
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Remme CA. 2023 SCN5A
channelopathy: arrhythmia, cardiomyopathy,

epilepsy and beyond. Phil. Trans. R. Soc. B 378:
20220164.

https://doi.org/10.1098/rstb.2022.0164

Received: 6 November 2022

Accepted: 31 December 2022

One contribution of 23 to a theme issue ‘The

heartbeat: its molecular basis and physiological

mechanisms.

Subject Areas:
physiology

Keywords:
electrophysiology, arrhythmia, ion channels,

genetics, SCN5A

Author for correspondence:
Carol Ann Remme

e-mail: c.a.remme@amsterdamumc.nl
© 2023 The Author(s) Published by the Royal Society. All rights reserved.
SCN5A channelopathy: arrhythmia,
cardiomyopathy, epilepsy and beyond

Carol Ann Remme

Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure &
Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands

CAR, 0000-0003-0095-0084

Influx of sodium ions through voltage-gated sodium channels in cardiomyo-
cytes is essential for proper electrical conduction within the heart. Both
acquired conditions associated with sodium channel dysfunction (myocar-
dial ischaemia, heart failure) as well as inherited disorders secondary to
mutations in the gene SCN5A encoding for the cardiac sodium channel
Nav1.5 are associated with life-threatening arrhythmias. Research in the
last decade has uncovered the complex nature of Nav1.5 distribution, func-
tion, in particular within distinct subcellular subdomains of cardiomyocytes.
Nav1.5-based channels furthermore display previously unrecognized
non-electrogenic actions and may impact on cardiac structural integrity,
leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed
in cell types other than cardiomyocytes as well as various extracardiac
tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility,
cancer and the innate immune response is increasingly investigated and
recognized. This review provides an overview of these novel insights and
how they deepen our mechanistic knowledge on SCN5A channelopathies
and Nav1.5 (dys)function.

This article is part of the theme issue ‘The heartbeat: its molecular basis
and physiological mechanisms’.
1. Introduction
Influx of sodium ions through voltage-gated sodium channels in cardiomyo-
cytes initiates the cardiac action potential and is essential for excitability
of myocardial cells and proper electrical conduction within the heart. The impor-
tance of cardiac sodium channels is underscored by the occurrence of potentially
lethal arrhythmias in the setting of acquired conditions associated with sodium
channel dysfunction (myocardial ischaemia, heart failure) as well as inherited
disorders secondary to mutations in the gene SCN5A encoding for the cardiac
sodium channel Nav1.5 [1]. While genetic, electrophysiological and molecular
studies have provided insight into the (dys)function and (dys)regulation of
SCN5A and Nav1.5, it has become increasingly clear that sodium channel distri-
bution, function and regulation is more complicated than traditionally assumed,
in particular within distinct subcellular subdomains of cardiomyocytes [2].
Nav1.5-based channels furthermore display previously unrecognized non-
electrogenic actions and may impact on cardiac structural integrity, thereby
also potentially affecting arrhythmogenesis [3]. Moreover, SCN5A and Nav1.5
are expressed in cell types other than cardiomyocytes as well as various extra-
cardiac tissues, where their functional role is increasingly investigated and
recognized. SCN5A mutations have now been associated with (sudden unex-
pected death in) epilepsy and gastrointestinal disorders, and a role for Nav1.5
in smooth muscle cell (SMC) function, cancer, innate immune response and
inflammation has been reported. This review provides an overview of these
novel insights and how they deepen our mechanistic knowledge on sodium
channel (dys)function and their role in cardiac disorders, ultimately facilitating
development of novel strategies for diagnosis, risk stratification and treatment in
patients with SCN5A channelopathies.
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2. Sodium channel structure, distribution
and function

(a) Cardiac sodium channel structure and mode
of action

The sodium channel family comprises a total of nine genes
(SCN1A-SCN5A, SCN7A-SCN11A), of which the SCN5A gene
located on human chromosome 3p22 encodes Nav1.5, the
pore-forming alpha subunit of the cardiac sodium channel.
Nav1.5 is made up of a cytoplasmicN terminus, four internally
homologous domains (DI-DIV; consisting of six trans-
membrane α-helical segments, S1–S6) interconnected by
cytoplasmic linkers, and a cytoplasmic C terminal domain
[4]. The DI-DIV domains fold around an ion-conducting
pore; during membrane depolarization, outward movement
of the positively charged S4 segments (which acts as voltage
sensor) results in the opening of the channel pore, allowing
for sodium influx [5]. As a result, the membrane is further
depolarized (phase 0 of the cardiac action potential), leading
to L-type calcium channel activation, calcium influx and
contraction. Subsequent fast and slow inactivation closes
the channel pore, until membrane repolarization allows the
channel to recover from inactivation and once again become
available for activation [6,7]. During physiological conditions,
activation and inactivation of sodium channels is closely regu-
lated, but alterations in these processes in the setting of
acquired and inherited sodium channel dysfunction may set
the stage for electrical disturbances and arrhythmias (as
discussed in more detail in the next sections).
(b) SCN5A/Nav1.5 distribution in heart and subcellular
domains of cardiomyocytes

SCN5A/Nav1.5 expression is high in atrial and ventricular
myocardium, His bundle, bundle branches and Purkinje
fibres, but low to absent in the central sino-atrial and atrio-ven-
tricular nodes [8]. Furthermore, SCN5A/Nav1.5 displays a
transmural gradient in ventricular myocardium, showing
higher abundance in subepicardiumwhen comparedwith sub-
endocardium (figure 1a) [8]. Within cardiomyocytes, Nav1.5 is
localized in a distinct subcellular pattern, with a relatively low
density at the crests, grooves and T-tubules at the lateral mem-
brane (LM) versus an enrichment in the intercalated disc (ID)
region (figure 1b) [9]. Accordingly, sodium currents measured
at the ID are larger than at the LM [10], and ID-based Nav1.5 is
considered especially relevant for fast propagation of electrical
signals [11].Nevertheless, loss ofNav1.5 at the LM leads to con-
duction slowing [12], and hence is also functionally relevant in
this subcellular domain.
(c) Nav1.5 interacting proteins and macromolecular
complex

Sodium channels are not isolated units within the myocyte
membrane; instead, Nav1.5 forms a macromolecular complex
with interacting proteins, an assortment of proteins which
regulate Nav1.5 trafficking and localization as well as sodium
current biophysical properties [9,13–15]. Through this com-
plex, Nav1.5 associates not only with various isoforms of the
accessory β-subunits, but also with proteins that participate
in cell adhesion, signal transduction, and cytoskeleton
anchoring [3,15]. Several of these Nav1.5 interacting proteins
are specifically localized at or enriched in distinct subcellular
domains within cardiomyocytes (figure 1b) [3,15]. At the LM,
Nav1.5 interacts with the dystrophin–syntrophin complex,
the calcium/calmodulin-dependent serine protein kinase
(CASK) and caveolin-3 [16], whereas at the ID Nav1.5
associates with N-cadherin, connexin-43, βIV-spectrin and des-
mosomal proteins such as plakophilin-2 and desmoglein-2
[15]. Nav1.5 interacting proteins likely play an essential role
in the specific subcellular localization of Nav1.5 within cardio-
myocytes, and their regional variation is considered to underlie
at least in part the observed differences in Nav1.5 expression,
sodium current density and kinetics between distinct subcellu-
lar microdomains [15]. As further discussed below, mutations
in genes encoding a number of these interacting proteins
have been associated with cardiac electrical disorders and/or
Nav1.5 dysfunction.

