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HIGHLIGHTS

� Unsupervised clustering of the cardiac

transcriptome reveals clinically relevant

patient subgroups in early- and end-stage

DCM cohorts.

� A subgroup enriched by patients with a

truncating titin variant had a strong

cardiac upregulation of the OXPHOS

system, dysregulation of the ubiquitin-

proteasome pathway, and a shift in car-

diac substrate utilization.

� The cardiac transcriptome is partially

influenced by the genotype and

phenotype of the patient but also

contains unique information. The addition

of the cardiac transcriptome to the

genotype and phenotype of the patient

increases the possibility for individualized

medicine.
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SUMMARY
AB B
AND ACRONYM S

DCM = dilated cardiomyopathy

GO = gene ontology

HF = heart failure

LVEF = left ventricular

ejection fraction

TCA = tricarboxylic acid

TTNtv = truncating TTN variant
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Dilated cardiomyopathy is a heterogeneous disease characterized by multiple genetic and environmental etiol-

ogies. Themajority of patients are treated the same despite these differences. The cardiac transcriptome provides

information on the patient’s pathophysiology, which allows targeted therapy. Using clustering techniques on

data from the genotype, phenotype, and cardiac transcriptome of patients with early- and end-stage dilated

cardiomyopathy, more homogeneous patient subgroups are identified based on shared underlying pathophysi-

ology. Distinct patient subgroups are identified based on differences in protein quality control, cardiac meta-

bolism, cardiomyocyte function, and inflammatory pathways. The identified pathways have the potential to guide

future treatment and individualize patient care. (J Am Coll Cardiol Basic Trans Science 2023;8:406–418) © 2023

The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
D ilated cardiomyopathy (DCM) is a nonische-
mic form of heart failure (HF) that is
currently the leading global cause of heart

transplantation.1 The disease is not seen as a single
disease entity but rather as a nonspecific phenotype,
which can be the result of a multitude of environ-
mental or genetic triggers.2 Using unsupervised ma-
chine learning on phenotypical features, we
previously identified clinical DCM subgroups with
comparable disease course.3 The patients within the
created clinical subgroups were clinically more homo-
geneous compared with dividing patients into sub-
groups based on etiology. Besides the clinical
homogeneity, the patients also share a comparable
transcriptomic profile in the heart, potentially indi-
cating a shared disease mechanism. Distinct tran-
scriptomic profiles are also present within the
patient subgroup of titinopathies.4 Truncating vari-
ants in titin (TTNtv) are the most prevalent cause of
monogenic DCM and are found in 10% of patients
with DCM.5 Titin cardiomyopathy is thought to be a
well-treatable form of HF, showing an increase in
left ventricular ejection fraction (LVEF) after being
treated with standard HF therapy.6 The identified
subgroups within the group of titin cardiomyopathies
are different in clinical presentation and disease
course, showing that not every titin cardiomyopathy
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is, per definition, benign.7 This demonstrates the
complexity of the influence of both genetic and clin-
ical modifiers on the phenotype and underlying car-
diac transcriptome. The cardiac transcriptome seems
an accurate representation of disease activity and
has the potential to guide treatment and discover
novel treatment targets.

In the current study, the transcriptomic data are
the primary input for unsupervised clustering, which
is subsequently associated to the clinical and genetic
data. This will provide further insight in the clinical
profile of patients who share comparable disease
processes in the heart.

METHODS

PATIENT COHORT AND CLINICAL DATA. The patient
cohort was derived from the prospective Maastricht
Cardiomyopathy Registry of the Maastricht Univer-
sity Medical Center (MUMC, Maastricht, the
Netherlands), between 2012 and 2021. The DCM
diagnosis was defined according to the World Health
Organization criteria and the latest European Society
of Cardiology (ESC) proposal.8,9 Enrolled patients
presented with LVEF <50% at baseline echocardio-
graphic evaluation in the absence of any of the
following conditions: obstruction >50% of a major
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coronary artery branch (at coronary angiography
[CAG]), pericardial diseases, congenital heart dis-
eases, cor pulmonale, and active myocarditis. Pa-
tients, for whom it is not contraindicated, received
guideline-directed medical therapy titrated to the
maximal tolerated dose as well as device therapy
(implantable cardioverter-defibrillator [ICD] and car-
diac resynchronization therapy defibrillator [CRT-D]
implantation) according to the latest ESC guide-
lines.10 The study was performed according to the
declaration of Helsinki and approved by the local
Institutional Review Board of the Maastricht Univer-
sity Medical Center. All patients gave written
informed consent.

