White adults
and are a rapidly growing ethnic population in the United States [1].
MCI is an early stage of decline in abilities across any cognitive
domains such as memory, attention, language, executive function,
visuospatial skill, or perceptual skill not affecting activities of daily
living. MCl can result from genetic susceptibility and/or lifestyle, and
environmental risk factors [2]. Pathophysiological changes under-
lining MCl may occur years before clinical symptoms appear, thus
providing a potential window to detect and facilitate interventions
at earlier stages of the disease [3]. However, very little work has
been done on the discovery of genetic determinants of MCl. Rather,
many previous studies focused on assessing genetic risk for
Alzheimer's Disease (AD) with MCI [4], or genetic risks associated
with the conversion of MCl cases to AD [5, 6]. In the Study of Latinos
—investigation of Neurocognitive Aging (SOL-INCA), we previously
saw that MCl was not associated with the strongest AD genetic risk
factor, the APOE-€4 allele [7, 8], while an AD polygenic risk score

constructed using single nucleotide polymorphisms (SNPs) mainly
from the APOE region, was associated with MCl [9]. Thus, while AD
genetic risk factors are sometimes associated with MCl, approaches
leveraging other risk factors for cognitive aging are needed to
facilitate genetic discoveries for MCl. This is even more important in
Hispanic/Latino populations, where AD pathology is a less common
cause of MCl compared to White populations.

In the last decade, metabolome assessment has emerged as a
new approach for biomarker discovery, and for evaluating the
progress of disease and its underlying pathophysiology [10].
Recent studies have demonstrated metabolic dysregulation in
individuals with MCl or dementia [11], and prospective studies
explored risk prediction for MCl based on metabolite biomarkers
[12, 13]. We recently developed a metabolomic risk score (MRS) for
Hispanic/Latino older adults in the United States, predicting MCI
identified 7 years after metabolomics assessment [14] in
individuals from SOL-INCA. Building on metabolomics and other
omics associations with measured traits, emerging approaches use
genetic determinants of such omics measures to identify causal
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Analysis flowchart and the corresponding HCHS/SOL and ARIC analytic datasets. We performed a multi-step analysis. Step 1:

Identification of genetic associations with the MCI-MRS and BAIBA. Step 2: Association testing of the significantly associated genetic variants
with MCl in a separate subset of US Hispanic/Latino older adults. Step 3: Assessment of generalizability of the genetic associations with MCl in
European and African Americans from the Atherosclerosis Risk in Communities (ARIC) study. Step 4: Assessment of the mediation effect of

BAIBA in the association of the genetic variants with MCI.

pathways underlying phenotypes. For example, other researchers
utilized SNP associations with many measured proteins to perform
phenome-wide Mendelian randomization analysis to detect
genetic determinants, mediated with changes in protein levels
of various phenotypes [15], or utilized metabolite predictors of
type 2 diabetes [16].

We hypothesize that genetic determinants influencing the MCI-
MRS may also influence M|, either through a pleiotropic pathway
or by a mediation pathway where MRS, or any of its metabolite
components, is a mediator between the genetic determinants and
MCI. The analysis steps are described in Fig. 1. We first identified
genetic associations with the MCI-MRS and BAIBA (the MRS
metabolite highlighted by the MCI-MRS GWAS results), which
provide insights into the biological basis and heritability of the
MCI-MRS (Step 1). Next, we tested the association of the
significantly associated genetic variants with MCl in a separate
subset of participants drawn from SOL-INCA (Step 2). We further
assessed the generalizability of these genetic associations with
MCI in European and African American participants from the
Atherosclerosis Risk In Communities (ARIC) study (Step 3). Next, we
assessed the mediation effect of BAIBA in the association of the
genetic variants with MCI (Step 4), and further determined the
association of lifestyle characteristics on MCI-MRS and BAIBA.

