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There is a crucial need for novel antibiotics to stem the tide of antimicrobial resistance, particularly against difficult to treat gram- 
negative pathogens like Acinetobacter baumannii-calcoaceticus complex (ABC). An innovative approach to addressing 
antimicrobial resistance may be pathogen-targeted development programs. Sulbactam-durlobactam (SUL-DUR) is a β-lactam/β- 
lactamase inhibitor combination antibiotic that is being developed to specifically target drug-resistant ABC. The development of 
SUL-DUR culminated with the Acinetobacter Treatment Trial Against Colistin (ATTACK) trial, a global, randomized, active- 
controlled phase 3 clinical trial that compared SUL-DUR with colistin for treating serious infections due to carbapenem- 
resistant ABC. SUL-DUR met the primary noninferiority endpoint of 28-day all-cause mortality. Furthermore, SUL-DUR had a 
favorable safety profile with a statistically significant lower incidence of nephrotoxicity compared with colistin. If approved, 
SUL-DUR could be an important treatment option for infections caused by ABC, including carbapenem-resistant and 
multidrug-resistant strains. The development program and the ATTACK trial highlight the potential for pathogen-targeted 
development programs to address the challenge of antimicrobial resistance.
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Drug-resistant bacterial infections caused an estimated 
4.95 million deaths worldwide in 2019 [1]. The continued glob-
al spread of antimicrobial resistance (AMR) has created an ur-
gent need for novel antibiotics. Unfortunately, antibiotic 
discovery and development have not kept pace with the rapid 
evolution of AMR in bacterial pathogens. The problem of 
AMR is particularly concerning in Acinetobacter baumanii 
due to the limited number of therapeutic options against it 
[2]. In the United States, investigators found that carbapenem- 
resistant A. baumanii causes approximately 1.2 cases per 100  
000 persons, the vast majority of which occur among patients 
with exposure to a healthcare facility within the preceding 
year [3]. A. baumanii has an extraordinary genetic plasticity 
that bestows a high capacity to acquire AMR traits including 
against carbapenems [4]. Among hospitalized patients, it is not un-
common to find multidrug-resistant (MDR; resistance to at least 3 
classes of antimicrobials), extensively drug-resistant (XDR; MDR 

plus resistance to carbapenems), and pan-drug-resistant (XDR 
plus resistance to polymyxins) A. baumanii isolates, thus making 
them very challenging for clinicians to treat with our current anti-
biotic armamentarium.

Historically, antimicrobial drug development has focused on 
discovering broad-spectrum agents that can be used as empiric 
therapy to treat serious infections [5]. Clinical dogma is that 
broad-spectrum antibiotics are particularly important early in 
the course of an infection when the offending pathogen is 
not yet known. However, this approach encourages overpre-
scribing and inappropriate use, thereby increasing AMR [6]. 
Broad-spectrum antibiotics have deleterious effects on the 
host microbiome, particularly in the gastrointestinal tract, 
causing selection pressure for the development of more resis-
tant bacteria (eg, vancomycin-resistant enterococci and 
Clostridiodes difficile). Expert recommendations have provided 
guidance on managing resistance, including restricting antibi-
otic use, antibiotic stewardship programs, improved diagnostic 
testing to identify causative pathogens, and appropriate use of 
empiric therapy [7]. Yet, despite these recommendations, in-
creasing AMR remains an ongoing challenge.

DEVELOPMENT OF PATHOGEN-TARGETED 
ANTIMICROBIALS

Pathogen-targeted antimicrobial drug development is one tool 
for addressing the increasing challenge caused by AMR [5, 8, 9] 
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(Figure 1). Alternatively called precision antibiotics, pathogen- 
targeted antimicrobials are agents that selectively kill a single or 
a very small number of species, target a specific resistance phe-
notype, or disrupt a particular pathogenesis mechanism [10]. 
While it is possible to use pathogen-targeted antimicrobials 
once routine culture and sensitivities are available, the down-
side is that the goals of improved antibiotic stewardship and 
minimizing the emergence of resistance will not be fully actu-
alized due to the continued reliance on first-line broad- 
spectrum agents. Thus, the need to rapidly identify an infecting 
pathogen and determine the antibiotic susceptibility is impor-
tant when narrow-spectrum or pathogen-specific antimicrobi-
als are being considered, especially empirically. As the field of 
diagnostic testing is rapidly evolving and new ‘omics’ technol-
ogies are increasingly able to provide clinicians with informa-
tion faster and more accurately than traditional testing 
methods, pathogen-specific therapies may become easier to im-
plement [11]. Additionally, diagnostic testing may improve 
outcomes as the early administration of appropriate antibiotics 
has been shown to reduce morbidity and mortality [12].