As part of the diagnostic protocol, all patients
underwent physical examination, blood sampling,
12-lead electrocardiogram, 24-hour Holter monitoring,
complete echocardiographic and Doppler evaluation,
and CAG at baseline.3 Endomyocardial biopsies (EMBs)
and cardiovascular magnetic resonance imaging were
performed if patients consented and were able to un-
dergo these procedures. Spare EMBs dedicated to
research were used to isolate RNA from and to perform
RNA sequencing. Clinical data and RNA-sequencing
data gathered from previous studies were used as
primary input for the current study.3,4,11,12

VALIDATION COHORT. To validate the application of
our clustering methodology, we used publicly acces-
sible RNA sequencing and clinical data from the
MAGNet consortium (GSE141910).13 In contrast to our
cohort, RNA was isolated from hearts of patients with
end-stage DCM. As our cohort was Caucasian, we only
retrieved the data from the Caucasian patients with
DCM (n ¼ 89). The clinical dataset was limited to 7
variables: age, sex, hypertension, diabetes, body
mass index, atrial fibrillation, and LVEF. Genetic
testing was not performed in these patients.

GENETIC ANALYSIS. All patents received genetic
counseling and DNA testing, using a panel comprising
47 DCM-associated genes. All detected variants were
confirmed by Sanger sequencing. Detected variants
were classified according to the latest American Col-
lege of Medical Genetics (ACMG) and Association for
Molecular Pathology (AMP) guidelines. Truncating
variants in TTN were reported as pathogenic when
they were detected in an exon with a percentage
spliced in (PSI) above 99%. If no pathogenic or likely
pathogenic was identified, a patient was classified as
"gene-elusive."

RNA-SEQUENCING. RNA was isolated from cardiac
biopsies from patients with DCM. The mRNA-
sequencing library was generated using TruSeq
mRNA sample preparation kit (Illumina) and
sequenced on the NextSeq 500 (Illumina) and checked
for quality and integrity.

ANALYSIS AND CLUSTERING OF RNA-SEQUENCING

DATA. We first filtered samples based on 3 quality
metrics: the total final reads >5,000,000; the total
present RNAs >40,000; and no lower-side outliers for
heart myocardium biomarker genes, including MYL3,
MYH6, MHRT, HSPB3, TNNI3, TECRL, and RYR2. The
RNA-sequencing read counts were normalized using
global geometric library size factor (GLSF) method
with the iCellR package v 1.6.014 in the statistical
programming language R (version 4.1.0). The top
2000 dispersed transcripts based on standard devia-
tion were selected to run dimensionality reduction by
principal component analysis (PCA), uniform mani-
fold approximation and projection (UMAP), and K
nearest-neighbor–based network graph drawing
layout (KNetL). Clustering was performed using the
dimensionality reduction combined with the graphic-
based clustering method with iCellR package. The
optimal number of clusters was determined inside the
iclust function. To see the distances or similarities
among resulted clusters, pseudotime abstract K (PAK)
NetL map was calculated. In addition to the dimen-
sionality reduction combined with the graphic-based
clustering method, discrete data Poisson or
negative-binomial model-based clustering methods
were applied as validation. The optimal model and
the number of clusters were determined based on
connectivity, Dunn’s index, and silhouette width
using optCluster package v1.3.0.

DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS.