METHODS

Study population

The HCHS/SOL is a population-based longitudinal multi-site cohort study of
Hispanic/Latino adults in the United States. The study primarily enrolled
participants from six self-identified Hispanic/Latino backgrounds: Cuban,
Central American, Dominican, Mexican, Puerto Rican, and South American
[17, 18]. A total of 16,415 adults, 18-74-year-old, were enrolled in the
baseline visit at four field centers (Bronx, NY, Chicago, IL, Miami, FL, and San
Diego, CA) (2008-2011). A detailed description of the sampling design,
including the generation and use of survey weights for the HCHS/SOL, was
previously published [17, 18]. Cognitive function was assessed in 9714
individuals aged 45 years or older during the baseline visit. The Study of
Latinos-Investigation of Neurocognitive Aging (SOL-INCA) is an ancillary
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study of HCHS/SOL, focusing on the middle-aged and older adult group who
underwent cognitive assessment at visit 1 [19]. Overall, 6377 individuals 50
or older with baseline cognitive testing participated in the SOL-INCA
examination, taking place at or after HCHS/SOL visit 2, with an average of 7
years since visit 1. Metabolites were measured in serum, after fasting, on a
random subset of 3978 HCHS/SOL participants from visit 1, and profiling was
done using untargeted liquid chromatography-mass spectrometry (LC-MS)
using the discovery HD4 platform in 2017 at Metabolon Inc. (Durham, NC).
All participants in this analysis signed written informed consent in their
preferred language (Spanish/English). The HCHS/SOL was approved by the
institutional review boards (IRBs) at each field center, where all participants
gave written informed consent, and by the Non-Biomedical IRB at the
University of North Carolina at Chapel Hill to the HCHS/SOL Data
Coordinating Center. All IRBs approving the study are Non-Biomedical IRB
at the University of North Carolina at Chapel Hill. Chapel Hill, NC; Einstein IRB
at the Albert Einstein College of Medicine of Yeshiva University. Bronx, NY;
IRB at Office for the Protection of Research Subjects (OPRS), University of
lllinois at Chicago. Chicago, IL; Human Subject Research Office, University of
Miami. Miami, FL; Institutional Review Board of San Diego State University,
San Diego, CA. The present study was approved as a secondary data analysis
protocol by the Mass General Brigham IRB protocol #2019P000057.

Neurocognitive outcomes

We studied prevalent MCl at the SOL-INCA visit, classified according to
National Institute on Aging-Alzheimer's Association criteria [20]. In brief,
the SOL-INCA MCI research diagnostic operational definition [7, 19]
included three criteria: [1] a cognitive test score below -1 standard
deviation (SD) in any of the cognitive tests applied at the SOL-INCA exam,
where means and SDs were based on SOL-INCA robust internal norms, [2]
a rate of global cognitive decline between the HCHS/SOL baseline and the
SOL-INCA exam of than —0.055SD or more per year, and [3] any self-
reported subjective cognitive decline using the Everday Cognition 12-item
version (E-Cog12) [21]. Additionally, individuals were classified as MCl+ if
they met two conditions: (a) a cognitive test performance below -2 SD in
any SOL-INCA neurocognitive test, and (b) more than minimal impairment
in the instrumental activities of daily living (IADL) [22].

Metabolomic risk score (MRS) for MCI
We previously developed an MRS for MCl based on selected fasting serum
metabolites, from a LASSO-penalized regression [23] using 1451 SOL-INCA
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individuals who also had metabolite measures [14]. The MRS forms a
combined measure of the joint effect of 61 metabolites in predicting MCI.
The MRS is defined as a weighted sum of metabolite values, of the form,
for participant i:

61
mrs; = E wimi;,
=

where m; is the level of the j metabolite in participant /, and w; is the weight
of the metabolite. The list of metabolites and weights is provided in
Supplementary Table 1. Based on the metabolites and their weights, we
constructed the MRS for 3968 HCHS/SOL individuals with metabolomics
data. All metabolites used in the MRS had less than 25% missing values.
They were treated as continuous and missing values were imputed using
half of the lowest value observed in the sample per metabolite, under the
assumption that missing values are due to metabolite concentration being
below the limit of detection (i.e., missing not at random). Because some
metabolites have skewed distribution, we originally rank-normalized the
metabolites before summing them in the MRS, and scaled them back to
their original scale by multiplying them by their standard deviations (SD),
estimated prior to rank-normalization. We also adapted the weights
according to the SDs estimated on the sample used for developing the MRS.

