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Abstract

Background: Protein-protein interactions (PPIs) are intriguing targets for designing novel small-

molecule inhibitors. The role of PPIs in various infectious and neurodegenerative disorders makes 

them potential therapeutic targets . Despite being portrayed as undruggable targets, due to their flat 

surfaces, disorderedness, and lack of grooves. Recent progresses in computational biology have 

led researchers to reconsider PPIs in drug discovery.

Areas covered: In this review, we introduce in-silico methods used to identify PPI interfaces 

and present an in-depth overview of various computational methodologies that are successfully 
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applied to annotate the PPIs. We also discuss several successful case studies that use 

computational tools to understand PPIs modulation and their key roles in various physiological 

processes.

Expert opinion: Computational methods face challenges due to the inherent flexibility of 

proteins, which makes them expensive, and result in the use of rigid models. This problem 

becomes more significant in PPIs due to their flexible and flat interfaces. Computational methods 

like molecular dynamics (MD) simulation and machine learning can integrate the chemical 

structure data into biochemical and can be used for target identification and modulation. These 

computational methodologies have been crucial in understanding the structure of PPIs, designing 

PPI modulators, discovering new drug targets, and predicting treatment outcomes.

Keywords

Protein-protein interactions; Computer-aided drug design (CADD); computational approaches; 
machine-based learning; molecular dynamics simulations; docking; screening

1. Introduction

PPIs are involved in almost all physiological functions, including cellular interaction, signal 

transduction, and metabolic pathway, so an in-depth understanding of PPIs is critical to 

explore their role in normal and diseased states. The PPI contacts, or interfaces as they 

are called, are highly specific as they are formed in defined regions of amino acids in the 

proteins, and they are meant to serve a specific function. The knowledge of PPIs can help 

us to explore not only the role of uncharacterized proteins but also their involvement in 

various pathophysiological states. A PPI is defined as ‘an interaction of two identical or 

non-identical proteins at their domain interfaces that regulates the function of the protein 

complex’ [1], and a modulator is a low-molecular-weight naturally derived agent with a 

complex structure that allows target specificity and strong binding affinity [1].

The human interactome [2,3], which is the sum of all PPIs in a cell, is expected to have 

about 130,000 to 650,000 binary PPIs. This complex network contributes significantly to 

the modification and accomplishment of an array of physiological functions [4]. But there 

has been an explosion of data related to the human interactome after the advancement in 

the high throughput screening techniques for PPIs, resulting in many unreliable and noisy 

data, limiting the true picture of all physiological interactions in the cells. On the other hand, 

given the physiological role of PPIs, they have been considered as potential drug targets. 

Their modulation with small molecules has resulted in drugs targeting over 50 PPIs, with 

>27 already in Phase I, II, and III clinical trials, primarily involving viral, autoimmune 

diseases, and cancer [5] So far, the FDA has approved ~5 PPI modulators to treat cancer, dry 

eye syndrome, autoimmune diseases, and disorders that do not respond to other treatments 

[5–7]. A rundown of some PPI modulators currently participating in clinical trials is listed in 

Table 1.

The traditional strategy for small molecule drug development focuses mostly on protein-

ligand interactions, i.e. ion channels or receptors, enzymes, due to their distinct binding 

sites for better interaction [11]. Targeted modulation of PPIs using small molecules was 
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considered challenging for a very long time due to their relatively flat and featureless 

surfaces and the absence of binding grooves, hence, the PPIs were thought to be 

‘undruggable’ targets [12,13]. Other reasons that make this targeted modulation challenging 

include but are not limited to the following reasons.

(1) The interface area (1500–3000 Å2) between two proteins making a PPI is relatively large 

than a protein-ligand contact area (300–1000 Å2) [14,15].

(2) The residues involved in PPIs contribute strongly to binding affinities, making it difficult 

for small molecules to compete [16].

(3) PPI-targeting drugs have a relatively higher molecular weight (>400 Dalton) as 

compared to the typical ligands (200–500 Dalton), making it hard to meet Lipinski’s rule of 

5 criteria [17,18].

(4) Furthermore, PPIs are incredibly flexible, making it difficult to detect the binding pocket 

in standard X-ray crystal structures [19].

Despite these challenges, significant advancement is being made in identifying and targeting 

PPIs, owing to progress in computational chemistry and structural biology. For classical 

targets, computational-guided modulator design is efficient, as described in our previous 

study [22,23]. These strategies increase their cost-effectiveness and throughput, allowing 

them to investigate dynamic PPI interfaces and shed light on PPI regulation, resulting 

in a number of successful examples [22,24]. PPIs have received much interest in the 

pharmaceutical industry in recent years. Because of the rapid advancements in this growing 

discipline, it is vital to review the most recent developments in the field of computational 

methodologies to guide future efforts.

In this review, a variety of in-silico strategies for designing PPI modulators are described. 

The review is focused on the current advances in in-silico techniques and presents a bird’s 

eye view of diverse methodologies. Following that, we give an overview of some published 

case studies to demonstrate the application of these methodologies to the design of targeted 

PPI modulators.

1.1. Aspects of the PPIs that are critical for modulation with a small molecule

Knowledge of common PPI features is essential for modulating PPIs and evaluating 

their biological effects. This includes a PPI’s overall structure, three-dimensional shape 

complementarity around the interaction area, and the physical/chemical components 

contributions to PPI stability. A recent review focusing on the protein features that generate 

favorable types of interactions provides a useful resource for building PPI modulators as 

well as biochemical and biophysical assays for discovering and evaluating them [25].

Based on this understanding, we can conclude that:

(1) PPIs are driven by a variety of chemical interations, including hydrophobic and 

electrostatic interactions and hydrogen bonding. These interactions affect the physical and 

chemical aspects needed to optimize binding complementarity.
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(2) Most PPI interfaces couple and de-couple on a regular basis, resulting in intricate 

dynamic equilibria [26]. Furthermore, the difference in the Kd between μmol and pM 

determines how well a PPI can be modified. Knowing a target PPI’s Kd is crucial while 

working for its potential PPI modulators.

(3) The protein domain of the target PPI (or some part of it) might be intrinsically disordered 

or unfolded until it is stabilized by its partner protein [27]. Such a characteristic would make 

designing synthetic ligands on the protein surface highly challenging using computational 

techniques. Designing biochemical and biophysical experiments would be difficult too since 

unstructured proteins are unstable in solution without their protein partners.