Differential expression analyses were performed on
normalized read counts of samples by nonparametric
Wilcoxon rank-sum test with the limma package
v3.48.3.15 The fold change (FC) was calculated by
comparing geometric means (log-average) of each
part. The P values were adjusted for multiple com-
parisons by false discovery rate (FDR) with the
Benjamini- Hochberg method. The transcripts with
mean expression <10 counts were regarded as not
expressed and excluded from the analysis. The
marker transcripts of each cluster are defined as those
significant differentially expressed with adjusted
P value <0.05, and absolute FC >1.5, and mean
expression >200 in the higher expressed part.

The marker transcripts were associated with bio-
logical function based on biological process GO
annotation, using the topGO package v2.38.1.16 The
analysis used all genes in RNAseq data (mapped to
27,053 unique gene IDs) as background, with Fisher’s
exact test, and eliminating local similarities and de-
pendencies between GO terms. The GO terms that
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were over-represented in the cluster analysis as top 3
most significant ones, with a P value <0.0005, and
covering at least 2 genes, were selected as most
prominent biological processes related to a cluster.
The marker transcripts were plotted to a heatmap and
grouped by hierarchical clustering, using Complex-
Heatmap package v2.8.0.17 The pathways of interest
were mapped with the results from differential
expression analyses and visualized with the Wiki-
Pathways App, or in-house created map, in Cytoscape
v 3.8.2.18

GENOTYPE AND CLINICAL PHENOTYPE ASSOCIATION

ANALYSES FOR THE RNA-SEQ CLUSTERS. All statistical
analyses were performed in the statistical program-
ming language R (version 4.1.0). The genotype and
clinical parameters of each cluster, including both
categorical variables and quantitative variables, were
analyzed in an over-representation analysis by the v-
test with the FactoMineR package v2.4. The quanti-
tative variables were log transformed before analyses.
Clinical variables are presented using the mean � SD
or median with 25th to 75th percentiles (Q1-Q3) for
continuous variables and count (percentage) for cat-
egorical variables. The overall associations were
tested by chi-square or Kruskal-Wallis tests for cate-
gorical and continuous variables, respectively.

SURVIVAL ANALYSIS. The median follow-up time
was 8.4 years (25th-75th percentiles: 5.9-12.2 years).
Information about the occurrence of adverse events
at follow-up was retrieved from the hospital medical
records, the Dutch Personal Records Database, or
telephone contact with the patient or their general
practitioners. We collected information regarding 4
different adverse events: death caused by cardiovas-
cular disease; heart transplantation or left ventricular
assist device (LVAD) implantation; heart failure
that required a nonelective hospitalization, despite
optimal heart failure therapy, according to the ESC,
American College of Cardiology (ACC), and American
Heart Association (AHA) guidelines; and life-
threatening arrhythmias (LTAs), defined as nonfatal
ventricular fibrillation (with or without ICD-shock) or
sustained ventricular tachycardia with appropriate
ICD shock. The combined endpoint was defined as the
occurrence of at least 1 of these adverse events. Pa-
tients who died of noncardiac causes were censored
at the moment of death (n ¼ 2); those patients did not
reach the combined endpoint.

Kaplan-Meier survival curves were estimated and
differences among groups were assessed by the log-
rank test, using time of diagnosis as time zero.
Calculations were done using R environment version
3.5 (R Foundation).
RESULTS

PATIENT COHORT. RNA was isolated from cardiac
biopsies of 82 patients with DCM included in the
Maastricht Cardiomyopathy Registry (mCMP-regis-
try). The mean age of diagnosis was 55 years (SD: 12;
range: 26-83). Thirty-two percent (26 of 82) of pro-
bands reported family histories of DCM. Seventy-
three percent (60 of 82) of the patients were male.
The average ejection fraction was 28% � 9% ( range:
10%-47%), with a mean indexed ventricular end-
diastolic diameter of 31 � 4 mm/m2 (range: 23-
47 mm/m2). Fifty percent of patients had genetic
variants in DCM-associated genes (41 of 82). The most
prevalent pathogenic gene variant was a truncating
variant in TTN, which was detected in 31% (26 of 82),
followed by LMNA (7 of 82), RBM20 (5 of 82), MYH7 (2
of 82), TNNT2 (1 of 82), and DES (1 of 82). Patients
with pathogenic variants in genes other than TTN or
LMNA were clustered together in a group referred to
as "other genetic."