(d) Transcriptional and post-translational regulation
of SCN5A and Nav1.5

Following transcription, alternative splicing of the SCN5A
gene produces different transcript variants. The neonatal
SCN5A-001 transcript, which is most abundant during
embryonic development, is replaced by the mature transcript
SCN5A-003 after birth, but may be upregulated during patho-
physiological conditions [17]. These two isoformsdiffer in exon
6 (exon 6b in SCN5A-003 and exon 6a in SCN5A-001) leading to
a difference of seven amino acids and distinct gating properties
of Nav1.5 [17,18]. This has been shown to be of potential func-
tional relevance; for instance, an SCN5Amutationmay display
more severe biophysical effects in the presence of the neonatal
isoform resulting in a highly malignant fetal LQTS phenotype
[19]. As reviewed by Schroeter et al., additional splice variants
exist, displaying unique biophysical properties, tissue- and
species-specific expression, and developmental regulation
[17]. Following translation, Nav1.5 channels are assembled in
the endoplasmic reticulum, transported to the Golgi apparatus
and targeted to the membrane via the microtubule network
(reviewed by Balse et al. [20]). Phosphorylation, glycosylation,
S-nitrosylation, ubiquitination and methylation are important
post-translational regulatory mechanisms impacting on
Nav1.5 trafficking, function and degradation [21]. Notably,
phosphorylation of Nav1.5 by PKA, PKC and calcium/calmo-
dulin-dependent protein kinase II (CamKII) has been shown to
modulate Nav1.5 trafficking as well as (late) sodium current
magnitude [22,23]. Ubiquitylation of Nav1.5 mediates its
internalization and subsequent degradation, and hence is an
important determinant of channel density at the membrane
[24]. Nav1.5 function is furthermore regulated by numerous
factors, including intracellular calcium levels, reactive oxygen
species and temperature [25].

(e) SCN5A/Nav1.5 expression in extracardiac tissue
and other cell types in the heart

In addition to heart, SCN5A and Nav1.5 are expressed in
multiple extracardiac tissues including brain, (smooth)
muscle, nerves, intestine and artery (figure 1c). Moreover,
their expression has been found in both excitable and non-
excitable cell types, including SMCs, neurons, (myo)fibro-
blasts, endothelial cells, macrophages, thymocytes and
cancer cells. The potential functional role of SCN5A/Nav1.5
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Figure 1. (a) Expression levels of Nav1.5 throughout various regions of the heart. (b) Cardiomyocyte subcellular distribution of Nav1.5 and interacting proteins in
lateral membrane (LM), T-tubule and intercalated disc (ID) (from [3], with permission). (c) Expression levels of SCN5A in various human tissues (bulk tissue gene
expression for ENSG00000183873.15, logarithmic scale; data source: GTEx Analysis release V8 (dbGaP accession: phs000424.v8.p2)).
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in these tissues and cell types will be discussed in separate
sections of this review.
3. Electrophysiological consequences of SCN5A
dysfunction

Distinct alterations in gating and other biophysical properties
of the sodium channel may have various electrophysiological
consequences [26]. These can be divided into alterations caus-
ing a loss of sodium channel function and consequent
depolarization disturbances, and those leading to an enhanced
late sodium current and consequent prolonged repolarization
(gain of function). These electrophysiological changes may,
through distinct mechanisms, set the stage for potentially
life-threatening ventricular arrhythmias (figure 2). The associ-
ated clinical syndromes are discussed in more detail in the
next section.

(a) Causes and consequences of reduced sodium
channel availability

Reduced sodium channel availabilitymayoccur in the settingof
both inherited and acquired pathological conditions. Decreased
peak inward sodium current and consequent lower influx of
sodium ions into the cardiomyocyte reduces upstroke velocity
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Figure 2. Pro-arrhythmic consequences of gain and loss of sodium channel function, including electrogenic effects (conduction slowing, action potential pro-
longation) as well as effects on cardiac structure with proposed mechanisms (CM, cardiomyocyte; CaN, calcineurin; CamKII, calmodulin-dependent protein
kinase II; EAD, early afterdepolarization; DAD, delayed afterdepolarization).
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of the actionpotential and slowspropagation.Dependingon the
underlying cause and location involved, slowing of conduction
through parts of the specialized conduction system may occur
(sino-atrial node, atrio-ventricular node,His–Purkinje) and (het-
erogeneous) conduction slowing throughout the ventricular
myocardium may set the stage for re-entrant ventricular
arrhythmias. Acquired conditions include myocardial ischae-
mia, during which metabolic changes within the myocardium
lead to inactivation of sodium channels, and heart failure,
where alterations in SCN5A expression and post-translational
regulation affect sodium current [27]. In inherited arrhythmia
syndromes (see below), loss of function mutations in SCN5A
can lead to a decreased number of functional channels on the
membrane due tomisfolding of the channel and/or altered traf-
ficking. Alternatively, sodium channels may be present on the
membrane with decreased functionality secondary to reduced
conductivity, disruption of activation, accelerated inactivation
or impaired recovery from inactivation [28,29].
(b) Causes and consequences of increased late sodium
current

The initial peak sodium current is for the most part rapidly
inactivated, but a small fraction of the current may persist
throughout the duration of the action potential plateau
phase. While this late sodium current is small during physio-
logical conditions, it may be enhanced in the setting of
acquired (ischaemia, hypertrophy and heart failure) and
inherited disease (e.g. SCN5A mutations) [30,31]. Irrespective
of the underlying cause, delayed repolarization and action
potential prolongation increase the occurrence of early after-
depolarizations which can trigger torsades de pointes
arrhythmias and sudden death (figure 2). Enhanced late
sodium current may furthermore dysregulate intracellular
sodium and calcium homeostasis: increased intracellular
sodium induces a secondary rise in intracellular calcium
via the sodium–calcium exchanger thereby inducing
calcium-dependent pro-arrhythmic events including delayed
after-depolarizations [32]. During acquired conditions such
as heart failure, post-translational modulation of sodium
channels by calcium-dependent pathways (such as CamKII)
may increase late sodium current magnitude [33]. In the set-
ting of inherited disorders (see below), gain of function
SCN5A mutations often disrupt fast inactivation, allowing
for sodium channels to re-open during the action potential
plateau phase thereby increasing late sodium current, or
alternatively may lead to slowed inactivation (resulting in
channel openings of longer duration), faster recovery from
inactivation, or a shift in voltage dependence of inactivation
[25,34]. Certain mutations may lead to a so-called overlap
syndrome, causing biophysical defects leading to both gain
and loss of function of Nav1.5 (see below).
4. Disorders associated with Nav1.5 dysfunction
(a) Inherited disorders associated with SCN5A

mutations
Mutations in SCN5A have been implicated in multiple inher-
ited disorders, which each display distinct phenotypical