Genotyping

APOE genotyping was performed using commercial TagMan assays
previously described [24]. For individuals with missing APOE genotypes,
we computed APOE genotypes based on phased whole-genome sequen-
cing (WGS) data from TOPMed Freeze 8. Other genetic data were used
based on genotyping (rather than WGS) using an lllumina custom array, as
previously reported [25]. Genome-wide imputation was conducted using the
multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) freeze 8
reference panel (GRCh38 assembly) [25]. Principal components (PCs) were
previously computed using PC-Relate [26], and the kinship matrix was
computed using the genetic data. “Genetic analysis groups” were
constructed based on a combination of self-identified Hispanic/Latino
backgrounds and genetic similarity, and are classified as Central American,
Cuban, Dominican, Mexican, Puerto Rican, and South American [27].

Heritability estimation for MCI-MRS and BAIBA

Heritability of the MRS and BAIBA (the MRS metabolite highlighted by the
MCI-MRS GWAS results, see further details below) were estimated via a
mixed model using the variance explained by the kinship matrix,
representing the variance explained by additive effects of common
genetic variants. Heritability was estimated in 3496 HCHS/SOL individuals
(from Fig. 1, set B), after excluding >3rd-degree relatives estimated via the
kinship coefficient.

Genome-wide association studies (GWAS) for MCI-MRS and
BAIBA

We performed MCI-MRS and BAIBA GWAS in 3890 HCHS/SOL individuals
who had both genetic data and an MCI-MRS score and 3863 individuals
with BAIBA values (27 individuals had missing BAIBA values) (Fig. 1, Step 1).
We used the linear mixed model approach from the “GENESIS” R package
and adjusted for age, sex, center, genetic analysis groups, first five PCs of
genetic data, and random effects for kinship, household, and block unit.
For both GWAS, we removed genetic variants with low minor allele count
(MAC) (<60, corresponding to MAF <$0.77%), and/or low imputation quality
(R*<0.6), resulting in 12,518,657 variants in MCI-MRS GWAS and
12,481,432 in BAIBA GWAS. We used a two-stage method, in which we
first regressed the trait on covariates, obtained residuals, rank-normalized
them, and then used the rank-normalized residuals in the association with
the genotypes [28], adjusting for the same covariates again. We applied a
genome-wide significance threshold of p value = 5 x 10~ Notably, due to
applying the two-stage rank-normalization approach, the selected MAC
threshold was expected to result in appropriate type 1 error control. Two-
sided p values were computed using the score test.

When multiple variants within a genomic region (1 Mb window) were
significantly associated with the MRS or BAIBA (p value <5x10°%), we
conducted conditional analyses using the index (most significant) SNP as a
covariate. If any of the remaining variants had associations with p value
<5x 1078, we repeated this process, adding the top remaining variant to
the model. We report the associations for independent SNPs based on the
first discovery model. Finally, we assessed whether the findings from our
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BAIBA GWAS are similar to previously reported findings by looking up
associations of SNPs from regions identified in other GWAS.

We computed the trait variance explained by the identified, genome-wide
significant variants for each of the MCI-MRS and BAIBA, by comparing the
total variance of a linear mixed model fitted to the metabolite outcome
(MCI-MRS or BAIBA) with covariates age, sex, center, genetic analysis groups,
first five PCs of genetic data, to the total variance of a similar model that also
has the identified variants as covariates. The total variance was defined as
the sum of the variance components corresponding to the kinship,
household, and block unit matrices, and the residual variance of each
model. The percent explained variance was defined as the percent reduction
in total variance between the model with and without genetic variants.

MCI-MRS-associated SNPs and their associations with MCI-
MRS metabolites

While we focused on BAIBA because the single association region of the
MCI-MRS encompasses the AGXT2 gene known to be strongly associated
with BAIBA, we also estimated genetic associations of the two MCI-MRS
SNPs from the AGXT2 region with all metabolites composing the MCI-MRS.
We used the same linear mixed model approach as for the MCI-MRS and
BAIBA GWAS, while focusing only on the two SNPs.