CLUSTERING BASED ON TRANSCRIPTOME. The top
2,000 transcripts of 708 unique genes were selected
as input for the clustering analysis (Figure 1A). The
dimensionality reduction combined with the
graphic-based clustering based on UMAP identified
4 distinct clusters in the transcriptomic data, in
which cluster 1-2 and 3-4 shared strong similarities
(Figure 1B). Despite cluster 1-2 and 3-4 shared
(mathematical) similarities, the individual clusters
still reflect biological differences, which makes it
valuable to proceed with 4 clusters. The final clus-
tering was validated using OptCluster, in which the
suggested superclusters showed a Jaccard similarity
coefficient of 0.92 (Supplemental Figure 1). We did
not observe a complete clustering based on geno-
type, confirmed by the Jaccard similarity coefficient
of 0.22 (Figure 1D). Most patients with TTNtv were
identified in cluster 1, although each cluster
contained a number of patients with TTNtv. In
contrast, cluster 4 was strongly enriched with pa-
tients who did not have proven genetic etiologies.
Interestingly, most of the patients with genetic
DCM with variants in a different gene than TTN
were also grouped in cluster 3 and 4 based on their
RNA profiles (Figure 1C).

GENE EXPRESSION PROFILE OF CLUSTERS AND

SUPERCLUSTERS. In total, 3,513 unique genes were
distinct markers for 1 of the 4 clusters, and 1,738
genes for superclusters (Supplemental Table 1,
Supplemental Figure 2). The genotype had a strong
influence on the distinct RNA-profile of cluster 1 and 2
(mainly TTNtv), although the genotype does not

https://doi.org/10.1016/j.jacbts.2022.10.010
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FIGURE 1 Clustering of Patients Based on Transcriptomic Profile

(A) Dispersion plot of RNA sequencing data. The top 2,000 transcripts were selected as input for the clustering analysis based on expression in the number of samples,

base mean reads, and the dispersion of the reads among samples. (B) Uniform manifold approximation and projection (UMAP) plot identified 4 clusters. (C) The

association between genotypes and RNA-seq clusters. (D) UMAP plot of samples labeled with genotype.
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explain the complete RNA-profile (Figure 2,
Supplemental Figure 3).

BIOLOGICAL FUNCTION OF RNA CLUSTERS.

Pathway analysis was performed for both the 4
individual clusters and the 2 superclusters using
biological process GO annotations, which were
collectively grouped according to biological function
(Figure 3). Cluster 1-2 is characterized by a strong
upregulation of mitochondrial energetics and organi-
zation, and gene expression with decreased
post-translational modifications (transcription and
translation). Cluster 3-4 is characterized by active
cardiomyocyte function and morphology, and extra-
cellular matrix remodeling and signaling. The top 5
overexpressed genes in cluster 1-2 are all involved in
mitochondrial function and response to oxidative
stress (Supplemental Figure 2B). The top 5
overexpressed genes in cluster 3-4 are mainly related
to the protein phosphorylation and signal trans-
duction, cytoskeleton, and Golgi transport.

IMPORTANT CARDIAC METABOLIC PATHWAYS

RELATED TO MITOCHONDRIAL FUNCTION. Mito-
chondrial function appeared to be the most distinct
upregulated feature of supercluster 1-2, including
oxidative phosphorylation and biogenesis. The
expression of the housekeeping gene involved in
mitochondrial biogenesis (SSBP1) was significantly
increased in cluster 1-2 (adjusted P ¼ 5.2 � 10-10),
showing an increase of more than 150% compared
with cluster 3-4.