(4) The protein domain of the target PPI might be same as the domains of partner proteins, 

with ~95%-80% homology [28].

In addition, some protein structures can change to utilize the same binding sites again, which 

makes them even less specific. ElonginB/ElonginC/VHL and ElonginB/ElonginC/SOCS2 

are two examples that were found through X-ray crystallographic studies [29,30]. Therefore, 

it is important to know whether a protein can interact with multiple partners when trying to 

define and measure binding affinities of new inhibitors for its PPI modulation.

2. Approaches for hit identification of PPI modulators

Most ligands inhibit PPIs at hotspots and allosteric sites [25,31–34]. Below is a brief 

overview of these approaches that have been used to design efficient PPI modulators [35].

2.1. Hot-spots identification

As discussed earlier, the large interfacial area or contact area makes it hard to find a ‘shape 

complementary’ molecule, but the presence of certain residues that are mainly involved 

in binding makes the designing of drugs possible. Such residues are known as hot spots, 

which comprise key residues that are involved in PPIs and are usually present at the 

interfaces. Alanine scanning shows that tryptophan, arginine, and tyrosine are the residues 

that contribute mainly to PPIs (21%, 13.3%, and 12.3% respectively), while valine, lysine, 

or serine are the residues that are rarely involved [36]. The presence of hot spots in PPIs 

was first described in a study of a PPI complex of human growth hormone (hGH) and the 

extracellular domain of its receptor (gGHbd) [36]. Alanine substitution was conducted to 

explore the contribution of each residue involved in PPI. The results showed that only eight 

residues out of thirty-one contributed most (85%) to the total binding free energy. Today, 

the alanine-scanning technique is used in a combinatorial fashion to explore the binding 

contributions of the hot-spot residues to the total binding free energy of the complexes.

Hot-spot residues enable conformational changes for the ligand with little energy cost, 

which facilitates shape complementarity. This is a significant distinction between hot-spot 

residues and other residues that are located on the interfaces [37–39]. The chemical 

properties of hot-spot residues are responsible for their dynamical behaviors, which can 

be modeled by MD simulations. Indeed, MD simulations may provide an ensemble of 

probable conformations, revealing detailed structural and dynamical information for the 
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binding pockets [40,41]. This is in contrast to traditional methodologies such as X-ray 

crystallography mainly used for visualizing the binding pockets.

The per-residue decomposition energy calculated from the MM/PB(GB)SA technique 

specifically shows the contribution of residues on the binding interface to the total binding 

free energy of the complex. The information can be used to infer hot-spot residues related 

to binding. MD can also help track dynamic movements, secondary structures, and transient 

pockets in IDPs (e.g. β amyloid, κ-casein, C-Myc, α-synuclein, and histone), that typically 

do not have specific conformations in PPIs [42,43]. However, 3D complex structures 

are required to conduct MD simulations. The large gap between the predicted PPIs and 

experimentally available PPI structures is thus a major challenge. When experimental 

structures are not available, efficient in-silico methods must be used, such as docking 

approaches. These are summarized in Table 2 [44].

The consensus-binding site that is a subset of hot-spots is a druggable site that binds with 

numerous chemical probes [46]. Zerbe et al. have found that consensus sites of PPIs and 

hot spots have a close correlation and can interact with many small molecule inhibitors [47]. 

Therefore, identification of consensus-binding sites gives us another way to find hot-spots. 

Also, this strategy takes into account both the strong binding free energy and the fact that 

the topology is concave [47]. The probe-based MD simulation is a direct analog of the 

above strategy in silico, which has the added benefit of revealing the dynamical process 

of conformational changes [48,49]. In this method, the protein structure is solvated in 

a solution with a variety of solvents at different concentrations. This allows the solvent 

molecules to equilibrate and interact fully with the surface of the receptor. After MD, probes 

move around on their own and gather around the sites that bind well, revealing the consensus 

sites [49].

FTMap is a computational fragment mapping webserver that uses empirical energy 

functions to place different small-molecule probes in places where they work best [50]. 

The clusters of probes are ranked by how much energy they use on average. This means that 

the regions with multiple low-energy clusters will interact strongly with many low molecular 

weight probes, revealing the consensus sites.

2.2. Targeting allosteric sites

Enzymes modulate their function using allosteric regulation [51]. A small molecule binds at 

one site and stimulates a structural change at a remote region, modifying the active site’s 

conformation. Some PPIs may also use this mechanism. Thus, an inhibitor that binds to an 

allosteric site could in-principal disturb the major PPI, inhibiting its contact with the other 

protein (Figure 1). Allosteric modulation has many advantages [34]. It could offer better PPI 

modulation and improve specificity. It may be easier than hot-spot modulation, as accessible 

binding sites (e.g. grooves) may be present at several spots on a protein.

High-throughput screening, ligand binding assays, fluorescence-based resonance energy 

transfer experiments, x-ray crystallography, phage display paired with crystallography are 

all employed to explore the allosteric mechanisms [52]. In addition, researchers have 

developed algorithms to predict allosteric sites [19]. These studies and developments have 
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facilitated the success of many efforts to develop allosteric modulators of PPIs [1,53–

56]. The CBF (core binding factor), a heterodimeric complex, is a modulator of normal 

hematopoiesis, and its gene is the drug-target in many human leukemias [1]. CBF is a PPI 

comprising CBF-SMMHC and Runx1. This PPI modulates CBF function and is necessary 

for leukemogenesis; thus, it could be a potential drug target [41].

Bushweller and co-workers resolved CBF’s structure by NMR [57] and employed alanine 

mutagenesis to study its binding interface with Runx1. Their interfacial contact area was 

explored to design PPI inhibitors [55]. The 35 putative ligands identified through virtual 

screening of 70,000 drug-like compounds were verified by physical screening. However, 

the NMR chemical shift data indicated that the most active compounds did not target 

the hot-spots but bind to an allosteric site. Finally, three small molecules that block the 

interaction of Runx1 and CBFβ were identified (Figure 2). It was observed that these 

molecules stopped the growth of ME-1 cells that caused leukemia. The IC50 value for these 

molecules was in the low μmol range. Their chemical properties, i.e. being low-molecular 

weight and water-soluble, present them as good candidates for further trials. Designing 

hot-spot ligands is difficult, due of CBFβ narrow hetero-dimerization interface. Therefore, 

this example shows how to identify PPI modulators targeting the allosteric mechanism.