Genetic association analysis with MCl in a separate HCHS/SOL
dataset

We tested the association between the variants significantly associated with
the MCI-MRS or BAIBA levels, and MCl in a set of 3149 HCHS/SOL individuals
who were not included in the dataset used for the construction of the MCI-
MRS (due to lack of metabolite data) (Fig. 1, Step 2). We employed the mixed
model approach with a logistic link function and with the same covariates
and random effects as described above. We stratified the analysis by the
APOE-g4 carrier status since the association of BAIBA and MCl was driven by
the APOE-€4 carrier stratum [14]. In a second model, we further included
APOE-ge4 and APOE-€2 carrier status as covariates. Associations were
considered significant if they had a p value <0.05. P values were two-
sided and were based on the score test. We note that family-wise error rate
(FWER) control requires p value threshold accounting for all tested
associations, i.e., 0.05/10 = 0.005. Finally, we performed a sensitivity analysis
where we applied the same analysis on a smaller subset of 2748 individuals
who are genetically unrelated to those who participated in the GWAS of the
MCI-MRS and of BAIBA (individuals with >3rd-degree relatedness estimated
via the kinship coefficient were excluded; Fig. 1, Step 3). This sensitivity
analysis addresses the possibility that replicated genetic associations are
potentially driven by genetic similarity with the discovery dataset, potentially
replicating false associations.

In another analysis, we constructed a weighted genetic risk score (WGRS)
based on AGXT2 variants for each of the MCI-MRS and for BAIBA: the wGRS
was a weighted sum of the effect alleles of the 2 or 7 genome-wide
significant variants or 7 variants (for MCI-MRS and BAIBA, respectively),
with weights being their estimated effect sizes from the GWAS. These
WGRSs were constructed and their associations with MCl were estimated in
the HCHS/SOL dataset that was separate from the dataset with
metabolomics (set C from Fig. 1). The goal of this analysis was to
potentially increase power by aggregating information across SNPs.

Generalization of SNP associations with MCl in the ARIC study
and meta-analysis

We further evaluated the generalization of the significantly associated
SNPs in the ARIC longitudinal cohort study (Fig. 1, Step 3) comprising two
major US race/ethnic groups, European and African Americans [29, 30]. The
protocol for MCl/dementia diagnosis in ARIC has been previously
described [31] and is provided in Supplementary Note 1. Data from ARIC
visit 5 were, which includes MCl assessment, used in this analysis. Next, we
meta-analyzed the results from HCHS/SOL Hispanic/Latino individuals,
ARIC European, and ARIC African Americans in an inverse-variance, fixed-
effect meta-analysis. To conclude the significance of association while
controlling the FWER on the results from the meta-analysis, a p value of
0.05/10 = 0.005 is required for a given association.