We further focused on the major energetic path-
ways in the heart: glucose uptake and glycolysis; lipid
uptake, storage, and beta-oxidation;19,20 tricarboxylic
acid (TCA) cycle; and the electron transport chain

https://doi.org/10.1016/j.jacbts.2022.10.010
https://doi.org/10.1016/j.jacbts.2022.10.010


FIGURE 2 Heatmap of Significant Differentially Expressed Genes per Cluster in Association With Genotype and Phenotype

The enriched biological process GO items in each gene group were summarized using biological blocks identified in the clusters. Samples were annotated to genotypes

and important clinical parameters.
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(Supplemental Figure 4). Both cluster 1 and cluster 2
showed a strong upregulation of the electron trans-
port chain (Supplemental Figure 4D, Supplemental
Figure 5D) but had distinct differences in the other
metabolic pathways. In cluster 1, the glycolysis
pathway was upregulated, but the malate-aspartate
shuttle that is necessary in the heart to bring elec-
trons produced in glycolysis to the mitochondria was
downregulated (Supplemental Figure 4A). Also the
step from pyruvate to acetyl-CoA and the complete
TCA cycle was downregulated (Supplemental
Figure 4C). Lipid uptake and beta-oxidation in both
mitochondria and peroxisome were strongly down-
regulated (Supplemental Figure 4B). The uncoupling
proteins UCP3 to 5, which are necessary to limit the
concentration of reactive oxygen species (ROS), were
strongly upregulated (adjusted P ¼ 1.6 � 10-6)
(Supplemental Figure 4). In contrast to cluster 1, the
malate-aspartate shuttle, the beta-oxidation and TCA
cycle were strongly upregulated in cluster 2
(Supplemental Figure 5). In addition, although genes
in sarcomere organization were downregulated in
patients from clusters 1 (Figure 3, Supplemental
Figure 6), other structural sarcomere genes were
strongly upregulated in cluster 1 and 2, such as
troponin and tropomyosin (Supplemental Figure 6).
The observed discrepancy in sarcomere genes and
metabolic pathways between cluster 1 and 2 might
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FIGURE 3 Top GO Items of Each Cluster Grouped to Biological Functions

Results are displayed per cluster and the comparison between the 2 superclusters.
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imply a complex crosstalk between sarcomere func-
tion, mitochondria, and other metabolic pathways.

ASSOCIATION AMONG CLINICAL PHENOTYPE,

GENOTYPE, AND CLUSTERS. Next, we tested for
differences in 53 clinical parameters among clusters.
In this analysis, differences in LV mass, LV stroke
volume, N-terminal pro b-type natriuretic peptide
(NT-proBNP), New York Heart Association (NYHA)
functional class and genotype characterized the
generated clusters (Supplemental Table 2). All pa-
tients in cluster 1 had genetic etiologies, of which
TTNtv was the most prevalent, and a significant lower
LV mass and stroke volume compared with the other
clusters (Figure 4, Supplemental Table 2). Patients
from cluster 2 all were in NYHA class I-II, and patients
in cluster 3 had the lowest NT-proBNP. Cluster 4 was
characterized by an enrichment of patients with no
genetic variant associated with DCM.
There was no significant association between the
clusters and the combined endpoint (cardiovascular
death, heart transplantation, heart failure hospitali-
zation, or a life-threatening arrhythmia; log-rank
P ¼ 0.20) (Figure 5). The 2 opposite clusters (1 and 4)
were trending to have a worse outcome compared
with the intermediate clusters (2 and 3). In total, 26
patients reached the combined endpoint; 2 additional
patients died of noncardiac causes.

VALIDATION OF THE CLUSTERING METHODOLOGY

IN A COHORT OF PATIENTS WITH END-STAGE DCM.