Table 1. Nav1.5 interacting proteins, their (preferential) localization in
adult cardiomyocytes (ID, intercalated discs; LM, lateral membrane), and
associated inherited cardiac disorders (LQTS, long QT syndrome; BrS,
Brugada syndrome; AF, atrial fibrillation; CCD, cardiac conduction disease;
SND, sinus node dysfunction; CPVT, catecholaminergic polymorphic
ventricular tachycardia; IVF, idiopathic ventricular fibrillation; ACM,
arrhythmogenic cardiomyopathy; DCM, dilated cardiomyopathy).

gene protein subdomain

associated
cardiac
disease

SCN1B β1 LM, ID BrS, AF, CCD

SCN2B β2 ID AF

SCN3B β3 LM BrS, AF

SCN4B β4 LM, ID LQTS, AF

SNTA1 α1-syntrophin LM LQTS

CASK calcium/calmodulin-

dependent serine

protein kinase (CASK)

LM –

ANK2 ankyrin-B LM LQTS, SND,

CPVT, IVF

CAV3 caveolin-3 LM LQTS

FGF13 fibroblast growth factor

13

LM, ID –

ANK3 ankyrin-G LM, ID –

PKP2 plakophilin-2 ID ACM

DSG2 desmoglein-2 ID ACM, DCM

CDH2 N-cadherin ID ACM

SPTBN4 βIV-spectrin ID –

DCTN2 dynactin subunit 2

(p50/dynamitin)

ID –

SAP97 SAP97; DLG1 ID –

GPD1L glycerol-3-phosphate

dehydrogenase 1-like

unknown BrS
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characteristics. These mutations may lead to a gain or a loss
of sodium channel function, or a combination of both. Long
QT syndrome (LQTS) is characterized by prolonged QT inter-
vals on the ECG, and increased risk for sudden death
due to ventricular tachyarrhythmias, in particular torsades
de pointes. Various subtypes of LQTS exist, caused by
mutations in different genes and displaying distinct clinical
features. Patients with LQTS type 3 (LQT3) are often brady-
cardic and have a high risk of ventricular arrhythmias
which occur predominantly during rest or sleep (at slow
heart rates) [35]. LQT3 is caused by gain of function SCN5A
mutations which prolong repolarization and set the stage
for torsades de points arrhythmias (see previous section).
Brugada syndrome (BrS) is associated with the occurrence
of ventricular arrhythmias and sudden cardiac death occur-
ring mostly in males, predominantly during rest and sleep
[36]. The hallmark ECG pattern of BrS comprises a coved
ST-segment in the right-precordial leads V1 to V3, which
may be variably present and can be unmasked or increased
after administration of sodium channel blocking drugs
(ajmaline, flecainide), or during fever or exercise [36]. BrS
patients frequently display low voltages, fractionated late
potentials and (subtle) structural abnormalities such as fibro-
sis in the epicardial layer of the right ventricular outflow tract
(RVOT), and arrhythmias are often inducible in the RVOT of
affected individuals [37]. Loss of function SCN5A mutations
are identified in approximately 20% of BrS patients, while
mutations in other ion channel and non-ion channel genes
are sporadically found [38,39]. In addition, a more complex
oligogenic or polygenic inheritance is now also recognized,
with multiple genetic modifiers (common or rare) defining
the genetic basis [38,39]. Loss of function SCN5A mutations
leading to reduced sodium channel availability have also
been identified in patients with inherited sick sinus syndrome
as well as progressive cardiac conduction defect (PCCD), also
called Lenègre or Lev disease, an inherited disorder charac-
terized by progressive conduction slowing through the His–
Purkinje system, (complete) AV block, syncope and sudden
death [40,41]. Mutations in SCN5A have furthermore been
associated with atrial fibrillation in young patients with
structurally normal hearts. Both loss of function and gain of
function mutations have been described in this familial
form, which may induce AF by decreasing atrial conduction
velocity and/or increasing atrial excitability [42,43]. In some
instances, one single SCN5A mutation can result in a
‘sodium channel overlap syndrome’, with multiple disease
phenotypes consistent with both gain and loss of sodium
channel function occurring even within one affected family.
For instance, carriers of the SCN5A-1795insD mutation
within in a large Dutch family present with extensive varia-
bility in type and severity of symptoms, including sinus
node dysfunction, bradycardia, conduction disease, BrS,
LQT3 (either in isolation or in combinations thereof), and
an increased risk for nocturnal sudden death [44]. Electro-
physiological analysis of transgenic mice carrying the
heterozygous Scn5a-1798insD/+ mutation (the mouse homol-
ogue of the human mutation) demonstrated that the mutation
caused a reduced peak sodium current density, a delayed
time course of fast inactivation and a small late sodium
current, explaining the observed multiple phenotypes [45].
Similar clinical and electrophysiological overlap has been
reported for other SCN5Amutations, although a clear parallel
between the mixed clinical phenotype of a certain SCN5A
mutation and its biophysical properties is not always
observed; here, factors such as age and genetic modifiers
may play a modulatory role [46,47]. Finally, SCN5A
mutations are increasingly associated with dilated and
arrhythmogenic cardiomyopathy (ACM), which will be
discussed in more detail in the section below.
(b) Arrhythmia disorders associated with mutations in
Nav1.5-interacting proteins

As mentioned above, Nav1.5 forms part of a macromolecular
complex through which it interacts with a large a number of
associated proteins. Crucially, mutations in these interacting
proteins have been associated with sodium channel dysfunc-
tion and arrhythmia syndromes (table 1). For instance,
mutations in the sodium channel accessory β-subunits have
been identified in patients with BrS, LQTS, atrial fibrillation
and idiopathic ventricular fibrillation [46]. Furthermore,
mutations in the Nav1.5 interacting proteins alpha-1-
syntrophin and caveolin-3, which are located at the LM,
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have been reported in LQTS patients and have been
demonstrated to increase late sodium current [48,49], while
mutations in ankyrin-B have been associated with sinus
node dysfunction, idiopathic ventricular fibrillation, LQTS
and catecholaminergic polymorphic ventricular tachycardia
[50,51]. Moreover, the absence of dystrophin in Duchenne
muscular dystrophy is associated with arrhythmias in
affected patients and a reduced sodium current is observed
in mdx mouse cardiomyocytes [52]. Finally, mutations in
genes encoding desmosomal proteins located at the ID
region have been associated with ACM [53]. Crucially, a
number of these proteins interact with Nav1.5 and decreased
sodium current has been observed in ACM models, even
prior to development of cardiomyopathic changes [54,55].
Interestingly, as discussed in more detail below, SCN5A
mutations have now also been implicated in ACM.