Mediation analyses

Mediation analyses were conducted to further examine the relationship
between the two variants associated with MCl in replication meta-analysis,
and to explore whether these associations are mediated by BAIBA. We
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Table 1. Demographics, health, and lifestyle characteristics of the HCHS/SOL study population datasets.
Construction of MRS GWAS for GWAS for MRS Association of MRS/ Association of MRS/BAIBA
(Sample set A) BAIBA (Sample (Sample set B) BAIBA genetic top hits genetic top hits with MCI in
set B) with MCI (Sample set C) unrelated individuals (Sample
set D)
N 1451 3862 3890 3149 2733
Sex =M (%) 558 (48.1) 1648 (42.7) 1658 (42.6) 1158 (36.8) 1036 (37.9)
(ngDe))(yearS) (mean 56.03 (8.18) 45.87 (13.83) 45.85 (13.81) 55.23 (7.17) 55.27 (7.18)
Education years (%)
<12 553 (34.8) 1393 (36.1) 1403 (36.1) 1265 (40.2) 1092 (40.0)
12 324 (21.7) 989 (25.6) 999 (25.7) 686 (21.8) 588 (21.5)
>12 574 (43.4) 1474 (38.2) 1482 (38.2) 1198 (38.0) 1053 (38.5)
Self-reported background (%)
Dominican 155 (11.3) 378 (9.8) 382 (9.8) 292 (9.3) 243 (8.9)
Central American 150 (7.6) 393 (10.2) 397 (10.2) 302 (9.6) 266 (9.7)
Cuban 266 (26.3) 655 (17.0) 656 (16.9) 609 (19.3) 542 (19.8)
Mexican 518 (30.6) 1385 (35.9) 1399 (36.0) 1094 (34.7) 940 (34.4)
Puerto Rican 251 (16.1) 695 (18.0) 701 (18.0) 537 (17.1) 466 (17.1)
South American 85 (4.3) 225 (5.8) 227 (5.8) 253 (8.0) 226 (8.3)
More than one 25 (3.8) 131 3.4) 128 (3.3) 62 (2.0) 50 (1.8)
heritage/Other
BMI (kg/m?) (%)
Normal weight 244 (16.8) 803 (20.9) 810 (20.9) 489 (15.6) 431 (15.8)
(<25.0)
Overweight 568 (39.2) 1405 (36.5) 1417 (36.6) 1281 (40.8) 1114 (40.9)
(25.0-30.0)
Obese (>30) 639 (44.0) 1641 (42.6) 1649 (42.5) 1371 (43.6) 1181 (43.3)
Smoking (%)
Never 823 (55.1) 2261 (58.6) 2279 (58.6) 1775 (56.4) 1523 (55.7)
Former 359 (25.0) 764 (19.8) 772 (19.9) 796 (25.3) 699 (25.6)
Current 269 (19.9) 834 (21.6) 836 (21.5) 578 (18.4) 511 (18.7)
Type Il diabetes (%) 376 (27.8) 729 (18.9) 732 (18.8) 886 (28.1) 754 (27.6)
APOE alleles (%)
23 113 (7.7) 298 (7.7) 300 (7.7) 228 (8.1) 203 (8.3)
24 11 (0.8) 31 (0.8) 31 (0.8) 40 (1.4) 31 (1.3)
33 1008 (69.5) 2666 (69.1) 2691 (69.3) 1934 (69.0) 1665 (68.5)
34 285 (19.6) 788 (20.4) 789 (20.3) 553 (19.7) 489 (20.1)
44 28 (2.0 60 (1.6) 59 (1.5) 42 (1.5) 40 (1.6)
22 6 (0.4) 15 (0.4) 15 (0.4) 7 (0.2) 4(0.2)
éf;)E—84 carriers 329 (21.8) 879 (22.8) 879 (22.6) 635 (22.6) 560 (23.0)
()
MCI (%) 163 (11.4) 169 (11.4) 169 (11.4) 328 (10.4) 283 (10.4)

MRS metabolomic risk score, BIABA beta-aminoisobutyric acid, MCI mild cognitive impairment, SD standard deviation, BMI body mass index.

(%) based on the sampling weights and complex survey design.

All measures are provided from HCHS/SOL visit 1 other than MCI status, inferred at the SOL-INCA exam, on average 7 years after visit 1.

used the R “mediation” package, with a complex survey design from the R
“survey” package [32], with a “quasibinomial” family for binary traits. This
method accounts for the stratification, clustering, and probability
weighting in HCHS/SOL to allow correct generalizations to the target
population of Latinos in the US. Models were adjusted for age, sex, and
study center. A total of n=1490 HCHS/SOL participants with genetic,
metabolite, and MCI data were included in the analysis (Fig. 1, Step 4).

Lifestyle associations with MRS-MCI and BAIBA

We further explored the associations of lifestyle characteristics with MCI-
MRS and BAIBA. We used the complex survey design as described above,
with the number of participants varying between 3525-3978, depending
on the tested lifestyle characteristicc which included: depression,
education, physical activity, sleep duration, insomnia, respiratory event
index, BMI, smoking, alcohol consumption, and Mediterranean diet score
(more information in Supplementary note 2). We computed estimated
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effect sizes and two-sided Wald test p values and noted significance at
the nominal p value <0.05 level, and computed the required p value
threshold for controlling the FWER when testing two metabolite
measures (MCI-MRS and BAIBA) and ten lifestyle characteristics as 0.05/
(2 x10) = 0.0025.