We validated the unsupervised clustering technique
by applying it on RNA-sequencing data from hearts of
patients with end-stage DCM. Compared with our
cohort, these patients had lower LVEF and higher
prevalence of atrial fibrillation (AF) (Supplemental
Table 3). Three distinct clusters were identified in
the transcriptomic dataset (Figure 6). The RNA

https://doi.org/10.1016/j.jacbts.2022.10.010
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FIGURE 4 Association Among Phenotype, Genotype, and Clusters Based on Cardiac Transcriptome

(A) Over-representation analysis showing the most distinct clinical variables per cluster (v-test). Only significant variables with P values <0.05 are listed. (B) Details of

significant variables by grouped bar plot, or violin plot þ box plot for categorical variables and quantitative variables, respectively.
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expression profile of cluster 3 was the complete
opposite from patients in cluster 1 and 2 (Figure 6C).
Pathway analysis showed that the biological back-
ground of cluster 3 was very similar to the tran-
scriptomic profile of cluster 1 in our early-stage DCM
cohort: a strong upregulation of mitochondrial
energetics and gene expression with decreased post-
translational modification (transcription and trans-
lation) (Figure 6, Supplemental Figure 7). The top 5
overexpressed genes in cluster 3 are all mainly related
to protein degradation and synthesis (Supplemental
Figure 8). Cluster 2 formed an intermediate cluster,
which was characterized by increased expression of
genes associated with the inflammatory response and
innate immune system. Only sex was strongly
associated with the identified clusters; female pa-
tients were significantly over-represented in cluster 2
(Figure 6, Supplemental Figure 9). None of the other
clinical variables was significantly associated with
any of the clusters. Overall, we could successfully
apply the clustering method in a cohort of patients
with end-stage DCM to identify biologically rele-
vant subgroups.

DISCUSSION

We explored the potential of the cardiac tran-
scriptomic profile to recognize distinct clinical

https://doi.org/10.1016/j.jacbts.2022.10.010
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FIGURE 5 Event-Free Survival Stratified by Transcriptomic Cluster

Kaplan-Meier curve for the combined outcome of life-threatening arrhythmias, cardiovascular death, heart transplantation, or heart-failure

hospitalization stratified by transcriptomic cluster.
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relevant patient subgroups. In a well-phenotyped
cohort of patients with early-stage DCM, 4 molecu-
lar clusters were identified, which could be roughly
divided into 2 superclusters, showing differences in
underlying biological pathways and genotype—
mainly TTNtv—with mild differences in phenotype. In
a cohort of end-stage DCM, 3 molecular clusters were
identified, showing differences in biological path-
ways, partly explained by sex differences.
IDENTIFIED BIOLOGICAL PATHWAYS IN PATIENTS

WITH DILATED CARDIOMYOPATHY. The activity of
molecular pathways in the heart is a multifactorial
process, influenced by intrinsic and extrinsic
stressors on the myocardium.2 The generated clusters
in the early-stage DCM cohort are associated with the
presence of a pathogenic variant in a DCM-associated
gene, which partly explains the distinct tran-
scriptomic profiles. Truncating variants in TTN are
the most prevalent and also have an important
contribution to the generated patient clusters, as
shown in the over-representation analysis (Figure 4).
A previous report described major differences in the
transcriptomic profile between end-stage failing DCM
hearts and nonfailing hearts.21 In contrast to our
findings, the transcriptome could not differentiate
between patients with DCM with and without TTNtv.
The cardiac tissue from terminally failing hearts
reflect the pathophysiology of advanced HF and
masks the early differences in the pathogenicity of
TTNtv, which we observed in our early-stage cardiac
biopsies. Titin is a major structural protein of the
sarcomere and also fulfills an important signaling
function in the cardiomyocyte.22 A combined disease
mechanism of both haploinsufficiency and a poison
peptide-dominant negative concept is suggested in
TTNtv-associated DCM.21,22 The presence of trun-
cated titin proteins in the cardiomyocyte is a huge
burden for the ubiquitin-proteasome system (UPS),
which mediates the degradation of truncated titin.23

The continuous degradation will saturate the UPS



FIGURE 6 Clustering of Patients With End-Stage Dilated Cardiomyopathy Based on Transcriptomic Profile

