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Abstract
The current work is an extensive review addressing the effects of heavy metals in major pulse crops such as Chickpea (Cicer 
arietinum L.), Pea (Pisum sativum L.), Pigeonpea (Cajanus cajan L.), Mung bean (Vigna radiata L.), Black gram (Vigna 
mungo L.) and Lentil (Lens culinaris Medik.). Pulses are important contributors to the global food supply in the world, due 
to their vast beneficial properties in providing protein, nutritional value and health benefits to the human population. Several 
studies have reported that heavy metals are injurious to plants causing inhibition in plant germination, a decrease in the root 
and shoot length, reduction in respiration rate and photosynthesis. Properly disposing of heavy metal wastes has become 
an increasingly difficult task to solve in developed countries. Heavy metals pose one of the substantial constraints to pulse 
crops growth and productivity even at low concentrations. This article attempts to present the morphological, biochemical 
and various physiological changes induced on the pulse crops grown under various heavy metal stress such as As, Cd, Cr, 
Cu, Pb, and Ni.
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Introduction

Heavy metal (HM) refers to a group of metals with a high 
atomic number, i.e. above 20 and having a higher density 
(5 g/cm3), such as cadmium (Cd), mercury (Hg), lead (Pb), 
arsenic (As), nickel (Ni), chromium (Cr), copper (Cu) and 
zinc (Zn) (Mishra et al. 2019). These metals directly pol-
lute the environment and cause biological toxicity when 
excess amounts of HMs are introduced into the environment. 
However, some of these metals including Zn, Cu and Ni are 
necessary micronutrients and only required in trace levels 
since they serve as cofactors for certain enzymes (Ghori 
et al. 2019). Organic pollutants are easily degradable, while 
the toxic HMs are unmodifiable by biochemical reactions 
and cause environmental pollution worldwide. Therefore, 
these metals are difficult to remediate from the water and soil 
by natural means (Ramesh kumar and Anbazhagan 2018). 
When these HMs enter agricultural lands they not only cause 

soil contamination, but also affect food quality, production 
and human health. Crops grown in HM polluted sites have 
been reported to display altered metabolism, biochemical 
and physiological processes leading to growth reduction, 
lower biomass production and HM accumulation (Edelstein 
and Ben-Hur 2018). One such important agricultural crops 
are pulses, which are globally very important and play a 
key role in dietary diversity to eliminate malnutrition and 
hunger.

Pulse crops belong to the Fabaceae family their impor-
tance ranks second to that of the Poaceae family in the 
agriculture system. Moreover, pulse crops can arrange as a 
substitute for animal protein and thus become an essential 
dietary protein required especially in developing countries 
(Farooq et al. 2018). Pulse crops are a source of rich protein 
in comparison to various other cultivated crops. In addi-
tion, pulses belong to a subgroup of legumes that harbors 
nitrogen-fixing bacteria in their root system which improves 
soil fertility (Schwember et al. 2019). Legume plants have 
an important role as health enhancers due to the fact these 
bioactive peptides possess various properties such as anti-
oxidant activities, antimicrobial effects, immunomodulation, 
enhancing of mineral bioavailability/absorption, lowering 
of blood pressure and cholesterol (Çakir et al. 2019). Edible 
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seeds provided by the legume plants have shown anticarci-
nogenic properties. Many potential bioactive components 
provided by pulses are protease inhibitors, saponins, lec-
tins, phytosterols and phytates which act as anticancer agents 
(Mathers 2002). Furthermore, the absence of gluten pro-
teins in seeds of pulse crops is critical in meeting the need 
of gluten-free diets for the population suffering from celiac 
disease (Mlyneková et al. 2014).

Heavy metals

Chromium

Naturally, Cr is present on the Earth having an electronic 
configuration [Ar] 4d5s1 and is the seventh most abundant 
element found in the Earth’s crust having concentrations 
varying from 100 to 300 μg/g. Cr is found in nature in its 
compound states, and chromite (Fe, Mn)  Cr2O4 is the most 
relevant Cr ore (Focardi et al. 2013). Table 1 summarises 
the sources of HMs/metalloids. Cr(III) is an important 
trace element for having a particular role in maintain-
ing normal carbohydrate metabolism in yeast and mam-
mals (Dȩbski et al. 2004). For normal insulin function 

Cr is required, insulin resistance have been reported at 
low levels of Cr. Extreme deficiency of Cr is followed by 
symptoms that mimic diabetes mellitus (Liu et al. 2015). 
In nature, Cr occurs in two distinct and stable oxidation 
states i.e. hexavalent Cr[Cr(VI)] and trivalent Cr[Cr(III)], 
in both Cr(VI) and Cr(III), there is a difference in toxicity, 
bioavailability and mobility (Panda and Choudhury 2005). 
Hexavalent Cr is more toxic than the trivalent form, which 
generally occurs in association with oxygen as dichromate 
 (Cr2O7

2−) or chromate  (CrO4
2−) (Shanker et al. 2005). 

Cr(VI) is more mobile in comparison to Cr(III) and in 
aquatic and soil environments Cr(III) is mostly found con-
fined to organic matter which is thought to take place due 
to the reduction of Cr(VI) to Cr(III) (Becquer et al. 2003). 
The International Agency for Research on Cancer (IARC) 
has classified Cr(III) compounds as Group 3 and Cr(VI) 
compounds as Group 1 (IARC 2012). In humans, Cr(VI) 
exposure can induce irritations in the skin and nose, nasal 
ulcer, contact dermatitis, nasal ulcer, lung cancer and res-
piratory tract disorders (Shrivastava et al. 2002). Exposure 
to Cr can cause serious phytotoxicity in plant cells, Cr 
causes a reduction in chlorophyll (Chl) content, breakdown 
of carotenoids and an increase in lipid peroxidation which 
hampers the growth of the plant (Panda and Patra 2000).