(c) Acquired disorders associated with Nav1.5
dysfunction

As briefly mentioned above, in addition to inherited disorders,
sodium channel dysfunction also occurs in the setting of a
number of acquired conditions. Apart from alterations in
(late) sodium current and consequent deleterious effects on
conduction, repolarization and calcium homeostasis in the
setting of myocardial ischaemia, Nav1.5 dysfunction is also
observed in metabolic disorders such as diabetes and obesity
[56]. Here, both loss and gain of sodium channel function
have been observed; a reduced SCN5A expression and smaller
peak sodium current leading to conduction slowing [57], as
well as enhanced late sodium current. The latter is the conse-
quence of metabolic dysregulation, including alterations in
cytosolic calcium and CaMKII [58,59], and may ultimately
lead to the occurrence of calcium-dependent pro-arrhythmic
events. Furthermore, a crucial role for Nav1.5 has been
described in tumour growth, invasiveness and metastasis of
certain cancers; this topic will be discussed in more detail in
a later section of this review.
5. Cardiomyopathy and SCN5A channelopathy:
mechanisms and consequences

(a) SCN5A channelopathy, cardiac structural alterations
and cardiomyopathy

In addition to primary electrical disorders, SCN5A mutations
have also been associated with cardiac structural alterations
such as myocardial fibrosis and (dilated) cardiomyopathy
[60–64]. In BrS patients, ventricular hypertrophy has been
reported in addition to increased collagen content and
fibrosis, particularly in the subepicardium of the RVOT
[64]. Furthermore, familial forms of dilated cardiomyopathy
(DCM) have been reported in patients with SCN5A
mutations, often presenting in combination with conduction
disease, atrial arrhythmias and/or fibrillation [62,65]. Inter-
estingly, biophysical properties consistent with both loss
and gain of sodium channel function have been observed in
SCN5A mutations associated with DCM [65,66]. A specific
subtype, characterized by DCM and multifocal ectopic Pur-
kinje-related premature contractions (MEPPC), is associated
with gain of function SCN5A mutations which lead to hyper-
excitability of the fascicular–Purkinje system [67,68]. SCN5A
mutations are now increasingly identified in DCM patients
[69], and can present with a broad range of electrical dis-
orders ranging from conduction abnormalities to atrial and
ventricular arrhythmias [70]. More recently, an overlap
between BrS and arrhythmogenic (right ventricular) cardio-
myopathy (ARVC/ACM) has been described; clinical
features of both syndromes were observed in patients that
did not carry mutations in ARVC/ACM-related desmosomal
proteins, but were found to have a (loss of function) SCN5A
mutation [38,53]. ARVC and BrS both affect predominantly
the right ventricle with involvement of cardiac cell–cell
junctions, and demonstrate pathophysiological, genetic,
structural and electrophysiological overlap [71]. While car-
diac structural alterations were originally considered to
occur secondary to repetitive, long-standing arrhythmias in
affected patients, they are now increasingly recognized as a
more direct consequence of Nav1.5 dysfunction in the setting
of SCN5A mutations. This is further strengthened by the age-
dependent development of structural remodelling in mice
with heterozygous Scn5a deficiency [72]. Clearly, develop-
ment of cardiac structural derangements will contribute to
arrhythmogenesis in affected patients. For instance, in the
SCN5A-1795insD family, we found that most mutation car-
riers who suffered ventricular arrhythmias above the age of
40 years (despite pacemaker treatment), had ventricular
hypertrophy [44,73]. Although the latter could be explained
by hypertension in these patients, studies in mice carrying
the mouse homologue mutation demonstrated age-depen-
dent development of hypertrophy and fibrosis, indicating a
direct effect of Nav1.5 dysfunction, as discussed in more
detail below [44].

(b) SCN5A/Nav1.5 and cardiac development
The observation that both gain and loss of function mutations
are associated with cardiomyopathy suggests that Nav1.5
may also impact on cardiac structure in a non-electrogenic
manner, independent from its ion-conducting properties.
Nav1.5 is present at early developmental stages but is not
yet capable of generating sodium currents because of the rela-
tively depolarized resting membrane potential [74]. In
zebrafish, the presence of Scn5a homologues was found to
be essential for normal cardiac development at an early
stage, before sodium channels impact on the electrophysio-
logical properties of the heart; pharmacological inhibition of
sodium current did not have the same effect, indicating that
the early embryonic lethality occurred independently of elec-
trogenic effects of Nav1.5 [75]. Similarly, Scn5a-deficient
and mutant mice die at an early embryonic stage [76,77],
and we recently demonstrated abnormal development and
cardiac structural abnormalities in homozygous Scn5a-
1798insD embryos at an early stage before sodium channels
become functionally relevant for cardiac electrical activity,
providing further evidence for a non-electrogenic role for
Nav1.5 [78].

(c) Mechanisms underlying cardiac structural alterations
secondary to Nav1.5 dysfunction

Cardiac structural remodelling secondary to SCN5A
mutations may be explained by various mechanisms
(figure 2). In the setting of gain of function mutations,
enhanced late sodium current and consequent increased
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sodium influx will result in elevated intracellular calcium
levels byway of the sodium–calcium exchanger. Increased cal-
cium concentrations may activate calcium/calmodulin-
dependent protein kinase II (CAMKII) and protein phospha-
tase calcineurin (CaN), signalling pathways controlling pro-
hypertrophic and pro-fibrotic gene transcription [3,79]. This
has indeed been confirmed in studies in murine LQT3
models, which have also demonstrated the beneficial effects
of the late sodium current inhibitor ranolazine on calcium
homeostasis, pro-arrhythmia and cardiac structural altera-
tions [32,44,80,81]. Certain DCM-related SCN5A mutations
have been shown to induce a proton leak current which
leads to intracellular sodium overload via the sodium–hydro-
gen exchanger, ultimately resulting in intracellular calcium
overload [82,83]. Ionic imbalances and intracellular acidosis
may not only impact on arrhythmogenesis and pro-fibrotic
pathways, but also potentially impair excitation–contraction
and myofilament function [83]. With respect to structural con-
sequences of loss of sodium channel function, electrical
activity-dependent stimulation of pro-fibrotic factors of the
transforming growth factor β (TGFβ) pathway has been pro-
posed [84], with inhibition of sodium current leading to
increased levels of TGFβ1 receptors [85]. Interestingly, both
fibrosis and TGFβ1 transcript levelswere found to be increased
in ventricles of aged heterozygous Scn5a-deficient mice,
suggesting development of TGFβ1-mediated structural
abnormalities secondary to sodium channel dysfunction
[86]. A potential non-electrogenic mechanism of loss of func-
tion SCN5A mutations on cardiac structure involves protein–
protein interactions. As described in previous sections,
Nav1.5 interacts with a variety of proteins, including cyto-
skeletal proteins, components of the extracellular matrix and
adhesion- and desmosomal proteins at the ID. The latter func-
tion as mechanical linkers between cardiomyocytes, and are
vital for myocardial structure. It is therefore tempting to
speculate that Nav1.5 dysfunction impairs the function or
localization of these mechanical linkers or contractile proteins,
destabilizing intercellular adhesion and/or cytoskeletal integ-
rity. Indeed, loss of Nav1.5 in HL1 cells has been shown to
reduce intercellular adhesion strength [87]. However, while it
is clear that Nav1.5 interacting proteins modulate sodium
channel function [9,13–15], there is currently limited exper-
imental evidence to support the notion that modulation also
occurs in the opposite direction, and the impact of different
SCN5A mutations on interacting proteins remains to investi-
gated. Overall, it is clear that Nav1.5 not only determines
electrophysiological characteristics of the myocardium, but
also exerts effects on myocardial structure and function
through various mechanisms (figure 2).
6. Role of SCN5A/Nav1.5 in cancer
(a) Impact of SCN5A/Nav1.5 on tumour growth and

metastasis
Increased expression of sodium channels in tumours is well
established, with different sodium channel isoforms found
in distinct tumour types [88]. Nav1.5 is present in many
types of tumour tissue, including breast, colon, lymphoma,
neuroblastoma, non-small cell lung cancer, ovarian, small
cell lung cancer, with the highest overexpression levels
observed in metastatic breast cancer, colon cancer and
ovarian cancer [89,90]. Moreover, Nav1.5 represents the
most highly expressed subunit in lymphoma and breast
cancer cells [90]. While the adult isoform of SCN5A is found
in colon cancer cells, in breast and prostate cancer cells the neo-
natal SCN5A splice variant ismostly expressed [89,90]. Overall,
increased expression of Nav1.5 is associated with more aggres-
sive tumour characteristics, including lymph node invasion,
recurrence of metastasis and reduced survival [91]. This has
been observed for breast cancer, colon cancer and ovarian
cancer, but not for gliomas or lung cancer cells [90]. Silencing
either adult or neonatal SCN5A has been shown to reduce inva-
sion andmigration of MDA-MB-231 breast cancer cells [92,93],
andMDA-MB-231 cellswith downregulatedNav1.5 orthotopi-
cally implanted into mice showed reduced tumour growth and
local invasion in vivo [94].