RESULTS

Table 1 characterizes the demographic, health, and lifestyle
characteristics of the subsets of HCHS/SOL individuals used for
the various analyses. Overall, more than 60% of the participants
are females, with a weighted mean age of 55 years at visit 1 for
the samples of individuals with MClI measures (SOL-INCA
participants), and a weighted mean age of 45 years for the subset
used for GWAS, including SOL-INCA and younger HCHS/SOL

Translational Psychiatry (2023)13:140
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Fig.2 Manhattan plots from GWAS of MCI-MRS and of BAIBA. Manhattan plots of GWAS for A MCI-MRS (n = 3890) and B BAIBA (n = 3863) in
HCHS/SOL. Every point corresponds to a genetic variant, and the height of the point is the —log(association p value) from the MCI-MRS or

BAIBA association analysis with p values from the score test.

participants. MCl prevalence, measured at the SOL-INCA visit (~7
years after visit 1), is ~10.5%.

Heritability estimates for MCI-MRS and BAIBA

The estimated heritability for MCI-MRS was 043 (95% Cl:
0.19-0.66). The estimated heritability of the BAIBA metabolite
was 0.39 (95% Cl:0.16-0.61).

GWAS for MCI-MRS and BAIBA (Fig. 1, step 1)

GWAS results for MCI-MRS and BAIBA are presented in Fig. 2
(Manhattan plots) and Supplementary Fig. 1 (QQ-plots). At the
significance level of 5x 1078 66 variants were significantly
associated with MCI-MRS. All significant variants are located in
one region, chr5p13.2. The sequential conditional analysis
identified two independent variants in this region, with the lead
variant, rs37371, having a p value = 1.75 x 10~ ' (Table 2). These
two variants explained 2.5% of the residual variance of the MCI-
MRS after accounting for baseline covariates, including genetic
PCs. This region encompasses the AGXT2 gene, SNPs in this gene
were previously shown to have a strong association with the
BAIBA metabolite in plasma and urine [33, 34]. BAIBA is one of the
metabolites included in the MCI-MRS and is strongly correlated
with the MRS (raw Pearson’s R = —0.25, p < 2.3e-59).

Therefore, we next performed a GWAS for BAIBA. At the
significance level of 5x 1078 460 variants were significantly
associated with BAIBA. Significant variants are located in two loci,
chr5p13.2 and chr12p13.33, with the lead variant, rs37370 having
p value = 3.57 x 102'°. Sequential conditional analyses identified
eight independent variants, seven of which are located in the
AGXT2 gene (chr5p13.2), and one located in the SLC6A13 gene in
region chr12p13.33 (Table 2). The eight variants explained 34.1%
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of the residual variance of BAIBA after accounting for covariates,
including genetic PCs. Notably, this is only a little lower than the
percent variance explained by all additive common genetic effects
(heritability, 39%). Three of the seven variants in the AGXT2 region,
that was also associated with the MRS, were in linkage
disequilibrium (LD; R*=0.3, 0.6, and 1) with the two SNPs
associated with the MRS (Supplementary Table 2). A locus-zoom
plot of the top-hit region, chr5p13.2, for BAIBA, is presented in
Supplementary Fig. 2. Annotation of the significant variants for
both MRS-MCI and BAIBA GWAS is presented in Table 2, together
with ancestry-specific frequencies estimations, for the three
Latino/Hispanic ancestries (European, African, and Amerindian)
[35]. All variants identified in sequential conditional analyses were
imputed, with high imputation quality, R* > 0.9. Finally, to assess
our BAIBA GWAS results in light of other reported GWAS, we
looked up a BAIBA GWAS reported in n = 6,138 Finnish individuals
[36]. This manuscript reported the same association regions
detected in our GWAS, and also reported a third, weaker
association region, on chr2g22.1. The most significant SNP was
rs11127048, which was nominally associated with BAIBA in our
data with p value =0.001. Its imputation quality was also high.