(A) UMAP plot identified 3 clusters. (B) UMAP plot of samples labeled by sex. (C) Heatmap of significant differentially expressed genes per cluster in association with

phenotypic characteristics below. The enriched biological process GO items in each gene group were summarized using biological blocks identified in the clusters on

the left. Abbreviation as in Figure 1.
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mechanism of the cell, contributing to HF in patients
with TTNtv DCM in time. We observed a dysregula-
tion in protein degradation pathways (UPC, auto-
phagy) in cluster 1, which is necessary for a high
turnover of the large sarcomeric proteins in the heart
muscle (Supplemental Figures 10 and 11). The
importance of proteostasis in the development of
DCM is further highlighted by loss-of-function vari-
ants in BAG3 and BAG5, both important chaperones in
proteostasis, which lead to severe DCM.24,25 Distur-
bance or saturation of the proteostasis process seems
to be a turning point toward development of DCM,
which is especially observed in cluster 1. This might
also explain the over-representation of patients with
TTNtv in this cluster. Proteostasis is an energy-
demanding process, which requires a large percent-
age of the cells’ ATP, and the observed increase in
mitochondrial pathways in cluster 1 could be a sec-
ondary consequence to meet the increased en-
ergy demand.
CARDIAC ENERGY METABOLISM AS CENTER OF THE

DISEASE. A continuous generation of energy is
essential for the heart to maintain contractile
function.26 The healthy heart is flexible and can use
any substrate to generate energy. The loss of sub-
strate flexibility is one of the first alterations toward
HF and represents a common change in heart disease
independent of etiology. As an adaptive response, the
heart changes toward glycolysis, which is more effi-
cient compared with lipid oxidation.27 The timing of
metabolic adaptation can differ per etiology. For
example, metabolic adaptation will occur in an earlier
stage in patients with TTNtv.12,28,29 This does not
exclude that additional factors can aggravate onset of
disease and accelerate the metabolic remodeling.30,31

Although cluster 1 and 2 formed a supercluster, the
main difference between the clusters was related to
the metabolic substrate pathways: cluster 2 had an
increased activity of the beta-oxidation, whereas
cluster 1 had higher expression of mitochondrial
uncoupling proteins, possibly linked to a higher lip-
otoxicity or stress conditions.19 The significant dif-
ferences in cardiac metabolism could indicate 2
different stages of metabolic remodeling and thus
different stages of disease in which cluster 2 has still
more reserve to cope with the energy demand of the

https://doi.org/10.1016/j.jacbts.2022.10.010
https://doi.org/10.1016/j.jacbts.2022.10.010


FIGURE 7 Integration of the Cardiac Transcriptomic Profile in Association With the Genotype and Phenotype

The cardiac transcriptome is unique per individual patient and is influenced by the genotype and phenotype of the patient. The transcriptome

reflects the activity of (patho)physiological mechanisms, which possibly is reflected in biomarkers in the blood. Such biomarker profile could

be used to help guide the individual patient’s treatment in selecting the right medication and timing it at the best moment in the disease stage.
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cardiomyocyte and showed milder clinical symptoms
and a better survival compared with cluster 1. In
addition, we observed differences in the genes
involved in sarcomere function and organization be-
tween cluster 1 and 2, indicating a link between the
energy metabolism and sarcomere function of the
heart in different stages of the disease. However,
based on our data, we cannot infer a direct causal
relationship between sarcomere and meta-
bolic dysfunction.
CLINICAL RELEVANCE. Our study underpins the
heterogeneity of dilated cardiomyopathy, both in
early- and end-stage disease. The cardiac
transcriptome is influenced by genotype and pheno-
type, which are strongly correlated, as we know from
described genotype-phenotype associations.32 We
reveal 4 molecular clusters based on cardiac tran-
scriptomic profile in early-stage DCM, in which
cluster 1 and 4 reflect 2 opposites and cluster 2 and
3, 2 intermediates (Figure 2). The clusters were not
associated with prognosis, although there was a
trend that cluster 1 and 4 had worse prognoses
compared with the intermediate clusters. In addi-
tion, we describe 3 identified clusters in the cohort
of patients with end-stage DCM. These clusters
illustrate that the clinical parameters to determine



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Patients with

dilated cardiomyopathy and a comparable activity of disease

processes in the heart, as reflected in the cardiac transcriptome,

do not always have the same clinical phenotype, probably

because of differences in metabolic adaptation capacity. This

might explain why not every patient responds adequately to

given therapy, based on clinical parameters.