Table 1  Sources of HMs/metalloids

Metals/
metal-
loids

Sources References

Cr Volcanic eruptions, weathering of parent rocks, fossil fuel com-
bustion, waste incineration, industrial processes, pulp and paper 
mills, leather tanning, chromium plating, metal fabrication, 
wood preservatives, printing inks, paints and anti-corrosive 
materials

Bielicka et al. (2005), Biradar et al. (2012), Cheng et al. (2014) 
and Owlad et al. 2009)

As Earth crusts as ores and minerals, industrial sites, mining, smelt-
ing, manufacturing alloys, burning fossil fuels, leather industry, 
wood preservatives, pesticides

Bissen and Frimmel (2003), Melamed (2005), Morin and Calas 
(2006) and Bencko and Slámová (2007)

Cd Weathering of cadmium-rich rocks, volcanic activities, industrial 
processes, nickel–cadmium batteries, PVC products, electro-
plating, electrodes, phosphate fertilizer production, nuclear 
reactors, fossil fuel combustion and smoking

Genchi et al. (2020a) and Suhani et al. 2021)

Pb Volcanic explosions, forest fire, mining, smelting, coal burn-
ing, batteries, painters, pigments, car radiators, cable wires, 
ammunitions, cement industry, automobile exhaust and oil 
combustion

Cheng and Hu (2010), Hou et al. (2015), Karrari et al. (2012) and 
Wang et al. (2000)

Cu Volcanoes, windblown dust, forest fires, mining, milling, refining 
and smelting of ores, concentrating, electroplating industries, 
electrical wastes, fuel combustion, wood preservatives, copper 
biocides and pesticides

Alvarado et al. (2002), Freeman and McIntyre (2008), Kuehne 
et al. (2017), Lamichhane et al. (2018), Rehman et al. (2019) 
and Shrivastava (2009)

Ni Wind-blown dust, weathering of rocks, forest fires, volcanic 
activities, mining, refining, nickel alloys, petroleum industries, 
smelting, paint, batteries, combustion of coal, diesel and fuel, 
incineration of waste and sludge

Ahn et al. (2019), Genchi et al. (2020b) and Iyaka 2011)
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Cadmium

Cd is most commonly found as a divalent cation that is com-
plexed with other elements (e.g.,  CdCl2). Cd is found in the 
Earth’s crust at roughly 0.1 parts per million, found as an 
impurity in Pb or Zn deposits; it is generally generated as 
a byproduct of Pb or Zn smelting (Bernhoft 2013). Cd is a 
soft, ductile, silvery-white metal belonging to the group 12 
element, present in d block and period 5 with atomic number 
48 and electronic configuration [Kr] 4d105s2 (Sharma et al. 
2015). Normally + 2 oxidation state is present in most of its 
compounds although the + 1 oxidation state is found in rare 
instances (Morrow 2010). Cd is a widespread pollutant that 
persists in nature and pollutes soil and water. In addition, it 
is a non-essential metal for both plants and humans (Meysam 
Hoseini and Zargari 2013). Cd is considered to be a Group 
1 human carcinogen (IARC 2012). Cd is a common HM 
contaminant that is extremely hazardous to living organ-
isms. Exposure to Cd leads to shortness of breath, acute 
respiratory distress syndromes, lung edema, mucous mem-
brane destruction due to pneumonitis, acute gastrointestinal 
disorder (vomiting and diarrhea), kidney damage and Cd 
induce deleterious effects in the reproductive system (Godt 
et al. 2006).

Arsenic

Arsenic, a metalloid, is the 20th most abundant element 
in the Earth’s crust, 1.5–3 mg/kg As is present in the soil 
(Mandal and Suzuki 2002). Arsenic like nitrogen, phos-
phorus, antimony and bismuth, belong to group V element. 
It has the electronic configuration [Ar] 3d104s24p3 with an 
atomic weight of 75 (Garelick et al. 2008). Only 3 com-
pounds of 150 species of As containing minerals found in 
nature are regarded as As ore, due to their high amount of 
As, namely realgar or As sulfide  (As2S2), orpiment or As 
tri-sulfide  (As2S3) and arsenopyrite or ferrous As sulfide 
 (FeAsS2) (Hossain 2006). As can be found in both organic 
and inorganic forms in nature, while pentavalent arsenate 
As(V) and trivalent arsenite As(III) valence states of As are 
most commonly seen in environments contaminated with 
As (Dhankher et al. 2012). According to Environmental 
Protection Agency (EPA) and IARC, As is one of the most 
extremely toxic and carcinogenic element present on the 
planet. As and its compounds have been placed in Group 1 
human carcinogen (IARC 2012). As is a potent carcinogenic 
metalloid pollutant with negative health effects in humans. 
Moreover, As can cause non-carcinogenic consequences, 
including weakness, edema, cardiovascular disease, hyper-
tension, diabetes mellitus, respiratory problems, conjunc-
tival congestion and neurological deficits (Bjørklund et al. 
2018).