In 2012, the Infectious Diseases Society of America (IDSA) 
issued a white paper with recommendations on study designs 
for clinical trials of antimicrobials for treating drug-resistant 
pathogens that included suggestions for conducting superiority 
clinical trials and the use of rapid diagnostic testing to confirm 
the presence of target pathogens [13]. In recent years, the Food 
and Drug Administration (FDA) has provided some clarity 
around the regulatory requirements for developing antimicro-
bials for treating serious infections that includes recommenda-
tions on acceptable, novel study designs, and inclusion of 
smaller safety databases for approval. For example, the FDA 
has developed guidance for drug development programs in-
cluding the Limited Populations Pathway and Antibacterial 

Therapies for Patients with an Unmet Medical Need for the 
Treatment of Serious Bacterial Diseases. This initiative and oth-
ers were designed to streamline the development process for 
patient populations with the highest medical need [9, 14, 15]. 
The draft guidance released in 2017 and revised in 2022 high-
lighted that the FDA has determined that it is appropriate to ex-
ercise the broadest flexibility in applying statutory standards 
while preserving guarantees for safety and efficacy [15]. 
Specifically, this guidance discusses a more concise develop-
ment program that includes a single small and statistically rig-
orous registration trial.

Working with experts, the FDA crafted recommendations 
and guidance to industry for developing pathogen-targeted an-
tibiotics [9, 14]. The key points were the following: (1) focus on 
a single pathogen at multiple body sites and organs; (2) opti-
mize the pharmacokinetic (PK)/pharmacodynamic (PD) pro-
file; (3) conduct a single phase 3 noninferiority or superiority 
clinical trial, with supportive safety data from previous phase 
1 and 2 studies; and (4) rapid diagnostic testing to confirm 
the causative pathogen should be used whenever possible. 
Using this approach, rationally designed antibiotics can be de-
veloped that target MDR pathogens and incorporate a stream-
lined development and regulatory pathway to approval.

The designs of clinical trials for pathogen-targeted antimi-
crobials face some unique challenges that are not encountered 
with those for traditional broad-spectrum agents. Infections 
due to MDR pathogens in nosocomial settings often arise in 
the presence of prolonged hospital stays, antibiotic use, in-
dwelling device usage, and complicated illnesses, making 
them more difficult to treat. Clinical trials to evaluate effective 
therapies for MDR pathogens are equally difficult because of 
these factors, along with the challenge of identifying the target-
ed patient population while facing diagnostic uncertainty and 

Figure 1. Pathogen-targeted development program (adapted from [8]).
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delay [8]. This is further complicated by small patient sample 
sizes and statistical ambiguity. For example, establishing an ap-
propriate noninferiority margin is challenging when there is 
limited or varied information on comparator response rates. 
In the Combating Antibiotic-Resistant Enterobacteriaceae 
(CARE) Trial, which evaluated plazomicin in patients with 
bloodstream infections (BSIs) or pneumonia caused by 
carbapenem-resistant Enterobacteriaceae, only a fraction of 
the target number of subjects were enrolled [16]. The CARE tri-
al thus highlights the daunting challenges faced by clinical trial 
investigators focusing on MDR pathogens.

SULBACTAM-DURLOBACTAM, A 
PATHOGEN-TARGETED ANTIMICROBIAL

The development of sulbactam-durlobactam (SUL-DUR) is a 
pathogen-targeted response to infections caused by 
Acinetobacter baumanii-calcoaceticus complex (ABC). The first 
generation of β-lactamase inhibitor sulbactam has been in clinical 
use since 1986. Sulbactam inhibits a subset of serine β-lactamases 
but also binds to penicillin-binding proteins (PBPs) including 
PBP1a, PBP1b, and PBP3 in ABC, resulting in antibacterial activ-
ity in these organisms [17, 18]. However, sulbactam itself is sub-
ject to degradation by a broad range of β-lactamases [19]. A novel 
non–β-lactam diazabicyclooctane (DBO) β-lactamase inhibitor, 
durlobactam (previously ETX2514), was discovered using 
structure-based drug design, computational chemistry, and me-
dicinal chemistry. The design hypothesis was based on a combi-
nation of increased chemical reactivity, improved enzymatic 
binding, optimized gram-negative permeation, and physico-
chemical properties suitable for intravenous dosing [19]. 
Durlobactam expresses broad-spectrum activity against class A, 
C, and D β-lactamases [20]. Given the prevalence of class D car-
bapenemases in ABC, durlobactam is positioned to address car-
bapenem resistance in these species [20].

A number of reports describe the in vitro antibacterial activity 
of SUL-DUR against contemporary clinical isolates of ABC 
[21–26]. The largest of these was a global surveillance study con-
ducted between 2016 and 2021, which showed that durlobactam 
decreased the maximum inhibitory concentration (MIC) of an 
antibiotic at which 90% of the isolates are inhibited (MIC90) 
of sulbactam against 5032 ABC from more than 32 µg/mL to 
2 µg/mL, with 98.3% of isolates susceptible to 4 µg/mL or less 
of SUL-DUR, its preliminary breakpoint [22]. In addition to 
having potent activity in vitro, SUL-DUR was shown to have 
in vivo efficacy in preclinical animal models of infection [20, 27].