3. Strategies for the design of PPI modulators based on computational 

approaches

Investigating the human interactome vastness takes time, expense, and effort. PPI studies 

are extremely dependent on dynamical and physiological circumstances, causing difficulty 

differentiating real interactions from experimental artifacts and discrepancies in data, 

especially for transient interactions and IDPs. Computational methods have evolved as 

alternatives or complements to experimental procedures to fill in PPI gaps and give a basis 

for additional studies (Figure 3).

3.1. Molecular dynamics simulations for PPI modulation

Even with the availability of large amounts of PPI data, there is still a lot to explore in 

terms of their structures and dynamics. PPI development is substantially slowed down by 

the lack of 3D structural data. One of the major drawbacks of crystallography is its inability 

to detect hot spots and grooves due to active protein-protein interactions. MD simulations 

provide a thorough evaluation of the structure and dynamics of PPI models. They shed light 

on PPI mechanisms, which can be leveraged to create PPI modulators. The dynamics of 

biological molecules is captured via MD simulations with starting structures provided by 

modeling tools (homology modeling or docking) or PPI databases. After the structural data 

is complete, the system is setup by defining the initial positions and velocities. Interaction 

forces among atoms are calculated using various force fields. Solution of the Newtonian 

equations of motion allows for tracking of time-dependent motions of all simulated atoms 

[58]. MD simulations can identify hot spots, structural and conformational changes, binding 

affinities, and molecular-level interactions, facilitating the PPI exploration (Figure 4). The 

following examples demonstrate how MD can help with PPI investigations.
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Dixit et al. [59] used atomistic MD simulations and energy landscape analysis to study 

the function of the Hsp90 protein and identified significant binding regions and the hub of 

communication networks. In their study, MD simulations in combination with site-directed 

mutagenesis and Western blotting were used to explore the molecular-level interactions of 

Rho GTPases, Cdc42, and Rac1, with the scaffolding protein IQ motif-containing GTPase-

activating protein 2 (IQGAP2) to figure out the binding mechanism of Rac1 and Cdc42 with 

GRD. It was discovered that Cdc42 and Rac1 govern actin aggregation during metastasis 

[60]. The heat shock protein Hsp90 is a promising target for the creation of novel anticancer 

treatments. Several attempts to create inhibitors against this polypeptide have focused on the 

C-terminal ATP-binding domain of the chaperone [61]. TRAP1 is a member of the HSP90 

family that functions as a regulator of energy metabolism. It has significant effects on 

cancer, neurodegeneration, and ischemia. The Hsp90 levels and activities are higher in tumor 

cells. Selective inhibitors of TRAP1 could provide insights on its mechanisms of action 

and pave the way for the development of tailored drugs [62]. Several successful examples 

of TRAP1 inhibitor modification include the use of small molecules to target TRAP1 to 

reverse TRAP1-dependent succinate dehydrogenase inhibition, to inhibit the ATPase activity 

of Hsp90 to reduce tau aggregation in Alzheimer’s disease [63] to use allosteric TRAP1 

inhibitors to inhibit tumorigenic growth of neoplastic cells [64], and the selective targeting 

of TRAP1 activity to provide new chaperone antagonists. These kinds of studies help 

understand the allosteric complexes and their dynamics and facilitate the development of 

inhibitors. It is well acknowledged that the majority of proteins act as oligomers. In another 

study, the oligomerization of peptide GNNQQNY from the yeast prion-like protein Sup35 

into amyloid fibril was investigated. The results showed that during aggregation, antiparallel 

dimer forms predominate, followed by new peptides that can complement the parallel 

arrangement of assembly. This was exactly in accordance with the experimental crystal 

structure of the amyloid fibril [65]. A comprehensive MD simulation showed interactions 

between Aβ1–42 oligomers and full-length Amylin1–37 oligomers, revealing the association 

between type 2 diabetes and Alzheimer’s disease [66]. When used in conjunction with 

experimental screening techniques in PPI research, MD simulation is a critical supplement 

to those methods because of its high accuracy, thorough validation of interaction potentials, 

and wide availability of computational resources.

3.2. Free energy-based approaches

By sampling free energy landscapes, Monte Carlo (MC) [67,68] or Molecular Dynamics 

(MD) approaches capture kinetics, binding affinities, and mechanisms of action with a much 

higher accuracy. The difficulty in these approaches is limited timescales, as millisecond 

timescale is often required for binding events, which is not very common for current 

simulations. Despite advancements in specialized hardware [69], brute-force MD remains 

computationally infeasible for binding. Commonly, MD-based techniques are used as 

the final step in docking pipelines, resulting in refined models. Recent advancements in 

sophisticated sampling techniques and computer performance have made it possible to 

investigate peptide-protein interactions in novel ways.

Free energy perturbation (FEP) approaches calculate the free energy differences between 

the bound and unbound states and apply a path-dependent approach. The method is not 
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reliable if the molecule scaffold, charge, or binding mode changes drastically [70–72]. 

The FEP success with small-sized systems is not yet applicable to larger systems such as 

protein-protein systems. Enhanced sampling methodologies allow researchers to examine 

peptide-peptide interactions and derive binding energies at a higher computational expense. 

To study peptide binding, generally there are two approaches, one that measures kinetics and 

mechanisms and the other that measures binding free energy.

Several peptide-protein systems [73,74] have been studied using frameworks like Markov 

State Models [75,76], weighted ensemble techniques [52,77], and milestoning [53], which 

use many classical MD trajectories to figure out kinetic and mechanistic details. To 

determine bound conformations [78–80], advanced sampling techniques pool together 

data from experiments and generalized ensemble techniques [81]. These methods provide 

answers to questions about the validation of simulations, data reproducibility, reliability, and 

interpretation.

3.3. Machine learning approaches

Machine learning (ML) is becoming increasingly common in biomedical research but needs 

a large number of training data. At many stages, such as merging diverse heterogeneous 

datasets, evaluating predictions, forecasting probable PPIs, and looking into extrapolated PPI 

networks, statistical and machine learning methods were applied [82–84].

Many ML techniques have been used to predict PPIs in the past, including k-nearest 

neighbor, gradient tree boosting (GTB) [85], DeepPPI [86], redundancy maximum relevance 

(mRMR) [87], naive Bayesian, L1-regularized logistic regression [85], neural networks, 

random forest, and many others [83,88,89]. To train interface predictors, ML algorithms 

leverage a collection of empirically validated PPI surfaces. The trained model is then used to 

identify hot spots at the PPI interface in query proteins [90]. The accuracy of the prediction 

model is highly susceptible to the quality of the input features utilized for training. As a 

result, figuring out the various protein properties required to train an ML system is critical. 