(b) Mechanisms underlying Nav1.5-mediated
alterations in tumour growth and metastasis

Nav1.5 regulates a number of processes in tumour cells
which can affect its metastatic properties, including galvano-
taxis (directed movement in response to electrical current),
migration, invasion, adhesion, and gene expression [90]. In
tumour cells, sodium channels are particularly enriched in
invadopodia, plasma membrane protrusions involved in
extracellular matrix degeneration and therefore relevant for
migration and invasion [95,96]. In breast cancer cells,
Nav1.5 channels co-localize and coimmunoprecipitate with
the nitrogen–hydrogen exchanger 1 (NHE-1) and increase
its activity [95,97,98], enhancing influx of sodium and efflux
of hydrogen. This results in acidification (and thus a lower
pH) of the extracellular environment and an alkalization
of the intracellular environment. This acidification of the
extracellular space increases cathepsin activity, enhances inva-
dopodial formation and activity and promotes invasion
through extracellular matrix degeneration, enabling the
tumour to metastasize [95,97]. Increased expression of (neo-
natal) Nav1.5 in cancer cells may also lead to increased late
sodium current and subsequent increased intracellular calcium
levels, which in turn may activate SNARE-mediated vesicle
fusion and stimulate the activity of podosomes, actin-rich
plasma membrane components that facilitate cell motility,
adhesion and migration of tumour cells [90,97,99]. Indeed,
abnormally high sodium concentrations are found in several
types of cancer cells [100], and non-invasive imaging of
sodium accumulation in breast tissue (23Na MRI) may provide
a useful diagnostic and prognostic biomarker [101].

(c) Therapeutic considerations
Given the deleterious effects of overexpression of Nav1.5 in
tumour cells, pharmacological inhibition of Nav1.5 would
be expected to be beneficial. Indeed, tetrodotoxin (TTX) has
been reported to inhibit Nav1.5, impeding sodium influx,
phagocytosis and endosomal acidification in breast cancer
cells and reducing their invasion and migration [95]. Simi-
larly, Nav1.5 blockade with phenytoin reduced invasion
of breast cancer cells in vitro [91], and reduced tumour
growth, invasion, proliferation and metastasis of breast
cancer cells in vivo in mice [102]. In addition, ranolazine
inhibited Nav1.5-mediated breast cancer cell invasiveness
in vitro and attenuated metastatic lung colonization by
breast cancer cells in mice [103]. It is important to note that,
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since the expression of sodium channel isoforms other than
Nav1.5 is also increased in certain types of cancer cells [88],
(part of) the observed effects of sodium channel blockers
may also be due to their action on these other isoforms.
Theoretically, patients using such sodium channel blocking
drugs (for instance, for epilepsy) who subsequently develop
cancer, may have a less aggressive tumour with less extensive
metastasis. However, such a beneficial effect has as yet not
been observed [104], and prospective studies will be required
to investigate this further. Moreover, it should be noted that
the use of sodium blocking drugs carries a potential risk of
side effects, including cardiac conduction slowing and
arrhythmias. More recently, small molecule blockers of neo-
natal Nav1.5 were designed, which reduced invasion
of breast cancer cells in vitro, providing a promising novel
therapeutic approach [105].
s.R.Soc.B
378:20220164
7. SCN5A/Nav1.5 (dys)function in brain and
neuronal tissue

(a) SCN5A/Nav1.5 expression in neuronal tissue
Neuronal tissues express a wide range of sodium channel iso-
forms displaying distinct biophysical properties and TTX
sensitivity, and their differential expression have been shown
to mediate neuron subtype-specific firing patterns [106]. In
addition to neuronal sodium channel isoforms, several studies
have also detected the presence of SCN5A and Nav1.5 in
rodent and human brain, ganglia and neurons. In the mouse
brain, Nav1.5 protein has been observed in the cortex, thala-
mus, hypothalamus, basal ganglia, cerebellum and brain
stem, clustering in axons [107]. In the frontal lobe cortex of
the human brain, Nav1.5 was found to be predominantly
located in neuronal cell bodies, axons and dendrites, but to a
far lesser extent in glial components [108]. On the mRNA
level, SCN5A showed a restricted expression pattern in rat fore-
brainwith selective localization in limbic regions, including the
pirifom cortex and subcortical limbic nuclei [109]. These
regions include projections to and from the amygdala, hippo-
campus and hypothalamus, indicating that SCN5A may play
a role in or modulate various functions such as olfactory per-
ception and autonomic responses [109]. SCN5A/Nav1.5
expression has furthermore been observed in dorsal root
ganglia (DRG), vestibular ganglion neurons, olfactory sensory
neurons and intracardiac neurons [110–113], with electro-
physiological studies indicating a functional role for Nav1.5
in neuronal firing in a number of these tissues [110,112].
Crucially, distinct SCN5A splice isoforms appear relevant for
neuronal function. For instance, in mouse DRG the exon
18-deleted Nav1.5a is the predominant isoform, which has a
53-amino acid truncation in the intracellular loop between
DII and III and consequently altered inactivation properties
[110]. By contrast, wild-type Nav1.5 in addition to the splice
variants Nav1.5c (containing the variant Q1077) and Nav1.5e
(the embryonic or neonatal variant containing exon 6A instead
of 6) were found to be expressed in human brain cortex [108].
While the overall expression of SCN5A/Nav1.5 in neuronal
tissue is clearly lower than in the heart, their increasingly
reported involvement in several neurological conditions
underscores their functional relevance in the brain and
neurons.
(b) SCN5A and epilepsy
Mutations in various ion channels are well known to be associ-
ated with various forms of epilepsy. It is, however, becoming
increasingly clear that patients with inherited cardiac arrhyth-
mia syndromes such as LQTS may present with seizures, and
they are often (initially) misdiagnosed with epilepsy [114]. In
a cohort of 610 LQTS patients, 11% displayed seizures or sei-
zure-like episodes, the majority of which had a diagnosis of
LQTS2 associated with a mutation in KCNH2 [115]. Neverthe-
less, in addition to mutations in neuronal sodium channels, a
potential role for SCN5A/Nav1.5 in epilepsy has been
described. In a rat model of temporal lobe epilepsy, increased
expression of Scn5a and Nav1.5 was observed in the brain,
including the hippocampus [116]. In addition, a number of
case reports and studies have described the identification of
SCN5A mutations in patients with epilepsy, mostly co-occur-
ring with other SCN5A-related cardiac disorders. Epileptic
seizures have been reported as the initial clinical presentation
in patients with BrS [117,118]. In one family, three males carry-
ing the SCN5A-p.W1095X mutation were initially treated for
epileptic seizures in childhood before being diagnosed with
BrS during adulthood [119]. In a child with LQTS and neonatal
seizures, the SCN5A mutation p.R1623Q was found, which is
known to be associated with a severe LQTS phenotype [120].
In a further study of 21 infants with LQTS, a high incidence
of epilepsy and neurodevelopmental disorders was observed
in patients with perinatal LQTS, whereas this did not occur
in those with non-perinatal LQTS [121]. Of the perinatal
LQTS patients suffering epileptic seizures, two patients carried
SCN5Amutations (G1631D andP1332L) [121]. In an infant pre-
sentingwith QT-prolongation and self-terminating torsades de
pointes shortly after birth, a generalized tonic–clonic seizure (in
the setting of a normal heart rhythm) occurred 2 days after
birth, and the infant was found to carry the SCN5A-M1766L
mutation [122]. While hypoperfusion of the brain consequent
to arrhythmias may increase susceptibility to epilepsy in
LQTS patients, some reports demonstrated the occurrence of
seizures in the absence of cerebral abnormalities, indicating a
more direct mechanistic link [121]. From a biophysical point
of view, gain of function SCN5Amutations may lead to persist-
ent depolarization of neurons, increased firing frequency and
potentially epileptiform bursting behaviour; in contrast, it is
difficult to predict how loss of function mutations observed
in BrS could lead to seizures. Interestingly, as indicated
above, SCN5A is expressed in limbic regions such as the piri-
form cortex; the latter area is known to have a low threshold
for epileptogenesis [109]. Nevertheless, functional proof of a
direct link between SCN5A mutations and epilepsy is as yet
still lacking.