Lead

Pb is a notable hazardous HM, which has attracted a lot of 
interest due to its extensive distribution and potential envi-
ronmental hazard (Zeng et al. 2007). Pb is slightly bluish to 
gray in color, easily molded and shaped, and has a melting 
point of 621.43 °F. Additionally, it can be combined with 
different metals to create alloys. Pb is placed in group 14 in 
the periodic table and has an atomic weight and an atomic 
number of 207.2 and 82, respectively, and having electronic 
configuration of [Xe] 6s24f145d106p2 (Abd El-Hack et al. 
2019). Pb is the most common HM pollutant in the environ-
ment according to EPA, IARC has classified Pb as a possible 
human carcinogen in Group 2B and its inorganic compounds 
in Group 2A (IARC 2012). In humans, Pb causes severe 
damage to the brain, kidneys, central nervous system, cardio-
vascular system, immune system. In addition, other notable 
effects caused by Pb exposure are depression, problems with 
sleep, fatigue, headaches, slurred speech, stupor, nausea, 
abdominal pain, lack of coordination, numbness, blood pres-
sure increases, anaemia and miscarriage (Wani et al. 2015). 
Pb is not necessary for plant growth; a higher concentration 
of Pb causes a magnitude of negative effects causing inhibi-
tion of growth and germination, suppressing photosynthe-
sis, altering membrane structure and permeability (Li et al. 
2012). Pb toxicity destroys the chloroplast substructure and 
mitochondria, reduction in ascorbic acid and Chl contents, 
production of reactive oxygen species (ROS) and decline 
in the activity of antioxidative enzymes causing an overall 
reduction in plant growth and development (Xu et al. 2007).

Copper

Cu is present in group 11, period IV in the periodic table 
with the electronic configuration [Ar] 3d104s1, having atomic 
number 29 and an average molecular weight of 63.55 (Bar-
ber et al. 2021). All biological species, from bacteria to 
humans, require Cu as an essential trace element. Cu par-
ticipates in redox reactions through cycling between Cu(I) 
and Cu(II) oxidation states, making it an important compo-
nent of metalloenzymes and using coordination chemistry 
maintains higher order structure which serves as an essen-
tial component of macromolecules (Stern et al. 2007) Cu 
toxicity disturbs redox properties leading to a significant 
increase in ROS, damaging lipids, mitochondria, proteins 
and nucleic acids (Mehta et al. 2006). Excess Cu accumu-
lation in humans causes Wilson disease, abdominal pain, 
headache, dizziness, nausea, vomiting, diarrhea, tachycardia, 
respiratory problems, hemolytic anemia, hematuria, substan-
tial gastrointestinal bleeding, kidney and liver failure (Stern 
et al. 2007). In plants, Cu plays key roles in photosynthe-
sis, respiration, cell wall metabolism and hormone percep-
tion. Multiple Cu transporters regulate the transport of Cu 
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in a tightly controlled fashion, such as Copper transporter 
(COPT), Zrt/Irt-like protein (ZIP), HM ATPase (HMA), yel-
low stripe-like (YSL) transporters and natural resistance-
associated macrophage protein (Nramp), directly maintain-
ing Cu homeostasis (Liu et al. 2017).

Nickel

Ni is one of the major metal pollutants of concern due to its 
toxic effects at a higher concentration, which is increasing in 
the soil every year in various parts of the world. Ni is a long-
term potential environmental hazard, ranking 22nd among 
the most common elements in the Earth’s crust (Rizwan 
et al. 2019). Ni has a silvery-white color, hard and ductile, 
belonging to group VIII B of the transition metal series in 
the periodic table and having an atomic number 28 with 
the electronic configuration [Ar] 3d84s2. Although Ni can 
exist in numerous different oxidation states, Ni(II) i.e. in 
the + 2 valence state is the most prevalent oxidation state in 
the environment. Other valence states (− 1, + 1, + 3, and + 4) 
are also found in nature and are less frequent (Cempel and 
Nikel 2006). Many plant species require small amounts of 
Ni (0.01–5.0 mg/kg) to complete their life cycle, Ni also 
plays an important role in urease enzyme (Rizwan et al. 
2017). Glyoxalases, hydrogenases, peptide deformylases, 
methyl-coenzyme reductase and superoxide dismutases, 
are among the enzymes that use Ni as a key component. 
Furthermore, Ni participates in various metabolic processes, 
including ureolysis, methane biogenesis, hydrogen metabo-
lism and acetogenesis (Chen et al. 2009). Ni is carcinogenic 
to humans, Ni compounds belong to Group 1 and metallic 
Ni belong to Group 2B (IARC 2012). Ni is a known immu-
notoxic, haematotoxic, neurotoxic, pulmonary toxic, hepa-
totoxic, nephrotoxic, reproductive toxic, genotoxic and car-
cinogenic agent (Das et al. 2008). In humans, acute toxicity 
of Ni causes nausea, vomiting, irritation, vertigo, stiffness in 
chest, constant cough, cyanosis, dyspnea, tachycardia, pal-
pitations, visual disturbances, sweating, weakness, cardiac 
arrest and death due to respiratory distress syndrome have 
been reported, whereas chronic toxicity leads to asthma and 
bronchitis (Das et al. 2018). Exposure to a high concen-
tration of Ni disrupts many morphological and anatomical 

processes in plants causing growth reduction, chlorosis, wilt-
ing and necrosis (Jamil et al. 2014).