Models for predicting PPIs are built utilizing a variety of protein characteristics, either 

individually or in combination. PPIs cannot be predicted solely by one attribute.

Combining characteristics improves ML prediction. Model development makes use of amino 

acid types, protein expression data, solvent accessible surface area (SASA), physicochemical 

properties of amino acids, atomic and residue contacts, position-specific scoring matrices 

(PSSMs), residue energy, structural information, interface propensity, and evolutionary 

information [91,92]. Figure 5 depicts the five key PPI phases. In PPI-based ML, prediction 

models take sequence or structural features as input. Most ML interface predictions compare 

structure and sequence-based techniques. Several meta-based systems pool and re-compute 

the raw scores from prediction servers to enhance their performance. A number of ML 

predictors for the identification of PPIs were reviewed in Ref [41].

PPI prediction also used unsupervised ML techniques. Deep learning is a new ML discipline 

that utilizes neural networks (NNs) with multiple hidden layers. Deep learning is described 

in detail in Ref [93]. It can aid in decision-making, the comprehension of natural language, 
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and the recognition of images and voice. The bioinformatics and pharmaceutical industries 

have also utilized this approach.

Sun et al. [94] recently predicted human PPIs based on their sequence using deep learning. 

Using stacked autoencoders (SAEs), they investigated PPIs in humans and other species and 

with the highest results on 10-fold cross validation and various external datasets ranging 

from 87.99 to 99.21% accuracy were developed. ML tools can also be used to build PPI 

libraries or to assess the drug-likeness or ADME characteristics of first PPI hits using 

various filtering methods. The details for the PPI modulators could be found in 2P2Idb, 

TIMBAL, and iPPI-DB [95,96]. A decision tree strategy, known as PPI-HitProfiler [97], is 

based on known PPI inhibitors, and it is implemented in the FAF (Free ADME-Tox Filtering 

tool)-Drugs webserver [98–100]. This method uses the structure of PPI inhibitors together 

with important descriptors such as radial distribution function and unsaturation index. Their 

approach correctly identified 70% of the validated active and 52% of the inactive using PPI 

complexes with ligand and bioassay data [97].

Another supported vector machine (SVM) tool (2P2IHunter) based on PPI modulator data 

from 2P2Idb [101] identified chemical features such as octanol-water partition coefficient, 

hydrophilicity, molecular weight, presence or absence of multiple bonds, aromaticity, H-

bond donors and acceptors, and rotatable bonds as crucial features for PPI modulators. The 

SVM model was highly accurate with a high enrichment factor of 8, which is useful for 

removing non-PPI molecules from screening libraries, but unfortunately, this method had a 

low level of sensitivity.

In summary, machine learning is a promising general approach to predict PPIs, with 

the potential for better understanding the gigantic network of PPIs and their targeted 

modulation. However, there is still room for improvement in the prediction accuracy and 

computational efficiency in machine learning-based methods [102].

3.4. Screening approaches

In light of the labor-intensive nature of traditional experimental screening methods like 

high-throughput screening (HTS) and fragment screening, the virtual screening strategy has 

emerged as a useful alternative in the drug discovery process. There are two main types 

of virtual screening, i.e. structure-based virtual screening (SBVS) and ligand-based virtual 

screening (LBVS) [103,104]. The SBVS predicts the best interaction based on their binding 

affinity with the binding site. SBVS needs the 3D structure of the target to be known in 

order to predict the interaction energy. The LBVS technique compares the structure-activity 

data of potential compounds to that of known actives in cases where the 3D structure and/or 

homology model is not available. The reference structure for this method is a small molecule 

or a ligand. Compound databases are then searched for ligands with similar chemical or 

structural properties. The LBVS uses searches for similarity and substructure, quantitative 

structure-activity relationships (QSAR), and matching of pharmacophores and 3D shapes 

[105]. Virtual screening can help narrow down the number of candidates to a reasonable 

number.
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Recently, Beekman et al. [106,107] suggested that in silico peptide-directed binding is a 

new and cost-effective way to find PPI modulators that are highly selective. This method 

used covalent docking to look through organic fragment libraries. A part of the lead 

peptide was removed to make the binding pocket easier to reach. Carlos et al. provided 

yet another successful example in which the use of a pharmacophore model derived from the 

conformational sampling of the active state of the receptor permitted large conformational 

sampling, widening the selectivity of the predicted ligands, and limiting the constraints 

commonly linked with the modulation of chemical scaffolds [108]. In addition, the great 

flexibility of PPI interfaces highlights the importance of multi-conformational virtual 

screening, which is in combination with MD can explore representative conformations 

effectively. On the other hand, when multiple conformations are used, it takes more 

computing power to look through a large ligand library. Kumar et al. have shown how 

cross-docking can be used to make a new virtual screening pipeline [109]. Using 3D shape 

similarities between the pockets and ligands, they found the best shape for each ligand 

in the collection. This method gets rid of the need for each chemical to dock with all 

structures. This makes multiple-receptor docking cheaper to compute. Less concentrated hot 

spots could imply a large number of binding pockets distributed across a large interface. 

When many binding pockets are physically close together, screening algorithms may only 

identify a subset of druggable sites, resulting in significantly decreased efficacy at lower 

concentrations than the peptide substrate.

The solution to this problem is the combination of virtual screening with rational design 

methodologies. The hits that target a certain hotspot region can begin rational drug design 

employing a structure-based drug design (SBDD) technique. The reactivity of hot spot 

residues could be tweaked by adding chemical groups to establish stronger interactions with 

the binding sites, hence increasing the compound’s activity. Sun et al., for example, utilized 

MD simulations and MM-GBSA free energy calculations to investigate the molecular 

determinants of binding between Keap1/Nrf2 PPI and revealed five sub-pockets, P1 and 

P2 being hot-spots [110].