Associations of MCI-MRS-associated SNPs with MCI-MRS
metabolites

Supplementary Table 3 reports the associations of the 61 MCI-MRS
metabolites with the two SNPs identified at the AGXT2 region as
associated with the MCI-MRS. At the genome-wide significance
level, two metabolites were associated with these SNPs: BAIBA,
with highly significant associations, and dimethylarginine (both
symmetric and nonsymmetric quantified together), with slightly
weaker (yet still strong; as measured by p values) associations.
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6.50E-01
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Meta-analysis
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P value
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9.60E-01

3775)
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P value
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7.19E-01
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African American
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6.50E-01
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Set C
=3149)
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—0.293

Replication meta-analysis results for the genetic variants detected as associated with MCI-MRS and BAIBA in HCHS/SOL set B.
(n
Beta

Table 3.

SNP
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Inverse-variance fixed-effects meta-analysis was used to meta-analyze results from the three replication datasets: HCHS/SOL set C, and ARIC African and European Americans.

Effect sizes and SEs were estimated based on the mixed-models analysis approach.

1.21E-01 i

0.043

0.067

3.63E-01

0.110

rs11613331

P values from tests of variant associations in each stratum were based on the score test.

Heterogeneity of effects between datasets was low (p value >0.05 based on the Cochran’s heterogeneity test) for all variants.
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p < 0.05 level include depression, associated with higher MCI-MRS,
education which is associated with lower MCI-MRS, and both
higher respiratory event index and BMI are associated with
reduced BAIBA levels. However, none of the associations passed
the FWER control p value threshold of 0.0025.

DISCUSSION

We studied the genetic determinants of a previously developed
MCI-MRS in Hispanic/Latino older adults in the United States and
their association with MCl in this population and other US
populations. GWAS for the MCI-MRS highlighted a locus located
on chr5p13.2, encompassing the AGXT2 gene, previously known as
associated with BAIBA. BAIBA is a highly heritable metabolite
included in the MCI-MRS, inversely associated with MCI risk. Further
investigation of the genetic components of this metabolite
confirmed a previously known highly significant association of the
chr5p13.2 locus with BAIBA and an additional association region on
chr12p13.33, encompassing the SLC6A13 gene. We identified via
sequential conditional analysis 2 independent SNPs associated with
MCI-MRS and 8 independent variants associated with BAIBA. Meta-
analysis of the association of these variants with MCl in an
independent subset of SOL-INCA, and ARIC European and African
Americans, highlighted two variants located in the AGXT2 gene:
rs16899972, a missense variant, and rs37369, a splice donor variant.
Mediation analysis suggested that these genetic variants contribute
via changes in BAIBA levels to MCl development.

BAIBA is a non-protein amino acid secreted by skeletal muscles
upon regular exercise, causing the browning of white adipose
tissue and an increase in thermogenesis, thus benefiting other
tissues and organs in an endocrine manner [38]. It was shown that
plasma BAIBA concentrations are increased with exercise and are
inversely associated with cardiometabolic risk factors such as
fasting glucose, insulin sensitivity, triglycerides, total cholesterol,
BMI, and inflammatory reactions [33]. Our results align with the
known high heritability of BAIBA, with a striking association
between the variants in the AGXT2 loci and BAIBA plasma levels,
accounting for a substantial portion of the heritability [39]. The
AGXT2 gene encodes the enzyme alanine-glyoxylate aminotrans-
ferase 2, which catalyzes the transamination between BAIBA and
pyruvate [33]. Several studies have found an association between
rs37369, one of the significant variants in our meta-analysis,
associated with BAIBA levels in White individuals [40]. This
polymorphism constitutes a nonsynonymous valine-to-isoleucine
(V140I) substitution in the AGXT2 protein [34]. The association of
rs37369 was weak in ARIC European American compared to
African American and HCHS/SOL Hispanic/Latino individuals,
perhaps due to reduced power due to allele frequencies
differences: 0.1, 0.36, and 0.55 in European, Hispanic/Latino, and
African Americans, respectively. Mediation analysis suggests that
the association between this variant (and the other identified
variant) and MCl is mediated by BAIBA. The result in our previously
published paper supports the hypothesis that BAIBA has a
protective effect against MCl (both for the direct effect of BAIBA
in the MCI-MRS and individually).