Pulse crops

Chickpea

Chickpea is an annual grain legume, a self-pollinated dip-
loid (2n = 2x = 16) plant with a genomic size of roughly 738 
megabase pair (Mbp)/1C (Arumuganathan and Earle 1991). 
Chickpea plant in association with effective nitrogen-fixing 
symbiotic bacteria improves soil fertility by fixing atmos-
pheric nitrogen. The amount of nitrogen fixed in the soil 
by different pulse crops are provided in Table 2. Chickpeas 
were first domesticated in Southeastern Turkey and have 
since adapted to a variety of environmental and climatic 
factors all over the globe from East Africa to South Asia 
in subtropical conditions to regions of North America in 
temperate conditions (Kozlov et al. 2019). Two distinct types 
of chickpeas are cultivated based on seed size, shape and 
color. Specifically, the desi form, which is characterized by 
pink or purple flowers, seeds are small, angular in shape, 
brown in color containing a high proportion of fiber primar-
ily cultivated in East Africa and the Indian subcontinent and 
central Asia, while type kabuli, having white flowers, seeds 
are large, beige, containing a low proportion of fiber, culti-
vated in Central Asia and Mediterranean basin (Iruela et al. 
2002). To increase chickpea productivity, Mesorhizobium 
is used for symbiotic nitrogen fixation where the beneficial 
microorganisms are traditionally applied either to the soils 
or to the seeds. To boost the nodulating capacity of the crop 
and the effectiveness of the symbiosis (Wani et al. 2007a), 
Chickpea is an essential source of protein for millions of 
people in India and other South Asian countries. Chickpeas 
have high fiber content, unsaturated fatty acids, β-carotene 
and are rich in minerals (calcium, phosphorus, magnesium, 
zinc and iron) (Gaur et al. 2010). Chickpea ranks third after 
beans in terms of production worldwide with a mean produc-
tion of more than 10 million tons annually, with the majority 
of production concentrated in India. Chickpea plantation has 
begun to increase in land area in recent years. Reaching an 
estimated 13.5 million hectares, the rate of increase in per 

Table 2  Amount of nitrogen 
fixed by different pulse crops in 
the soil

Pulse crops Fixed nitrogen in the soil 
(kg/ha/year)

References

Cicer arietinum 31–186 Aslam et al. (2003) and López-Bellido et al. (2011)
Cajanus cajan 32–117 Adu-Gyamfi et al. (2007) and Wezi et al. (2017)
Lens culinaris 41–154 Schmidtke et al. (2004)
Pisum sativum 53–286 Gollner et al. (2019) and Kumar and Goh (2000)
Vigna radiata 25–112 Shah et al. (2003) and Delfin et al. (2008)
Vigna mungo 13–91 Hayat et al. (2008)
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unit area production have been slow but steady. The global 
yield, production and area of major pulse crops data esti-
mated from 2018 to 2020 based on Food and Agriculture 
Organization Corporate Statistical Database (FAOSTAT) are 
provided in Table 3. Every year, more than 1.3 million tons 
of chickpea arrive in world markets where India, Pakistan, 
Iran, Turkey and Australia are the leading chickpea produc-
ing countries (Muehlbauer and Sarker 2017).

Pigeonpea

Pigeonpea (Cajanus cajan L.) is an important legume crop 
that is widely grown in tropical and subtropical regions 
for its nutritive seeds. Pigeonpea is extensively versatile, 
hardy, fast-growing and can withstand drought conditions 
(Bekele Tesemma 2007). These species are diploid in nature 
(2n = 2x = 22) having an estimated genome size of about 858 
Mbp/1C (Greilhuber and Obermayer 1998). Due to its resist-
ance to drought conditions, it is considered highly relevant 
for food security in areas where rainfall is uncertain and the 
prevalence of drought is common (Cox 2014). Cultivated 
varieties can be divided into two types, the cultivar arhar 
(C. cajan var. bicolor) is a large, bushy, late-maturing peren-
nial plant whose dorsal side of the standard is either red or 
purple. Another variety is three seeded, shorter plant having 
a yellow standard and are earlier maturing known as tur cul-
tivars C. cajan var. flavus (Sharma et al. 2008). Despite some 
postulation for African origin, it has been proved beyond 
a reasonable doubt that the most likely wild progenitor of 
pigeonpea was Cajanus cajan ifolius found in Eastern India 

today, comprising the present state of Odisha and neighbor-
ing states as an origin (Fuller et al. 2019). The most popu-
lar use of pigeonpea is to make dhal (hulled, soaked dried, 
and split seeds) (Shinde et al. 2017). In certain regions of 
Southeast Asia, the seeds are used to make tempe (Shurtl-
eff and Aoyagi 2013). 20–22% of protein can be found in 
the seeds of pigeonpea along with a significant amount of 
minerals and essential amino acids. Pigeonpea is commonly 
consumed as whole grain, green peas or split peas (Saxena 
et al. 2002). India is the world’s largest pigeonpea growing 
country. The primary pigeonpea producing countries are 
India, Myanmar, Tanzania, Malawi, Uganda, Mozambique 
and Southern Africa (Sharma et al. 2019). In terms of area 
and production in India, the following states comprise Maha-
rashtra, Madhya Pradesh, Uttar Pradesh, Gujarat, Karnataka, 
Telangana, Andhra Pradesh and Bihar (Sameer Kumar et al. 
2017).