3.5. Docking-based approaches

In the last few years, docking methods have changed in response to the growing interest 

in peptide-based medicines. There have been good reviews of these methods [111,112], 

and research that gives benchmarks for judging current and future methods. We explain the 

main ideas behind these techniques and simulations that try to predict how proteins and 

peptides will interact with each other. Multiple search modes based on system knowledge 

are used in docking approaches. The binding site and mechanism of the protein-peptide 

conformation must be restored. This is a problem of searching and scoring. Peptide-protein 

position, orientation, and internal structure are all factors in the search problem. Scoring 

finds correctly docked structures using a docking structure scoring function. Success is 

determined by top-scoring postures. Based on system knowledge, docking approaches 

reduce search space for computational efficiency. The peptide binds to all probable protein-

receptor sites in a global search [113–117].
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In the presence of previous data, local search narrows down the hot spot region resulting 

in a targeted search [118,119]. Template-based approaches circumvent this search by 

building flexibility on top of structural database models [120,121]. Methods can be further 

classified by protein receptor and peptide conformational freedom. Flexibility is a difficulty 

for protein-protein and protein-small molecule docking [122]. Modeling protein flexibility 

involves soft potentials [123,124], explore rotameric states [125], using various protein 

receptor structures [126,127] or refining with MD.

The difficulties in modeling peptides stem from the following: (1)→ Peptides can take on 

a variety of conformations depending on whether they are bound or unbound. (2)→ A 

single peptide can bind proteins in multiple conformations [128]. (3)→ Different amino acid 

sequences can interact with the same receptor in more than one way [129].

The majority of docking techniques employ a flexible conformational strategy for peptides. 

These strategies are either sequence-based or conformation-based. In sequence-based 

methods, the amino acid sequence is used to create or predict the PDB or the secondary 

structure [130]. The conformation-based methods employ multiple initial conformations 

often acquired by the peptides, i.e. helical or beta-sheet conformation [131]. The goal of 

scoring functions is to figure out which poses are biologically significant. The underlying 

binding affinities of various poses and substances should be reflected in these functions 

[132]. Empirical fits, knowledge-based, machine learning, and first principles are the four 

types of scoring functions [133].

The capacity to design good and bad poses is a hurdle in evaluation methods. As a result, 

decoy sets [134] have been developed, which are widely utilized as training sets for new 

functionalities. They directly impact the scoring algorithms that are developed along with 

them, which frequently lead to biases. Strategies to detect and counteract such biases have 

been proposed [134]. New scoring approaches are also being developed as scoring functions 

suitable for smaller proteins are not necessarily transferable to larger systems [135].

4. Case studies

Through a vast PPI network that includes a variety of caspases, the inhibitors of apoptosis 

(IAP) family proteins control cell death pathways. Apoptosis evasion is caused by a rise 

in the IAP family proteins in malignancies. Because of the high molecular variability of 

cancers, the IAP PPIs network is rewired differently in each individual. It is easier to choose 

pharmacodynamic and predictive biomarkers for IAP antagonists, when knowing the most 

recent status of the IAP PPIs network in a clinical sample. Advances in therapy have resulted 

in small gains in 5-year survival for women with ovarian cancer during the previous several 

decades. The significant incidence of recurrence with traditional chemotherapy highlights 

the need for novel chemo-resistant cell therapies. Apoptosis, or programmed cell death, is a 

tightly controlled process that is commonly interrupted in cancer.

Apoptosis signaling has both intrinsic (mitochondrial) and extrinsic pathways (death 

receptor-ligand). Intracellular damage stimulates the intrinsic pathway, increasing 

mitochondrial membrane permeability and releasing cytochrome c and the second 
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mitochondria-derived caspase activator (SMAC). The release of cytochromeC and SMAC 

enhances apoptosome production and the degradation of IAPs respectively. Apoptosis 

pathways finally converge on a platform of cellular death driven by the activation of 

caspase-3 and 7.

4.1. The p53-mdm2/x interaction

p53 is known as the ‘guardian of the genome’ due to its tumor-suppressing properties. 

Through its various functional domains, it is predicted to be involved in over a thousand 

PPIs [136,137]. This paragraph will examine the association between the p53 transactivation 

domain and the MDM2 protein, which signals p53 for destruction. Inhibiting the link 

between p53 and MDM2/X is an important cancer target because it allows p53 to carry out 

its functions. Despite the similarity between MDM2 and MDMX, the development of dual 

inhibitor medications continues to be an important area of study, with several candidates 

in clinical trials. A short intrinsically disordered epitope from p53 terminal transactivation 

domain binds as a helix to MDM2 N-terminal domain in the p53-MDM2 interaction [138]. 

Three p53 residues are linked to a deep hydrophobic depression in MDM2, i.e. residue 

Phe19, Trp23, and Leu26 as shown in Figure 6.

MDMX and MDM2 binding sites are 80 percent identical, leading in p53 binding along 

the same mode. Despite their resemblance, MDMX has a shallower binding site, making 

binding inhibitors harder to develop. Computational approaches have been used in the 

rational design of small molecules and the synthesis of peptides as potential drug [139,140].

To explore the complexity of the p53-MDM2 interaction, MD simulations and docking 

approach have been used. On-rates for p53-MDM2 are currently close to experiment in 

studies employing MSM methods, while off-rates are difficult to quantify directly [74]. 

These investigations also reveal binding mechanisms, such as the helicity required a peptide 

to go from an induced-fit to a conformational selection binding paradigm [23]. Some 

research employs the longer MDM2 construct, which has a ‘lid’ piece that effectively lowers 

the amount of time the binding site is exposed to p53 binding. MD simulation approach 

gives precise information on the influence of the lid-disordered area on MDM2 binding 

energy surface when compared to p53 and other small molecule therapies [141].

The best scoring structure from the experimentally bound structure was 3.74, based on 

recent flexible docking simulations of the p53 peptide starting from unbound conformations 

and includes the disordered tails in MDM2 [142]. Nutlin (Figure 7) and its derivative and 

idasanutlin (Figure 7) are small molecule drugs that bind to and inhibit MDM2 and are 

used to treat refractory acute myeloid leukemia [143]. This class of compounds is ineffective 

against MDMX [144], and similar kind of results are obtained for other compounds such as 

AMG-232 (Figure 7), which binds to MDMX with a much smaller affinity as compared to 

MDM2. Small molecule MDMX inhibitors have also failed to work in cultured cells [145]. 

These molecules are designed to mimic the three hydrophobic residues found in the p53 

binding epitope to reduce toxicity. Several of these designs are currently in clinical trials 

[146].
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Using a known binding motif, a new technique for dual inhibition selects peptide sequences. 