TRANSLATIONAL OUTLOOK 1: The cardiac transcriptome is

currently determined via RNA gathered from cardiac biopsies,

which are obtained through an invasive procedure. Circulating

biomarkers have the potential as a noninvasive measure of car-

diac process activity. Future studies should combine the cardiac

transcriptome with circulating biomarkers to associate serum

markers with the cardiac process activity.

TRANSLATIONAL OUTLOOK 2: The addition of the cardiac

transcriptome to the genotype and phenotype of the patient will

create a more individualized characterization of a patient. Future

studies should determine how a better patient characterization

would lead to a better response to medication for heart failure.
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heart function reflect a small part of the patho-
physiological processes driving progression of heart
failure (eg, also patients with early-stage DCM with
a mildly reduced ejection fraction were clustered in
group 1, and only female sex was distinct for a
cluster in the end-stage DCM cohort. Also, the ge-
netic information partially influences the tran-
scriptomic profile in addition to the clinical
parameters. The cardiac transcriptome profile forms
a unique entity, providing complementary infor-
mation to the genotype and phenotype to recognize
patient subgroups (Figure 7). A post hoc genetic
analysis in the POSEIDON-DCM (Percutaneous Stem
Cell Injection Delivery Effects on Neomyogenesis in
Dilated Cardiomyopathy) trial showed that the ge-
notype contributes to the response of treatment in
the trial, probably caused by differences in under-
lying pathophysiological processes in the heart.33 As
hypothesized earlier, proteostasis and metabolic
adaptation are 2 key (coping) mechanisms in the
development of DCM. As an example, the presence
of a pathogenic TTN variant can drive the heart into
metabolic adaptation irrespective of LVEF,
mimicking metabolic changes as seen in patients
with advanced HF. The presence of a truncated titin
protein is a burden on the protein quality-control
pathways. Proteasome inhibition has been sug-
gested as potential therapy for patients with
TTNtv.23 We show that the activity of the processes
implicated in protein control vary per patient with
TTNtv, indicating that not every patient will benefit
equally from the treatment. It is important to note
that the generated clusters are not static but reflect
the dynamics of the disease processes. The RNA
isolated from the cardiac tissue reflects a snapshot
in the disease course of a patient. Although the
transcriptome elegantly shows the activity of gene
expression, additional omics (eg, proteomics or
ribo-seq) are necessary to measure the actual pro-
tein turnover. Circulating biomarkers have the po-
tential as a noninvasive measure of process activity
(eg, proteostasis) in the heart, which could help to
guide treatment of the individual patient (Figure 7).

STUDY LIMITATIONS. The patient cohort was biased
by patients with genetic cardiomyopathies (61%) in
which patients with TTNtv were over-represented
(31%). We used publicly available RNA-sequencing
data of hearts from patients with end-stage DCM. In
contrast to our cohort, the clinical dataset was very
limited. There was no genotype information avail-
able, which prevented us from making any correla-
tions between the identified clusters and genotype in
the patients with end-stage disease.
CONCLUSIONS

Four distinct molecular clusters were identified in a
cohort of patients with early-stage DCM, based on
differences in protein quality control, cardiac meta-
bolism, and cardiomyocyte function. In a cohort of
patients with end-stage DCM, 3 clusters were identi-
fied based on mitochondrial energetics and inflam-
matory pathways. The cardiac transcriptome profile
forms a unique entity, which has the potential to
determine disease stage and guide future treatment,
complementary to the genotype and phenotype.
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