Pea

The pea (Pisum sativum L.) plant was the first model organ-
ism utilized in Mendel's (1866) discovery of the laws of 
inheritance, laying the groundwork for modern plant genet-
ics (Smýkal et al. 2012). Pea is grown all over the world 
having a temperate climate, it is a herbaceous, annual, self-
pollinated diploid (2n = 2x = 14) plant with an enormous 
genome size estimated to be 4397 Mbp/1C (Arumuganathan 
and Earle 1991). Archaeological evidence indicates its cul-
tivation in Greek settlements and the Near Eastern region in 
early 6000 BC, but there is no strong consensus on its actual 

Table 3  Global yield, 
production and area of major 
pulse crops

Data source: (FAOSTAT 2022)

Crop Scientific name Year Yield (Mg/ha) Production (Mt) Area (Mha)

Chickpea Cicer arietinum 2018 1.05 16.94 16.18
2019 1.03 14.18 13.79
2020 1.02 15.08 14.84

Pigeonpea Cajanus cajan 2018 0.98 5.38 5.48
2019 0.78 4.36 5.59
2020 0.82 5.01 6.10

Lentils Lens culinaris 2018 1.19 6.57 5.51
2019 1.19 5.78 4.85
2020 1.30 6.54 5.01

Pea (dry) Pisums ativum 2018 1.80 13.41 7.45
2019 1.96 14.00 7.14
2020 2.40 14.64 7.19

Mung bean Vigna radiata 2018 – – –
2019 – – –
2020 – – –

Black gram Vigna mungo 2018 – – –
2019 – – –
2020 – – –
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origin. Primitive forms flourished throughout Central Asia, 
including Afghanistan, the Near East, the Mediterranean and 
Ethiopia, all of which are rich in genetic diversity (Wrigley 
et al. 2015). Pea is valuable due to their nutritional quality 
of protein having amino acids containing low levels of sul-
fur, methionine and cysteine, but lysine-rich and possessing 
other essential amino acids (Dahl et al. 2012). Furthermore, 
peas include substantial amounts of vital minerals such as 
calcium, iron and phosphorus, which are absent in cereals 
(Haque et al. 2015). Peas are frequently used as a break crop 
in continuous cropping systems and also used as forage for 
cattle (Borreani et al. 2007). Peas are grown extensively in 
India and the Indian subcontinent and are consumed as vege-
tables, dhal (pulses), chhola (whole grain), chat (spicy dish) 
and flour; thus making a major contribution to the business 
economy (Choudhury et al. 2007). The immature seeds of 
this crop are eaten as raw, frozen, or packaged vegetables in 
many countries around the world. Pea is a starchy plant with 
high protein, vitamins (A, B6, C, and K), elements (Cu, P, 
Mg, Fe, and Zn), fiber and lutein (El-Amier et al. 2019). Pea 
seeds, which contain 270–560 g/kg starch, 200 g/kg dietary 
fibers and 130–300 g/kg protein are an excellent source of 
plant protein for human and cattle feeds (Park et al. 2010). 
It is also consumed to avoid cardiovascular disorders due to 
its low fat, cholesterol and sodium contents (Shahid et al. 
2018). Canada is the largest producer of pea, other promi-
nent pea producing countries are France, Russia, China, 
India and Ukraine (Janzen et al. 2014).

Mung bean

The Vigna genus is pantropical consisting of about 170 spe-
cies, Africa comprising 120 and 22 in Indo-Pak subcontinent 
and Southeast Asia, and few from other countries. Since 
ancient times, mung bean [Vigna radiata (L.) R. Wilczek] 
has been a major pulse crop in Asia (Ghafoor et al. 2002). 
Mung bean is an annual, self-pollinated diploid legume plant 
with 22 chromosomes (2n = 2x = 22) with approximately 
579Mbp/1C genome size (Arumuganathan and Earle 1991). 
Mung beans are thought to be originated and domesticated 
in the Indian subcontinent around 2500 BC, data on the 
domestication of mung bean, morphological research, and 
archaeological findings suggest they might have originated 
from places like minor hill groups between the Krishna 
and Godavari rivers, near the upper Ganges in the Eastern 
Harappan zone and the Western Himalayan foothills (Fuller 
and Harvey 2006). V. radiata var. sublobata are the nearest 
wild relatives of the cultivated V. radiata, and are consid-
ered to be their wild progenitors (Singh and Jauhar 2006). 
Domestication and selection from V. radiata ssp. radiata 
resulted in the cultivation of mung bean which is wide-
spread across Eastern and Southern Asia, Austronesia and 
Africa (Lambrides and Godwin 2007). Mung bean protein 

is easily digestible, dried grains can be eaten whole or split 
after cooking to make soup or dhal, deep-fried delicious 
cakes, noodles, and also flour for making biscuits and bread 
(Tomooka et al. 2005). On a dry weight (DW) basis, a mung 
bean seed contains 59–65% carbohydrate, 24–28% protein, 
4.5–5.5% ash 3.5–4.5% fiber and 1.0–1.5% fat and provides 
energy in the range of 334–344 kcal (Mehandi et al. 2019). 
The majority of the mung bean production (90%) takes place 
in Asia where India is the world’s largest producer, account-
ing for more than half of the global output. In India, mung 
beans are grown on approximately 4.2 million hectares, with 
an estimated annual production of 1.3 million tons in 2008 
(Isemura et al. 2012).