As a result, several linear peptide designs with higher affinity than the original p53 peptide 

have been discovered [147]. In peptide designs, the three hydrophobic residues that interact 

in MDM2/X are retained, resulting in longer helices. The Brownian Dynamics method was 

used to compare the binding kinetics of various peptide sequences. Despite their increased 

affinity for MDM2 and MDMX, linear peptides have a poor ADME profile: they are easily 

degraded and have difficulty crossing barriers, limiting their application as pharmaceuticals. 

They are, nonetheless, excellent beginning points for peptidomimetic design. Another 

technique employs non-standard amino acid backbones to boost degradation resistance 

while retaining the side chains required for robust interactions with protein receptors [148]. 

Several of these peptides have advanced to clinical studies [149].

Stapled peptides are an attractive alternative to linear peptides because they may easily 

cross barriers are resistant to degradation and adopt stable helical conformations that 

enhance binding [150]. Tan and colleagues argued for rational design in order to incorporate 

chemical staples while preserving enthalpic interactions and minimizing entropic costs. In 

this area, they concentrated on finding bound conformations utilizing integrative modeling 

approaches based on MD simulations [151]. Hence, they were able to predict the binding of 

several linear and cyclic peptides, as well as the qualitative relative binding free energies. 

Moreover, they discover multiple peptide binding strategies [151,152]: ATSP-7041 (Figure 

7) is a stapled peptide that binds in a disordered state as a helix, whereas p53 binds in a 

disordered state and then folds in the active site.

The latter condition needs partial unbinding and rebinding of the stapled inhibitor due to 

incorrect side chain orientation. Because simulations have long residence durations, even 

partial unbinding might be a slow step, resulting in slow convergence. A linear peptide with 

strong helical inclinations can be shown to rearrange its side chains by partially unfolding in 

the active site. Resulting, the time-consuming unbinding step is skipped by a linear peptide.

4.2. The BH3-Bcl-2 interaction

Apoptosis is a process of planned cell death that is essential for immune system function, 

tissue homeostasis, and embryonic development [153]. Overactive apoptosis might lead to 

an increased ischemia risk as a result of an increased burden of metabolic waste. The 

apoptotic pathway is modulated by complex PPI networks involving the B-cell lymphoma-2 

(Bcl-2) family of proteins. Some members of this family are pro-apoptotic while others are 

pro-survival, and both of these modulate mitochondrial outer membrane permeability.

Over 20 Bcl-2 protein members have been identified. A sequence study shows that 

they share one or more Bcl-2 homology (BH) domains that are important for function, 

since their deletion by molecular cloning influences survival/apoptosis rates. The Pro-

survival members, i.e. Bcl-2, Bcl-xL, etc., have four homology domains (BH1-4) and a 

transmembrane domain. The pro-apoptotic members include proteins with more than one 

BH domain, like the pro-apoptotic effectors Bax and Bak, which have four BH domains 

(BH1-4) linked to a transmembrane domain, and proteins with only one BH domain, like 

Bim, Bid, Puma, etc., whose sequences are very different [154]. Some BH3-only proteins 

such as Bim, Bid and to a minimal extent Puma activate the pro-apoptotic effector proteins 
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directly. The remaining molecules act as sensitizers, binding to the pro-survival proteins and 

releasing the BH3-only activators [155] as shown in Figure 8.

Despite recent progress, the mechanism by which Bcl-2 regulates apoptosis remains 

unknown. Apoptosis susceptibility is determined by the amount of pro-apoptotic and 

prosurvival proteins in a cell, as well as their ability to form heterodimers. By attaching 

to pro-apoptotic proteins, pro-survival proteins prevent apoptosis. In cell-free systems and 

HeLa cells, pro-apoptotic proteins containing the BH3 domain-induced apoptosis, proving 

this notion.

The pro-survival Bcl-2 proteins sequester pro-apoptotic effectors and BH3-only proteins 

in healthy cells, inhibiting apoptosis. BH3-only proteins activate pro-apoptotic effectors 

either directly or indirectly by binding to pro-survival Bcl-2 proteins. By accumulating 

and activating pro-apoptotic effectors, this process enhances the permeability of the 

mitochondrial outer membrane [155]. Variable family affinities, as well as their modification 

by membrane implantation, are important factors.

Apoptotic downregulation is a vital phase in disease progression and maintenance, and BH3 

domain peptide analogs have been identified as possible cancer therapeutics. The molecular 

pathways that regulate the intrinsic apoptotic pathway have been discovered by structural 

investigations on Bcl-2 family members. The first 3D structure of human Bcl-xL was solved 

using X-ray crystallography and NMR spectroscopy methodology [156]. Eight alpha helices 

are connected to BH domains. Helix 8, BH3 helix 2, and BH4 helix 1 are all followed by 

BH2. The linking loop is reached by extending BH1 along helices 4 and 5 (Figure 9A).

The C-terminus of the protein acts as a membrane anchor and must be removed for 

structural analysis. In crystallographic structures, the broad hydrophobic groove created 

by BH1-BH3 domains corresponds to the interaction location of the BH3 domain. The 

apo structures of pro-survival Bcl-2 members have the same topology [157]. Despite their 

opposite responsibilities, Bak and Bax share the same structure. Most BH3-only proteins, 

except for Bid, are intrinsically disordered.

Currently, no heterodimer structures of the Bcl-2 family are available. Pro-survival Bcl-2 

members interact with BH3-only (Bcl-2 homology 3 motif) proteins. The 3D structure of 

the Bcl-xL-Bak BH3 domain complex [158] is shown in Figure 9B. Four hydrophobic 

residues extend their side chains into the cleft, and the Asp83 residue makes an electrical 

contact with Arg139 in Bcl-xL, revealing a helical connection between the BH3 domain and 

a hydrophobic groove. Following that, many BH3 domains bound to various pro-survival 

Bcl-2 members were published in the literature, all of which shared the same general 

features as the Bcl-xL-Bak BH3 complex.

The consensus sequence is visible in the sequence alignment of the various BH3 domains; 

A1-B-XX-A2-XX-A3-B-C-A4-D, where An indicates the hydrophobic residue, B for 

residue with a short side chain, C is an acidic residue, D is a hydrophilic residue and 

X represents any residue [159]. All pro-apoptotic BH3-only members have a A2 leucine 

residue, whereas the rest of An have Val/Ile/Met/Leu or an aromatic residue. The pattern An 

display assurances their division on the same face of a helical structure. The hot spots in the 
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hydrophobic binding cleft, which has four hydrophobic pockets (P1-4) and a conserved Arg 

residue are bound by these four residues and the conserved Asp residue. The pro-apoptotic 

BH3 domains have varying affinity for pro-survival proteins. Puma and Bim bind the 

pro-survival proteins in the same way. The Bcl-2/-xL/-w are bound by Bad and Bmf, while 

Mcl-1 and Bfl1/A1 are bound by Noxa.