(c) SCN5A and sudden unexpected death in epilepsy
In recent years, it has become increasingly clear that epilepsy
patients are at increased risk of sudden death, a condition
known as sudden unexpected death in epilepsy (SUDEP),
with the incidence of SUDEP in the general epilepsy popu-
lation being around 1.2–1.3 per 1000 person-years [123–125].
SUDEP is defined as ‘sudden, unexpected, witnessed or unwit-
nessed, non-traumatic and non-drowning death, occurring in
benign circumstances, in an individual with epilepsy, with or
without evidence for a seizure and excluding documented
status epilepticus (seizure duration ≥30 min or seizures with-
out recovery in between), in which post-mortem examination
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does not reveal a cause of death’ [126]. Clinical risk factors for
SUDEP include recent seizures, increased seizure frequency
and nocturnal seizures [124,126]. The pathophysiology of
SUDEP is likely heterogeneous and includes ictal and
peri-ictal respiratory dysfunction and apnoea, autonomic
nervous system dysregulation, arousal system dysfunction,
neurotransmitter dysbalance and ion channel dysfunction
[125–127]. SUDEPmay occur during or immediately following
a generalized tonic–clonic seizure, but is also observedwithout
any immediately prior visible seizures, indicating a potential
role for other pathomechanisms, including cardiac [126].
Indeed, the genetic spectrum of SUDEP not only includes epi-
lepsy genes and genes involved in respiration and arousal, but
variants in arrhythmia genes are also increasingly recognized,
including KCNH2, KCNQ1, RYR2 and SCN5A [128,129].
Genetic testing using post-mortem blood collected from 48
definite or possible SUDEP cases revealed, in addition to
variants in KCNQ1 and KCNH2, six synonymous and three
non-synonymous variants in SCN5A; the latter were all
previously associated with LQTS [129]. In another cohort of
61 SUDEP cases, two SCN5A variants (Ile397Val and
Val223Gly) were identified [130]. Interestingly, Ile397Val and
Val223Leu (but not Val223Gly as in the SUDEP case) were pre-
viously reported in BrS patients [29,131]. A case report
furthermore described a female patient diagnosed with epi-
lepsy but who died 1 year later in her sleep; post-mortem
genetic analysis revealed the presence of the SCN5A-R523C
mutation [132], which was previously reported in an LQTS
patient [133]. To gain further insight into the potential patho-
genicity of these last three variants, Soh and colleagues
investigated their biophysical properties in CHO cells and
observed a reduced peak current for Val223Gly as well as
changes in gating properties for all three variants, underlining
their potential functional impact [134]. Hence, the (co-)occur-
rence of SCN5A mutations in these patients may have
contributed to the development of cardiac arrhythmias and
potentially SUDEP. However, some of these patients were
also treated with anti-epileptic drugs, many of which are in
fact sodium channel blockers, which may by themselves, or
in co-occurrence with SCN5A variants, decrease peak sodium
current and increase the risk for arrhythmias [135,136], thereby
providing an additional factor underlying and/or contributing
to SUDEP.
(d) SCN5A and other neurological disorders
In addition to epilepsy, SCN5A and Nav1.5 have been impli-
cated in other neurological disorders. The expression of
SCN5A/Nav1.5 was found to be downregulated in DRG
neurons and axons of peripheral sensory neurons in rats
with spared nerve injury, a model of neuropathic pain
[137], but the functional implications of this observation
remains unknown. A potential role for SCN5A in schizo-
phrenia has also been proposed, possibly by altering the
activity of the limbic system [138]. Interestingly, Blom and
colleagues observed an increased prevalence of a Brugada
ECG pattern in patients with schizophrenia when compared
with similarly aged controls [139]. While these findings
suggest a higher prevalence of BrS in schizophrenia patients
(which in turn also have an increased risk for SCD), other fac-
tors may also play a confounding role. For instance, drugs
used in the management of schizophrenia may also block
cardiac sodium channels, and as such increase the risk for
arrhythmias [140]. However, the observed increased preva-
lence of a Brugada ECG was independent of sodium
channel blocker use [139], suggesting a more direct inter-
action. Indeed, ion channels have been implicated in
mediating schizophrenia risk [141], and hence further inves-
tigation of a potential role for SCN5A is warranted. Finally,
alterations in Nav1.5 have been demonstrated in multiple
sclerosis (MS), a condition associated with destruction of
myelin sheaths and axonal damage. Upregulated Nav1.5
expression was observed in and around MS lesions, in par-
ticular within reactive astrocytes, which play a prominent
role in the response of the nervous system to injury [142].
This upregulation was proposed to provide a compensatory
mechanism in order to maintain ionic homeostasis and
prevent injury-induced calcium dysregulation [142,143].
Indeed, deletion of Nav1.5 from astrocytes in mice signifi-
cantly worsened outcomes in an experimental model of
MS, with increased inflammatory infiltrate in both early
and late stages of the disease [144]. Nav1.5 expression was
furthermore observed in macrophages within active MS
lesions (predominantly in late endosomes and phagolyso-
somes), suggesting a potential role in phagocytic myelin
degradation [145].
8. SCN5A channelopathies and gastrointestinal
disorders

(a) Expression and function of Nav1.5 in the
gastrointestinal tract

Interstitial cells of Cajal (ICC) and intestinal SMCs are essential
for gastrointestinal motility. Smooth muscle contractility is
governed by excitability and changes in membrane potential,
and as such is regulated by a wide variety of ion channels,
including sodium channels [146]. Of the latter, Nav1.5 is
the predominant isoform in the gastrointestinal tract, with
functional expression of SCN5A/Nav1.5 having been demon-
strated in rat and human jejunal and colon circular SMCs
[147–149]. While calcium is classically considered key for
SMC function, a role for sodium channels is increasingly recog-
nized [150]. Nav1.5 activation may impact on gastrointestinal
motility by modulating electrical slow waves in ICC, and by
regulating calcium entry and subsequent contraction in SMC
[150,151]. Crucially, Nav1.5 in ICC is mechanosensitive: it is
activated by shear stress, with stretch increasing slow wave
frequency in human ICC, while sodium current inhibition by
lidocaine decreased slow wave frequency [151]. Moreover,
ranolazine was found to decrease peak sodium current and
prevent shear stress-induced increase in sodium current in
human colon SMCs, in addition to reducing contractility of
human colon muscle strips [148]. The latter observation
has been suggested to underlie the known side-effect of
obstipation reported with use of ranolazine [148].