Black gram

The Vigna genus is a leguminous plant consisting of a large 
taxon that is found in tropical and subtropical regions of 
America, Asia, Africa and Australia. Black gram is a self-
pollinated diploid (2n = 2x = 22), short duration annual plant 
species with a genomic size estimated to be 574 Mbp/1C 
(Arumuganathan and Earle 1991). Cultivated black gram 
[Vigna mungo (L.) Hepper var. mungo] (known also as urad, 
urd or mash). It is believed in India that the domestication of 
black gram originated from Vigna mungo var. silvestris as 
its wild progenitor (Fuller et al. 2004). Vigna mungo seeds 
are a staple food in South Asia, and the split and de-hulled 
seeds (dhal) are a common dish (Joyner and Yadav 2015). 
Many traditional products are prepared from black gram like 
papad, wari, idli, halwa, dosa and imrati (Zia-Ul-Haq et al. 
2014). Owing to its relatively short life cycle (75–90 days) 
and drought tolerance, the ability to fix nitrogen from the 
atmosphere with the help of soil bacteria Bradyrhizobium 
and Rhizobium, black gram is grown as part of a variety of 
cropping systems, although it is most commonly grown after 
wheat and rice (Kaewwongwal et al. 2015). Black gram is 
primarily grown in India, Afghanistan, Bangladesh, Paki-
stan, Myanmar, Nepal, Philippines, Thailand, Sri Lanka, 
South and Southeast Asian countries. India is the world’s 
leading producer as well as consumer of black gram, owing 
to its major contribution to its production. In 5.44 million 
hectares, it is grown with an annual production of roughly 
3.56 million tons in 2017–2018 and a productivity of 655 kg/
ha (Raizada and Souframanien 2019).

Lentil

Lentil (Lens culinaris Medik.) is one of the oldest legume 
crops, dating back to 7000–6000 BC according to archeo-
logical evidence (Erskine et al. 2016). The lentil plant is 
present in the clade Hologalegina, tribe Vicieae, subfamily 
Faboideae as a member of the Fabaceae (Leguminosae) fam-
ily (Chahota et al. 2018). Lentil plant is an annual diploid 
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(2n = 2x = 14), a self-pollinated crop having genome size 
of 4063 Mbp/1C (Arumuganathan and Earle 1991). There 
are many wild lentils but L. orientalis is thought to be the 
progenitor of the cultivated lentil (Yadav et al. 2007). The 
lentils which are chiefly cultivated have been split into two 
commercial classes, acrosperma and microsperma, with seed 
diameters ranging from 6 to 9 mm and 2 to 6 mm, respec-
tively (Koul et al. 2017). Lentil is a popular staple food crop 
in many parts of the world, having protein (20–30 g/100 g), 
healthy fats (< 2 g/100 g), dietary fiber, and a variety of 
micronutrients (selenium, zinc, beta-carotene and folates) 
(Sayğılı and Sayğılı 2019). In India, large-seeded macros-
perma type of lentil varieties are chiefly grown in Madhya 
Pradesh and neighboring districts of Uttar Pradesh, covering 
about 35% of the total area, whereas small-seeded micros-
perma type varieties are cultivated mainly in Haryana, Pun-
jab, Uttar Pradesh and Bihar covering 65% of the total area 
(Kishor et al. 2020). The lentils are usually grown with cere-
als in a rotation system to help break up the cycle of cereal 
disease and simultaneously fix atmospheric nitrogen. Lentil 
contains more than twice as much dietary protein as cereals 
due to their high protein content. Farmers in many develop-
ing countries prefer it because of its potential to survive 
in drought-prone environments and marginal lands where 
they can grow in very little rainfall of 250–300 mm (Solh 
and Van Ginkel 2014). In South Asia, lentils are commonly 
consumed as fried or boiled (dhal) which has a soupy tex-
ture and is traditionally served with unleavened bread (roti). 
Boiled rice is also popularly served as a staple along with 
lentil dhal. Khichuri is a dish made with split or de-hulled 
lentils and split rice or wheat. Lentils may also be eaten as 
a snack after being deep-fried or mixed with cereal flour to 
make foods like bread and cake (Sarker et al. 2004). After 
threshing, plant residues such as stalks, dried leaves, husk 
and podwall are used as an excellent source of animal feed 
(Maneepun 2003). Lentils are grown all over the world, from 
North and South America, Australia, Northern Africa, Mid-
dle East to the Indian subcontinent and Southern Europe 
(Rubeena et al. 2003). Global lentil production being led 
by Canada, India, Turkey and the United States (Johnson 
et al. 2020).

Mode of action of HMs in plant system

Contamination of the soil is the leading cause of the entry 
of HMs into the plant system. The root surface absorbs the 
bioavailable metal, which is then transported through the 
cellular membrane into the root cells. There are two primary 
pathways for the uptake of HMs by roots, the apoplastic 
pathway (passive diffusion) and the symplastic pathway 
(which involves concentration across the plasma membrane 
and active transport against electrochemical potential gradi-
ents) (Yan et al. 2020). The accumulation of HMs in plants 

involves a series of processes which include mobilization 
of the HMs, uptake by the roots, xylem loading, transpor-
tation from roots to shoots, compartmentalization within 
cells, sequestration and distribution to aerial parts (Dalvi 
and Bhalerao 2013). HMs are commonly absorbed through 
the symplastic pathway, which is an energy-dependent pro-
cess facilitated by metal ion carriers or complexing agents 
(Okon et al. 2020). To enter the xylem, HMs are thought 
to use membrane pumps or channels, which also transport 
essential elements to the plant system (Peer et al. 2005). 
HMs activate distinct signaling cascades in plants, including 
but not limited to, calcium-dependent signaling, ROS signal-
ing, mitogen-activated protein kinase (MAPK) signaling and 
hormone signaling pathways. These pathways subsequently 
augment the expression of transcription factors (TFs) and/
or stress-responsive genes, thereby leading to a physiologi-
cal response in the plant system (Dubey et al. 2014). Plants 
contain multiple  Ca2+ sensors, e.g., calmodulins (CaMs), 
calcineurin B-like proteins (CBLs), CaM-like proteins and 
 Ca2+-dependent protein kinases (CDPKs) that detect, decode 
and transmit alteration in cytosolic  Ca2+ levels to facilitate 
stress response (Steinhorst and Kudla 2014). HM stress has 
a significant impact on MAPK signaling pathways. The acti-
vation of MAPKs occurs in response to the recognition of 
particular metal ligands and ROS generated during metal 
stress (Jalmi et al. 2018).