The Bcl-xL/-1 and Bfl1/A1 are bound by Bid, Bik, and Hrk. Because of differences in 

their sequencing, they have varied binding preferences. Many structural and bioinformatics 

studies have been carried out to better understand the binding preferences of BH3 peptides 

and Bcl-2 family members, revealing more about the nature of these interactions [160]. 

According to computational and experimental investigations, BH3 peptides do not form 

helices in solution. Incorporating helix enhancer residues into the sequence, analogs with 

higher affinity can avoid negative configurational entropy effects. Analogs in solution had a 

limited helical shape as well. In early attempts to stabilize Bak BH3, lactam cross-links at 

locations I and i + 4 were employed. Despite their helical structure, none of these peptide 

analogs were able to connect to Bcl-2 due to steric hindrance. Hydrocarbon stapling worked 

out well. In this situation, α,α-di-substituted amino acids with olefin tethers provide the 

building blocks for macrocyclization between helix residues.

This method was utilized to successfully stabilize the Bid BH3 peptide [161], which was 

discovered to be helical, protease-resistant, and cell-permeable molecules with improved 

affinity for multidomain Bcl-2 member pockets. However, not all stapled BH3 helices boost 

bioactivity, therefore, a large number of modified peptides must be made and evaluated 

to identify potential candidates. Other kinds of fasteners have also been utilized. Recently, 

bisaryl cross-linkers have been used to reinforce peptide helices containing, for instance, two 

cysteines at positions i and i + 7. Using this approach, the Noxa BH3 peptide was stabilized, 

and it exhibited significant cell-killing efficacy against Mcl-1-overexpressing cancer cells. 

Such process results in a molecule with greater helicity than the native peptide leading 

to improved cell permeability and stability. Several BH3 mimetics have been discovered 

by a hit-to-lead structure-based optimization approach in combination with computational 

approaches.

Gossypol was used to identify potential Bcl-2 inhibitors such as sabutoclax [161] and 

TW-37 [162]. Obatoclax, a cytotoxic inhibitor of pro-survival BCL-2 family members that 

oppose Bax or Bak, was discovered using prodigiosin as a starting point. At low micromolar 

doses, WL-276 causes apoptosis in PC-3 cells. The chemical WEHI-539 was enhanced 

utilizing a structure-guided method after a hit was obtained by HTS. This drug binds to 

bcl-XL with a high affinity and specificity, efficiently killing cells by suppressing their 

pro/survival activity. It has the same inhibitory activity as BCl-2 but has a higher inhibitory 

activity than Bcl XL [163].

Combining NMR spectroscopy-based fragment screening with computational studies 

yielded additional small-molecule Bcl-2 inhibitors. ABT-737 was discovered to be a potent 

Bcl-2 inhibitor [164]. Although the medication is orally available, its pharmacokinetic 

profile when administered intraperitoneally is satisfactory. In April 2016, the US FDA 

authorized ABT-199 as a second-line treatment for chronic lymphocytic leukemia. The 
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4,5-diphenyl-pyrrole-3-carboxylic acid core structure of compound BM-957 inhibits cell 

proliferation in H1147 and H146 small-cell lung cancer cell lines [165].

4.3. Computational approaches in tissue engineering

The application of p53 and bcl2 notions to tissue engineering is as simple as finding 

naturally existing binding modalities and integrin-ECM interactions. This could lead to the 

discovery of new integrin-binding peptide motifs and chemical compounds. The RGD motif 

has been computationally and experimentally explored, because it binds a variety of integrin 

types. However, discrepancies in binding and recognition were caused by the motif internal 

structure and binding mechanism [166,167]. A scaffold with an RGD motif may adopt 

conformations that are recognized by a subset of integrins. A small molecule antagonist 

(i.e. RUC-1) was created using theoretical and experimental methods [168]. The RUC-1 

antagonist binds to the IIb3 integrin without changing its shape [169]. Other computational 

algorithms aim to improve the peptide epitopes of membrane proteins like integrins [170]. 

The synthesis of material that self-assembles to act as a scaffold for cells is a second focus. 

To localize a drug to a specific physiological site, self-assembling peptides that can form 

hydrogels after injection into a patient are commonly employed [171].

Several peptides sequence-based experimental techniques for molecular self-assembly 

have already been disclosed [171]. To determine their activity, self-assembling peptides 

must contain a sequence capable of self-assembly as well as a sequence motif 

accessible and identifiable by integrins; see in ref [161]. This is an opportunity for 

computational approaches to investigate the best sequence design for achieving specified 

mechanical qualities (such mechanical stiffness), as well as rational optimization for 

active and accessible integrin-binding motif conformations. Smadbeck and colleagues used 

experimental approaches to describe small peptide motifs capable of self-assembly [172]. 

Another alternative is to use proteins that fold into stable structures and then self-assemble 

[173].

Despite these advances in computational design, the bulk of hybrid procedures still rely on 

experimental design followed by computational characterization, with molecular dynamics 

being the most common method [174,175]. Peptide secondary structure proclivities, protein 

structure and assembly prediction, and design principles are all relevant to this field of 

research [176].

4.4. 14-3-3 PPIs

The 14-3-3 protein family is a particularly intriguing topic for PPI modulation research 

because it has been discovered to have hundreds of protein-protein interactions. PPIs 

play a role in a variety of biological processes, including cell cycle regulation, signal 

transduction, protein trafficking, apoptosis, and cancer [177]. 14-3-3 proteins are also 

involved in phosphorylation-dependent PPIs, which regulate cell cycle progression, the 

initiation and maintenance of DNA damage checkpoints [178]. Besides this, 14-3-3 proteins 

are also involved in the progression of many neuropathological disorders [179,180], bound 

to tau-tangles and enhancing their aggregation as seen in Alzheimer’s patients [181]. Using 

small molecules to modify these PPIs is a crucial method for creating new drugs. The 
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literature has reported a variety of natural, semi synthetic and synthetic compounds that 

perform their physiological functions by stabilizing complexes of their target proteins [182]. 