(b) Gastrointestinal disorders associated with SCN5A
mutations

In 2006, the first potential association between SCN5A
mutations and gastrointestinal disorders was presented. Of
31 SCN5A mutation carriers, more than half self-reported
abdominal pain and/or other gastrointestinal symptoms;
most of these patients had a gain of function mutation and
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a clinical LQT3 phenotype [152]. Given the localization of
Nav1.5 in the gastrointestinal tract, and the fact that a genetic
basis has been proposed for irritable bowel syndrome (IBS),
Saito et al. investigated the presence of SCN5A mutations in
49 IBS patients [153]. In one patient, they identified the
SCN5A-G298S mutation which was shown to lead to a loss
of sodium channel function [153]. Subsequent studies in
larger IBS cohorts confirmed this initial observation, reporting
the presence of an SCN5Amutation in approximately 2%of IBS
patients [154,155], with the majority of SCN5A mutation car-
riers suffering from constipation-predominant IBS [154]. Most
SCN5A mutations identified in IBS patients have been shown
to lead to loss of sodium channel function [154,155]. The
SCN5A-A997T mutation, identified in a patient suffering
from constipation-predominant IBS, was found to almost com-
pletely abolish peak sodium current, which could be rescued
by chronic incubation with mexiletine; interestingly, mexiletine
treatment of the patient successfully reduced IBS symptoms
[154]. In addition, identified mutations also impaired mechan-
osensitive function of Nav1.5 [155]. In fact, the IBS-associated
mutation SCN5A-G615E was observed to have limited
impact on baseline sodium current function, but mostly
caused disruptions in mechanosensitivity and mechano-
electrical feedback [156]. While this observation may suggest
that reduced mechanosensitivity underlies smooth muscle
pathophysiology caused by SCN5A mutations, it will require
further mechanistic investigation.
9. SCN5A/Nav1.5 (dys)function, immune
response and inflammation

(a) SCN5A/Nav1.5 in macrophages
In 2007, work by Carrithers et al. revealed the presence of
Nav1.5 on the late endosome of human monocyte-derived
macrophages [157]. They furthermore demonstrated a func-
tional role for Nav1.5 in regulating phagocytosis and
endosomal acidification, providing evidence that lipopolysac-
charide-induced activation of Nav1.5 leads to sodium efflux
and consequently decreased intraendosomal pH [157]. A sub-
sequent study by the same group showed that Nav1.5 also
regulates phagocytosis and intracellular processing of myco-
bacteria by human macrophages [158]. Human macrophage
SCN5Awas furthermore found to act as a pathogen sensor, initi-
ating signalling and transcription of immune response genes for
antiviral host defence, enhancing the anti-inflammatory profile
of macrophages [159]. More recently, it was concluded that
humanmacrophageSCN5Amediates an innate immune signal-
ling pathway that limits DNA damage through increased
expression of PPP1R10, a regulator of phosphatase activity
and DNA repair [160]. As discussed in a previous section,
Nav1.5 expression has been found in late endosomes and
phagolysosomes of macrophages within active MS lesions,
where they likely participate in the phagocytic pathway of
myelin degradation [145]; moreover, transfer of macrophages
expressing Nav1.5 into mice with experimentally induced
autoimmune encephalomyelitis promoted recovery [161].

(b) SCN5A/Nav1.5 in thymocytes and T cells
Thymocytes, immune cells in the thymus, transform into
mature T cells through a selection process by which periph-
eral T cells are formed that are able to respond to foreign
pathogens but do not target the body’s own antigens. Lo
and colleagues demonstrated that SCN5A mediates calcium
entry into CD4+CD8+ double-positive thymocytes, thereby
regulating positive selection of CD4+ T cells in the thymus
[162]. Moreover, they showed that overexpression of SCN5A
in peripheral T cells resulted in altered CD4+ T-cell sensitivity
and T-cell receptor signalling, in addition to an impaired
response during infection [163]. Since SCN5A is normally
no longer detectable in T cells following the CD4+ T-cell
selection stage, the authors hypothesized that this repression
of SCN5A is essential to prevent unwanted T-cell response
and consequent auto-immunity [163].

(c) Potential implications for arrhythmogenesis
Macrophages may play an important role in arrhythmogen-
esis via a number of mechanisms, including secretion of
pro-inflammatory cytokines, alterations in cell-to-cell coup-
ling, and induction of electrical, structural and autonomic
remodelling [164]. Hence, alterations in macrophage function
consequent to alterations in SCN5A may well lead to an
abnormal immune response, autoimmune disorder and ulti-
mately pro-arrhythmia. Although there is as yet little direct
evidence for such a disease mechanism, signs of myocardial
inflammation have been reported in a large proportion of
BrS patients, in particular in the RVOT [165]. Moreover, auto-
antibodies directed at a number of cardiac proteins have been
detected in plasma samples of BrS patients [166]. Recently,
extensive myocardial inflammation in the absence of myocar-
ditis or sarcoidosis was found in a patient who was
successfully resuscitated for ventricular fibrillation, and
who was found to carry a novel likely pathogenic SCN5A
variant [167]. Moreover, myocardial inflammation is
commonly observed in patients with ACM [53], which has
been associated with SCN5A variants (see earlier sections).
10. Other non-cardiomyocyte effects of SCN5A/
Nav1.5

(a) SCN5A/Nav1.5 in (vascular) smooth muscle cells
As discussed in the previous section, Nav1.5 is expressed in
SMCs of the gastrointestinal tract where they are thought to
regulate motility. Some studies have also reported its (func-
tional) presence in SMCs of other tissues, where they may
contribute to the generation and/or propagation of spon-
taneous electrical activity underlying myogenic contractions
[168]. SCN5A expression and functional Nav1.5 activity was
detected in airway SMCs from rabbit bronchi [168]. Although
the authors were not able to demonstrate a potential impact
on myogenic contraction, they hypothesized that this is
likely due to the fact that Nav1.5 channels are inactivated at
the relatively depolarized membrane potential of these cells
under normal conditions, but that they may still become
functionally relevant during pathophysiological conditions
and contribute to e.g. bronchospasm [168]. In rat femoral
artery, Nav1.5 was found to be expressed in endothelial
cells and SMCs of the media [169]. Exposure to the Nav1.5
activator veratridine or hypoxia caused vasocontraction,
which was prevented by the potent Nav1.5 channel blocker
F-15845; SMCs rather than endothelial cells were shown to
be involved in these effects [169]. In bovine pulmonary
artery SMCs, Nav1.5 expression was observed in the cell



epilepsy
SUDEP
MS

LQT3
BrS
CCD
AF
ACM
DCM

GI disorders
abdominal pain
IBS

cancer cells (tumour growth, metastasis)

neurons, ganglia (firing frequency, neurotransmitter release) 

macrophages (phagocytosis immune response)

(myo)fibroblasts (proliferation, fibrosis formation)

T cells (immune response, autoimmunity)

smooth muscle cells (contraction, vascular tone)

endothelial cells (adhesion, proliferation, angiogenesis)

(a) (b)
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membrane and caveolae, where they were shown to mediate
the effects of the vasoconstrictor endothelin-1 on pulmonary
vascular tone [170]. Taken together, these studies suggest a
potential modulatory role of Nav1.5 in SMCs with putative
functional impact on various (patho)physiological processes,
but the evidence is as yet limited and further exploration
is warranted.