Responses and effects of HM stress on pulse crops

Growth attributes

Medda and Mondal (2017) clearly showed that the struc-
ture of the xylem and phloem both in root and shoot were 
gradually distorted at a higher concentration of Cr ranging 
from 20 to 100 mg/L in C. arietinum. The root and shoot 
length significantly decreased at 33.3 mg As/kg dry weight 
(DW) contaminated soil after 12 days, while after 32 days, 
the root and shoot fresh weight (FW) and DW were sig-
nificantly decreased at 73.3 mg As/kg DW in soil (Päivöke 
and Simola 2001). P. sativum grown at 30 mg/kg As soil 
had a higher As content in the tissue system of root than 
in shoot and least in grains (Alam et al. 2020). As (25 and 
250 μM) caused mitotic aberrations, DNA fragmentation, 
degeneration of spindle and disrupted the microtubule archi-
tecture at different stages of cell cycle in the root apices 
(Dho et al. 2010). Mineral contents in seeds were found to 
decline under As stress, exhibiting decreased accumulation 
of Cu, Fe, Se, Zn, Mn, Ni and Co in different plant parts. 
Total amino acid contents also decreased by 46% in treated 
C. arietinum (Tripathi et  al. 2015a, b). Hydroponically 
grown P. sativum exposed to Pb, accumulated the highest 
Pb content in the root system followed by stem and leaves. 
Moreover, Pb stress induced impairment in the meristematic 
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zone, reduction of mitochondrial cristae, swelling of mito-
chondria, alterations in peroxisomal membrane, shrunken 
protoplasts and in severe cases degeneration was observed in 
the root system (Małecka et al. 2008). P. sativum seedlings 
showed a significant reduction in alkaline invertase and acid 
invertase activities under Pb stress. In Pb-treated seedlings, 
sucrose-6-phosphate synthase (SPS) and sucrose synthase 
(SS) enzyme production were inhibited in the root, whereas 
SS activity was upregulated in the cotyledons. Moreover, 
Pb increased glucose-6-phosphate dehydrogenase (G6PDH) 
and 6-phosphogluconate dehydrogenase (6PGDH) in coty-
ledons, while downregulation of G6PDH and upregulation 
of hexokinase in the root and shoot parts were reported in 
stressed seedlings (Devi et al. 2013). The growth attributes 
like leghemoglobin, carbohydrate and nitrogen content in 
the nodules, Chl content, photosynthetic rate, leaf water 
potential, transpiration rate, activities of carbonic anhydrase, 
nitrate reductase (NR) and nitrogenase decreased propor-
tionately at higher concentrations of Ni at 45-day stage pot 
grown V. radiata (Yusuf et al. 2014). Similarly, enzyme 
activities like α-amylase, protease and  H+ ATPase decreased 
with increasing As exposure to cotyledons of germinating 
seeds (Ismail 2012). According to Garg and Kashyap (2017) 
As stress resulted in a significant decrease in seed yield, 
number of pods, seed development, seed weight, harvest 
index, nutrients uptake, plant biomass and productivity.

Photosynthetic performance

HM toxicity can remarkably damage the plant’s photo-
synthetic machinery. HM in particular, can have a severe 
impact on the photosynthetic rate, Chl content, and intracel-
lular  CO2 concentration of plants (Nikalje and Suprasanna 
2018). 50 μM Cd stress greatly altered the physiological 
functions of leaves like net photosynthetic rate, internal  CO2 
concentration, stomatal conductance, transpiration rate and 
maximum quantum yield of photosystem II (PSII) showed 
a significant decrease in their photosynthetic attributes (AS 
and Tahir 2019). Application of Pb interfered with the plant 
growth and metabolism leading to a significant reduction 
in the leaf area, harvest index and assimilation rate (Hus-
sain et al. 2007). At 200 μM Cd, nicotinamide adenine 

dinucleotide (NADH) oxidase, nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase, 6-phosphogluconate 
dehydrogenase (6PGDH) and glucose-6-phosphate dehydro-
genase (G6PDH) activities in root and shoot of C. arieti-
num seedlings increased considerably in treatment sets when 
compared to that of control (Sakouhi et al. 2016).