Fusicoccin-A (FC-A), a metabolite generated by the fungus Phomopsis amygdali, is an 

example of a natural stabilizer and was the first stabilizer to be reported for 14-3-3/client 

PPIs. The plasma membrane H+-ATPase (PMA2) and 14-3-3 complex was discovered to 

be stabilized by FC-A, with a 90 times increase in the affinity [183]. It was also found to 

stabilize 14-3-3/cystic fibrosis transmembrane conductance regulator (CFTR) complex that 

resulted in enhanced delivery to the plasma membrane. By looking at the examples above 

and many more [180,184], it can be deduced that FC-A might act as a potential chemical 

tool for investigating the role of 14-3-3 in various pathologies.

The semi-synthetic derivatives such as fusicoccin tetrahydrofuran (FC-THF) that bears an 

additional furan ring induces a 20 times increase in the stabilization of 14-3-3/potassium 

channel TASK-3 complex [185]. Fusicoccin-derivative (ISIR-005) is another semi-synthetic 

derivative that stabilizes the cancer-relevant interaction of the adaptor protein 14-3-3 and 

Gab2 [186]. Similar to natural and semi-synthetic stabilizers, there is another class of 

stabilizers of 14-3-3 PPIs that include synthetic products. These products include but are not 

limited to pyrrolidone 1 [187], Adenosine Monophosphate (AMP) [188], and The Molecular 

Tweezer CLR01 [189] etc.

5. Expert opinion

Due to their significance in cell signaling and regulation, PPIs are considered as potential 

therapeutic targets. But there are still many issues to explore about their interactions and 

modulation to fully define these massive networks and address PPI-based drug discovery 

challenges. No doubt, modern experimental techniques have expanded our knowledge of 

PPIs, but unfortunately, the size of the human interactome makes experimental methods 

insufficient, demanding more robust and efficient computational methods. Computational 

methods facilitate the characterization of PPIs by identifying their chemical structures, 

which in turn expedites and improves the design of PPI modulators. Advancement in 

computational resources and algorithms, coupled with a molecular-level understanding of 

proteins’ dynamics, has made in silico approaches successful in PPI drug discovery.

Recent advances in computational tools for evaluating and identifying PPI modulators have 

led many enterprises to invest in drug discovery, resulting in numerous peptide drugs on the 

market [164]. In the development of inhibitors that target PPIs, computational approaches 

can be used in a wide variety of ways. Low membrane permeability, a short half-life 

and low bioavailability of biomolecules are the significant issues that can be solved by 

combining computational techniques with experimental findings. Computational methods 

such as prediction and filtering tools are robust, especially for biomolecules with poor 

starting conformational data retrieved from experiments. In such a scenario, sequence-based 

methods can provide a useful insight into the starting structure and conformation of proteins 

that are crucial for ligand design later.

However, this information might not generate exact three-dimensional structures [190]. The 

majority of computational methods, such as free energy techniques, require the availability 
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of structural data. Due to proteins’ inherent flexibility, approximations are often included 

in the algorithms when using these methods, but this creates biased systems; therefore, one 

must be extremely careful when choosing a computational technique for a specific problem 

[191]. Knowledge-based methods use the current structural data for proteins and ligands, 

meaning the results can be only as reliable as the data used to create them. Some PPI 

descriptors are more predictive than others [190]. A model built on one protein family or 

class of ligands might not accurately describe the properties of other protein families or 

ligand classes. Similarly, for screening methods, structural information is required, which 

makes this strategy unsuitable for unknown targets.

They provide no information about hot-spot regions or binding interactions. And like 

any other computation method, validation of the results is very important. However, 

validation for PPIs need more sensitive enhanced sampling methods and expertise owing 

to their disordered conformations [192]. Most of the biological phenomenon occur at a 

timescale that is inaccessible to most of the computational techniques. Achieving such 

timescale need a lot of GPU power which makes these methods computationally exhaustive. 

MD simulations can overcome such problems to some extent using enhanced sampling 

techniques such as meta-dynamics.

Growing interest in the use of MD for exploring PPIs has also been augmented by 

advancements in hardware [169,193]. The role of machine learning in predicting protein 

structures is exceptional, but when tested for PPI predictions, the results show some 

limitations [194], suggesting that these methodologies are still insufficient to capture all 

the details of the binding interactions at a molecular level. But we believe, with the 

availability of high atomic resolution structures, these discrepancies will be met. As of now, 

the use of computational tools to differentiate between functional and non-functional protein 

interactions based on their structure and dynamics is still controversial [195].

It’s important to remember that the reason for discussing the drawbacks of the above-

mentioned computational methods is not to disregard them but to reinforce the need for 

additional research and to improve the current tools. In addition, the strengths of each 

method can be utilized to combine them with other methods. In CADD endeavors, advanced 

in-silico tools together with state-of-the-art experimental techniques can lead to a better 

understanding of PPI identification and modulation.
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Article highlights

• PPIs were considered undruggable due to their flat surfaces, irregular 

conformations, and lack of grooves.

• Rapid advances in computational biology have made PPIs a major research 

field in drug discovery.

• Reviewed different in-silico approaches to find PPI interfaces and methods 

that are successfully applied to analyze PPI interfaces.

• Reviewed examples that use computational methods to analyze PPIs and their 

impacts in diverse physiological processes.

This box summarizes key points contained in the article.
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Figure 1. 
Mechanism for allosteric regulation.
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Figure 2. 
Well-known example of using allosteric modulation of PPIs to find new active molecules.
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Figure 3. 
Computational strategies for PPI drug discovery. Diverse computational tools encompass 

various stages of PPI drug discovery.
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Figure 4. 
MD simulations have a wide range of applications in PPIs research. Several elements of 

PPIs can be explored using MD simulations.
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Figure 5. 
ML-based PPI predictions follow a set of approved guidelines.
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Figure 6. 
(a) p53 (PDB code 1ycr) and (b) a stapled peptide (MELD prediction) binding MDM2. 

Anchoring hydrophobic residues in the peptide represented as sticks.
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Figure 7. 
Chemical structures.
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Figure 8. 
Direct and indirect Bak/Bax activation models in apoptosis.
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Figure 9. 
(a) The X-ray structure of Bcl-xL. (b) Illustrate the x-ray structure of the Bcl-xL and 

BH3-Bak complex. The diverse elements of secondary structure have been labelled.
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