The top SNP from the second region associated with BAIBA,
chr12p13.33, encompassing the SLC6A13 gene, was not associated
with MCl, as expected, since this loci was not associated with MRS-
MCI. This variant was previously associated with the level of BAIBA
and other metabolites in European and Hispanic populations [41,
42]. We estimated the associations of the two SNPs associated
with MCl from the AGXT2 region with all other metabolites
composing the MCI-MRS. These two SNPs were also associated
with dimethylarginines, which are substrates of AGXT2. The
metabolite measuring the two dimethylarginines (symmetric and
asymmetric) was not associated with MCl in our previous analysis
[14] when accounting for multiple testing, though it did have a
nominal association where higher levels of dimethylarginines
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Effect 1
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rs16899972 MCI
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BAIBA

Beta=-0.053 P-value=0.80
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BAIBA

Fig. 3 Visualization of results from mediation analysis using BAIBA. Mediation analysis results for two genetic variants associated with MCl,
mediated by BAIBA A rs16899972, B rs37369. Note that the main effect is not significant as expected by the earlier report of the association
between the variant and MCl in set D (n = 3178), since the mediation analysis was conducted in a smaller sample, similar to Set A (n = 1490).
Effect estimates and p values were obtained from the R median package. ACME average causal mediation effects and ADE average direct

effects.

were associated with reduced MCI risk with p value =0.03 (see
summary  statistics  here:  https:/github.com/chloehe1129/
Metabolomics-on-CogDec/blob/main/MCl/
MCI_associations_all_participants_mdI1.csv). We did not further
pursue the analysis of dimethylarginines despite previous
literature linking these chemicals to dementia and AD; previous
studies are focused on asymmetric dimethylarginine [43, 44], and
the reported associations are sometimes of the opposite direction
of what we see in SOL-INCA—higher asymmetric dimethylarginine
levels in plasma increase risk of cognitive decline [45, 46]. In all,
perhaps we have a lower power to detect associations with MCI
because both the asymmetric and symmetric dimethylarginines
are measured together.

Our study has a few limitations. First, the detected associations
with MCI do not pass multiple testing adjustment. While we are
confident in the results due to the careful process of hypothesis
generation starting from metabolite-MCl association analysis,
identification of strong associations of metabolite measures with
genetic loci, followed by analysis in three independent datasets,
which resulted in consistent findings, future studies should further
validate the two associations that had p value <0.05 in the
validation meta-analysis, and perhaps further study this associa-
tion region. Second, similar to other epidemiological studies, the
metabolite identification pipeline used by Metabolon does not
distinguish between the two compounds D-BAIBA and L-BAIBA,
which are involved in different metabolism and downstream
effects [24]. Similarly, it does not distinguish between symmetric
and asymmetric dimethylarginine, which may have a role in
cognitive aging as well. Their effects on MCl may differ, future
studies are needed to assess their specific effects and to explore
causal inference for BAIBA on MCl in larger sample sizes. Third, the
mediation analysis used the same dataset that identified the
association of both the MCI-MRS and of BAIBA with MCI. This may
lead to over-estimation of the average causal mediated effect.

Overall, we identified a genomic association region for MCI-
MRS, with two variants associated with MCI in Hispanic/Latino,
European, and African Americans. These variant associations
support BAIBA as a metabolite with a protective effect on MCI
development 7 years after metabolite assessment.
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HCHS/SOL genetic, phenotypic, and metabolomics data can be obtained through the
study’s Data Coordinating Center using an approved data use agreement.
Information is provided at https://sites.cscc.unc.edu/hchs/. HCHS/SOL genetic and
phenotypic data can also be obtained from dbGaP under accession number
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