ROS and antioxidative system

One of the major outcomes of being exposed to HMs stress 
is the excessive generation of various reactive oxygen spe-
cies (ROS) such as hydroxyl radicals  (OH−), superoxide 
 (O2

−), hydroperoxyl radicals (HOO), the peroxynitrite 
 (OONO−) ion, paramagnetic singlet oxygen (1O2), hydrogen 
peroxide  (H2O2), nitrogen oxide radical (NO), ozone  (O3) 
and hypochlorous acid (HOCl) (Sharma et al. 2020a, b). 
The functioning of different antioxidative enzymes under-
goes significant alterations in the plant system when they 
are exposed to HM stress. To counteract the harmful effects 
of ROS, plant tissues increase the expression and activity 
of enzymatic antioxidants, superoxide dismutase (SOD), 
guaiacol peroxidase (GPOX), catalase (CAT) and enzymes 
belonging to ascorbate–glutathione (AsA–GSH) cycle like 
ascorbate peroxidase (APX), dehydroascorbate reductase 
(DHAR), monodehydroascorbate reductase (MDHAR) and 
non-enzymatic glutathione reductase (GR), phytochelatins 
(PCs) along with total glutathione, oxidised glutathione 
(GSSG), glutathione-S-transferase (GST) (Saroy and Garg 
2021; Garg and Aggarwal 2012; Hossain et al. 2020). Sche-
matic diagram on the effects of HM stress on plant system is 
shown in Fig. 1. SOD, CAT and peroxidase (POD) increased 
under Cd stress during HM uptake, showing clear symp-
toms of Cd stress that were significantly higher than that 
of control (Garg and Aggarwal 2012). Similarly, Ni stress 
enhanced the activities of antioxidant enzymes such as 
NADH-oxidase, SOD, APX, CAT, GR and GST in compari-
son to control (Gajewska and Skłodowska 2005; El-Amier 
et al. 2019). Under As (50 μM) stress, NADP-dependent 
isocitrate dehydrogenase and NADP-dependent malic 
enzyme activities increased in roots, but in leaves remained 
unaffected. S-nitrosoglutathione reductase (GSNOR) activ-
ity, nitric oxide (NO) and peroxynitrite  (ONOO−) content 
decreased in roots, while in leaves, NO content increased, 
whereas no significant changes were registered for GSNOR 
activity and  ONOO− content (Rodríguez-Ruiz et al. 2019). 
Polyamine contents (free polyamine, soluble-conjugated 
and insoluble-bound) such as spermine, spermidine and 
putrescine, along with activities of polyamine-biosynthetic 
enzymes such as arginine decarboxylase, S-adenosylme-
thionine decarboxylase and ornithine decarboxylase in P. 
sativum leaves increased under the influence of Ni stress 
(Shahid et al. 2014).

Fig. 1  Schematic diagram showing responses and effects of HM on 
plant (aliphatic, aromatic or heterocyclic group R, alkoxy radical  RO·, 
ascorbate AsA, ascorbate peroxidase APX, carbonate  CO3

·−, cata-
lase CAT, dehydroascorbate reductase DHAR, glutathione peroxi-
dase GPX, glutathione reductase GR, glutathione S-transferase GST, 
heavy metal HM, hydrogen peroxide  H2O2, hydroperoxides ROOH, 
hydroxyl radical ·OH, hypobromous acid HOBr, hypochlorous acid 
HOCl, hypoiodous acid HOI, monodehydroascorbate reductase 
MDHAR, oxygen  O2, ozone  O3, perhydroxy radical  HO2

·, peroxidase 
POD, peroxyl  RO2

·, reduced glutathione GSH, semiquinone  SQ·−, 
superoxide anion  O2

·−, superoxide dismutase SOD)

◂
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According to reports, when plants are exposed to HM 
toxicity, there is an increase in the production of ROS 
which can trigger an oxidative burst. This burst can dam-
age various components of the plant such as lipids, pro-
teins and pigments as well as stimulate the process of 
lipid peroxidation and electrolyte leakage (EL) (Kumari 
et  al. 2010). The presence of Cd (0.3  mM)-induced 
oxidative stress and membrane injury which enhanced 
significant levels of total soluble protein and malondi-
aldehyde (MDA) contents (Hassan and Mansoor 2014). 
EL increased significantly in both the root and shoot 
systems of pea upon As treatment (Rahman et al. 2017). 
At 100 μM Cr, along with an increase in activities of 
DHAR, MDHAR and  H2O2 increased, respectively, in 
course of time (12–120 h) with respect to control in V. 
mungo (Karuppanapandian and Manoharan 2008). Under 
Cu stress, proline content and total phenolic content 
increased to variable levels in all treated sets (Akhtar 
et al. 2016). Table 4 represents HM induced phytotoxic 
effects and response on different plant species in their 
oxidative and biochemical traits.

Conclusion

In conclusion, HMs pose a great threat to pulse produc-
tion. Most of the HMs get accumulated in the plant tissues 
and adversely affects plant growth and metabolism. This 
review article provides quick access to information about 
the effects of HM toxicity on important pulse crops in 
their development and physiological processes. To feed 
the ever increasing population, solving food demand 
and increasing crop production is a difficult task due to 
climate changes, biotic and abiotic stresses. The pres-
ence of HMs reduces plant yield and production, which 
negatively impacts the health and economy. Therefore, 
it is imperative to properly manage HM usage, release 
and distribution into the environment. Hence, environ-
mental agencies and government bodies should take nec-
essary steps to ensure keeping HM pollution to a mini-
mum. Plants have developed mechanisms to prevent the 
toxic effects of HMs, but in excess concentration, even 
the plant defense mechanisms fail to recover from the 
toxic effects of HMs. Additionally, attempts should be 
undertaken to decipher the precise biochemical pathways 
and molecular mechanisms of HM toxicity in plants. 
Moreover, further research in genomics, transcriptom-
ics, proteomics, metabolomics and signaling pathways are 
required to explore the intricate crosstalk of HM tolerance 
and modulation in the plant system. So that in the future, 
HMs do not cause any significant constraints limiting 
crop productivity worldwide.
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