The tolerability and PK of SUL-DUR were also investigated in 
6 phase 1 studies in healthy volunteers and in a phase 2 study of 
hospitalized patients with complicated urinary tract infection or 
acute pyelonephritis [28–32]. SUL-DUR demonstrated a consis-
tent and predictable PK and tolerability profile that was similar 
in both healthy subjects and hospitalized patients, with excellent 

penetration into pulmonary tissues [29]. Furthermore, SUL-DUR 
was well tolerated in these phase 1 and phase 2 studies [28–32]. 
The Acinetobacter Treatment Trial Against Colistin 
(ATTACK) trial (ClinicalTrials.gov: NCT03894046) was a global, 
randomized, active-controlled phase 3 noninferiority trial that 
evaluated the safety and efficacy of SUL-DUR compared with co-
listin in patients with serious infections from carbapenem- 
resistant ABC (CRAB) [33]. The design of this phase 3 trial was 
in accordance with the FDA guidance for industry on antibacte-
rial therapies for patients with an unmet medical need for the 
treatment of serious bacterial diseases [9]. The primary endpoint 
was all-cause mortality at 28 days. There were 207 patients re-
cruited from 95 clinical sites in 17 countries. All patients had to 
have an infection caused by ABC. The trial was conducted in 2 
parts: part A was a randomized, comparative study that evaluated 
SUL-DUR versus colistin in patients with hospital-acquired bac-
terial pneumonia, ventilator-associated bacterial pneumonia, or 
BSIs, and part B was an open-label study that included 
SUL-DUR for patients with infections caused by ABC strains 
with resistance to colistin or polymyxin B, or patients who had 
otherwise failed colistin or polymyxin B therapy. All patients re-
ceived imipenem/cilastin background therapy in parts A and B to 
ensure coverage of possible polymicrobial infections. Part A was 
the primary safety and efficacy analysis population and part B 
provided additional safety and supportive efficacy data in patients 
with Acinetobacter infections that may have been ineligible for 
part A.

SUL-DUR met the primary efficacy endpoint of noninferior-
ity for 28-day all-cause mortality in the primary analysis popu-
lation (part A) and CRAB microbiologically modified 
intention-to-treat population (n = 125). Mortality in the 
SUL-DUR group was 19.0% (12/63) versus 32.2% (20/62) in 
the colistin group (treatment difference: −13.2%; 95% confi-
dence interval: −30.0%, 3.5%; noninferiority margin: 20%). In 
all study populations, similar trends favoring SUL-DUR were 
observed in 14-day and 28-day all-cause mortality. Clinical 
cure rates at Test of Cure were 61.9% for SUL-DUR and 
40.3% for colistin. Furthermore, the 28-day all-cause mortality 
in part B was 17.9%, consistent with that observed in part A.

The primary safety objective of the ATTACK trial was a 
comparison of the incidence of nephrotoxicity as measured 
by the Risk, Injury, Failure, Loss, and End-Stage Kidney 
(RIFLE) classification in part A [34]. SUL-DUR achieved the 
primary safety objective with a statistically significant reduction 
in nephrotoxicity (13.2%, 12/91) compared with colistin 
(37.6%, 32/85; P = .0002). Overall adverse events (AEs) were 
comparable between the treatment groups, with 87.9% (80/ 
91) in the SUL-DUR recipients and 94.2% (81/86) in the colis-
tin recipients in part A and 89.3% (25/28) in part 
B. Drug-related AEs occurred in 12.1% (11/91) in the 
SUL-DUR group versus 30.2% (26/86) in the colistin group 
in part A and in 10.7% (3/28) in part B.
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ATTACK was the first randomized controlled trial to evalu-
ate an investigational antibiotic against a specific drug-resistant 
gram-negative pathogen. SUL-DUR is the first investigational 
drug to demonstrate efficacy in a 28-day all-cause mortality tri-
al focused on CRAB. These positive results have facilitated the 
continued development of SUL-DUR towards the ultimate goal 
of global regulatory approval.

CONCLUSIONS

The successful progression of SUL-DUR for the treatment of A. 
baumannii infections demonstrates the potential for pathogen- 
focused antibacterial development in the fight against 
drug-resistant infections. SUL-DUR is a unique β-lactam/ 
non–β-lactam DBO β-lactamase inhibitor combination antibi-
otic that offers a novel approach to overcoming β-lactam resis-
tance in ABC. The ATTACK trial was a pivotal study that 
explored the efficacy and safety of SUL-DUR in patients with 
severe infections due to CRAB. If approved, SUL-DUR will 
be an important treatment option for patients with serious 
and life-threatening infections caused by A. baumanii, includ-
ing carbapenem-resistant strains.
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