(b) SCN5A/Nav1.5 in endothelial cells
In cultured endothelial cells derived from rat interlobar artery
and human umbilical vein, a TTX-resistant sodium current
was identified with properties similar to Nav1.5 [171]. Simi-
larly, a TTX-resistant sodium current was observed in
endothelial cells cultured from human saphenous vein, in
addition to expression of SCN5A [172]. As mentioned
above, Nav1.5 was also found to be expressed in endothelial
cells of rat femoral artery, but no functional impact was
observed [169]. Human umbilical vein endothelial cells
(HUVECs) express both Nav1.5 and Nav1.7 and display a
mostly TTX-resistant current; inhibition of the latter (i.e. inhi-
bition of Nav1.5) inhibited HUVEC angiogenesis activity,
increased HUVEC adhesion, and reduced HUVEC prolifer-
ation induced by vascular endothelial growth factor (VEGF)
[173]. Moreover, Nav1.5 was shown to potentiate VEGF-
induced ERK1/2 activation by attenuating membrane
depolarization, altering intracellular calcium kinetics and
PKCα activity [173]. These findings identified Nav1.5 as a
regulator of angiogenic function in endothelial cells and a
potential novel strategy for controlling angiogenesis.

(c) SCN5A/Nav1.5 in (myo)fibroblasts
Fibroblasts play an important role in extracellular matrix for-
mation and production of various paracrine and autocrine
factors. Although they are non-excitable, fibroblasts can
couple with other cell types including cardiomyocytes and
affect their electrophysiological properties [174]. In human
atrial fibroblast cultures, fast inward sodium current appeared
de novoupondifferentiation intomyofibroblasts,whichwaspre-
dominantly TTX-resistant with properties similar to Nav1.5;
in addition, SCN5Awas themost abundant transcript identified
[175]. Similarly, cultured fibroblasts isolated from right
atrial tissue frompatients with chronic atrial fibrillation demon-
strated an increase in functional Nav1.5 channels upon
differentiation into myofibroblasts [176]. A large window
current was observed in myofibroblasts, which would be
expected to lead to substantial sodium entry and consequently
calcium influx [175]. While the latter could theoretically
enhance myofibroblast proliferation, direct evidence is lacking;
moreover, it remains to be investigated whether sodium chan-
nels promote fibroblasts differentiation into myofibroblasts
and/or modulate myofibroblast secretion properties [177]. If
so, it would open up potential novel avenues for therapeutic
strategies to prevent fibrosis and ultimately arrhythmias.
11. Conclusion: insight gained and remaining
questions

SCN5A/Nav1.5 (dys)function is clearly highly complex on
multiple levels, not only in distinct cardiomyocyte subcellular
microdomains, but also in other cell types within the heart
(figure 3). While the consequences of SCN5A mutations are
increasingly investigated in non-ventricular cardiomyocytes
(e.g. atrial, conduction system), their potential impact on
cells in the heart other than cardiomyocytes (e.g. SMCs, fibro-
blasts, neurons) has hardly been explored. Moreover, given
the functional role of Nav1.5 in many non-cardiac tissues
(figure 3), SCN5Amutations may result in extracardiac conse-
quences which may or may not in turn exacerbate cardiac
dysfunction and/or arrhythmias. Conversely, these non-car-
diac clinical phenotypes may also provide potential new
ways to diagnose and risk stratify patients with SCN5A
mutations; for instance, one could also consider using
biopsy material from extracardiac tissues (e.g. gastrointesti-
nal) to study patient-specific impact of sodium channel
dysfunction and potential therapeutic approaches. Regarding
the latter, it should be taken into account that (pharmacologi-
cal) interventions targeting Nav1.5 will impact not only the
intended organ, but also other tissues including the heart.
Hence, novel Nav1.5 modulators developed, for example,
neurological and gastrointestinal disorders as well as cancer
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may inadvertently lead to an increased risk for arrhythmias.
Mechanistically, knowledge obtained on the effects of Nav1.5
(dys)function in non-excitable cells and tumour cells provides
insight into the non-electrogenic role of the channel (includ-
ing mechanosensitivity), which is increasingly recognized to
contribute to the development of cardiomyopathy and
other structural alterations secondary to SCN5A mutations.
Regardless of the underlying mechanism, the latter will
further predispose to arrhythmogenesis, contributing signifi-
cantly to disease severity, progression and prognosis. Thus,
therapeutic strategies aimed at preventing structural abnorm-
alities secondary to SCN5Amutations may prove a promising
approach for certain patients.

Taken together, research discussed in this review demon-
strates that SCN5A channelopathies are more complex than
previously appreciated, and raises many new questions,
such as:
.Soc.B
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• Do SCN5A mutations modulate invasiveness of tumours,
and as such are these patients at higher risk for metastasis
and worse outcome when they get cancer?

• Do patients using sodium channel blocking drugs (e.g. for
epilepsy) who subsequently develop cancer, have a less
aggressive tumour with less extensive metastasis?

• Do SCN5A mutations lead to dysregulation of the auto-
nomic nervous system, thereby potentially impacting on
arrhythmogenesis?

• Are variants in SCN5A associated with worse outcome in
MS?

• Are SCN5A mutations associated with an increased risk
for schizophrenia?
• Can clinical parameters of, e.g. gastrointestinal or auto-
nomic nervous system (dys)function be used for risk
prediction in SCN5A mutation carriers?

• Do SCN5A mutations impact on vascular SMC function,
thereby potentially increasing the risk for hypertension
and/or (subclinical) ischaemia?

• Do SCN5A mutations affect (myo)fibroblast (dys)function,
potentially inducing cardiac fibrosis?

• Do SCN5A mutations affect macrophage function and/or
innate immune response, leading to inflammation and/
or inappropriate auto-immunity?

Clearly, SCN5A channelopathies need to be approached
in a more holistic, multidisciplinary manner, with collabor-
ation between different specialists to improve patient
management. Similarly, basic and translational research into
SCN5A mutations and Nav1.5 dysfunction should address
the various roles of this channel in different cell types and
tissues using appropriate human and animal models. Ulti-
mately, a multidisciplinary approach combining basic,
translational, genetic and clinical studies should lead to
improved diagnosis, risk stratification, treatment and
outcome in patients with SCN5A channelopathy.
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