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Abstract

Background: Pharmacokinetic natural product-drug interactions (NPDIs) occur when botanical 

or other natural products are co-consumed with pharmaceutical drugs. With the growing use 

of natural products, the risk for potential NPDIs and consequent adverse events has increased. 

Understanding mechanisms of NPDIs is key to preventing or minimizing adverse events. Although 

biomedical knowledge graphs (KGs) have been widely used for drug-drug interaction applications, 

computational investigation of NPDIs is novel. We constructed NP-KG as a first step toward 

computational discovery of plausible mechanistic explanations for pharmacokinetic NPDIs that 

can be used to guide scientific research.
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Methods: We developed a large-scale, heterogeneous KG with biomedical ontologies, linked 

data, and full texts of the scientific literature. To construct the KG, biomedical ontologies and drug 

databases were integrated with the Phenotype Knowledge Translator framework. The semantic 

relation extraction systems, SemRep and Integrated Network and Dynamic Reasoning Assembler, 

were used to extract semantic predications (subject-relation-object triples) from full texts of the 

scientific literature related to the exemplar natural products green tea and kratom. A literature-

based graph constructed from the predications was integrated into the ontology-grounded KG to 

create NP-KG. NP-KG was evaluated with case studies of pharmacokinetic green tea- and kratom-

drug interactions through KG path searches and meta-path discovery to determine congruent and 

contradictory information in NP-KG compared to ground truth data. We also conducted an error 

analysis to identify knowledge gaps and incorrect predications in the KG.

Results: The fully integrated NP-KG consisted of 745,512 nodes and 7,249,576 edges. 

Evaluation of NP-KG resulted in congruent (38.98% for green tea, 50% for kratom), contradictory 

(15.25% for green tea, 21.43% for kratom), and both congruent and contradictory (15.25% 

for green tea, 21.43% for kratom) information compared to ground truth data. Potential 

pharmacokinetic mechanisms for several purported NPDIs, including the green tea-raloxifene, 

green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine interactions 

were congruent with the published literature.

Conclusion: NP-KG is the first KG to integrate biomedical ontologies with full texts of the 

scientific literature focused on natural products. We demonstrate the application of NP-KG 

to identify known pharmacokinetic interactions between natural products and pharmaceutical 

drugs mediated by drug metabolizing enzymes and transporters. Future work will incorporate 

context, contradiction analysis, and embedding-based methods to enrich NP-KG. NP-KG is 

publicly available at https://doi.org/10.5281/zenodo.6814507. The code for relation extraction, 

KG construction, and hypothesis generation is available at https://github.com/sanyabt/np-kg.

Graphical Abstract
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1. Introduction

Complementary health approaches involving the use of botanical and other natural products 

have increased substantively since passage of the Dietary Supplement Health and Education 

Act in 1994. Up to 18% of adults reported regular use of natural products in the United 

States (US) [1], and annual sales of herbal dietary supplements in the US increased again, 

by 9.7% in 2021 [2]. Although not intended to replace pharmaceutical drugs, co-consuming 

natural products with drugs is common [3,4]. Older adults are the largest consumers of both 

pharmaceutical drugs and natural products, with up to 88% in the US reporting concomitant 

use [5]. However, such concomitant use may result in pharmacokinetic natural product-drug 

interactions (NPDIs) and potentially, unexpected drug responses [6]. Although substantial 

research has been devoted to understanding mechanisms and clinical effects of drug-drug 

interactions, corresponding information about NPDIs remains lacking. With the safety 

concerns related to the growing use of natural products, understanding the mechanisms 

underlying their interactions with other xenobiotics is imperative to prevent or minimize 

potential adverse events.

Pharmacokinetic NPDIs occur when a natural product alters the absorption, distribution, 

metabolism, and/or excretion of a co-consumed drug, potentially resulting in reduced 

treatment efficacy or adverse events [7]. For example, the popular botanical product 

green tea (Camellia sinensis), which is available as a beverage and dietary supplement, 

precipitated an interaction with the beta-blocker and anti-hypertensive agent nadolol, 

possibly by inhibiting intestinal human organic anion transporting polypeptide(s) (OATPs), 

uptake transporters that facilitate absorption of the substrate from the gut lumen into the 

systemic circulation [8]. This pharmacokinetic interaction in turn led to a decrease in 

the blood pressure lowering effect of nadolol. Although this study focused on potential 

adverse events resulting from an NPDI, beneficial effects are also possible. For example, 

piperine, a constituent of black pepper (Piper nigrum L.), can increase the absorption of 

co-administered xenobiotics by inhibiting intestinal cytochrome P450 (CYP) 3A4, leading to 

an increase in xenobiotic oral bioavailability [9].

Understanding biochemical mechanisms underlying clinically significant pharmacokinetic 

NPDIs can help prevent or minimize adverse events [4]. Similar to drug-drug interactions, 

computational approaches to elucidate potential mechanisms can help answer the ‘why’ 

question; that is, why the NPDI occurs and through what mechanism(s) [10]. Prior work 

in computational discovery of potential NPDIs has focused on mining scientific abstracts 

to classify NPDIs involving dietary supplements [11] and developing a knowledge graph 

(KG) to identify plausible drug-supplement interactions [12]. Using scientific abstracts to 

classify supplement-drug interactions has shown promise; however, the model developed by 

Wang et. al. [11] was trained using a drug-drug interaction dataset due to lack of labeled 

Taneja et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NPDI datasets. Schutte et. al. [12] extracted knowledge from scientific abstracts to develop 

a literature-based KG and evaluated the graph with discovery patterns followed by a clinical 

review. Computational prediction has also utilized homogeneous graph structure constructed 

from existing resources for chemicals and foods [13]. Dietary supplements sold in the US 

represent a broad group of products, including botanicals, which are regulated differently 

than pharmaceutical drugs [14]. The US Food and Drug Administration (FDA) can prohibit 

the sale of these products only if they are found to be unsafe; they do not approve them prior 

to marketing.

Following a similar workflow used during drug development to identify pharmacokinetic 

drug-drug interactions [15], potential pharmacokinetic NPDIs can be evaluated by first 

conducting in vitro studies to determine if a natural product extract (e.g., some quantity 

of green tea) phytoconstituent (e.g., catechin) inhibits or induces the function of a drug 

metabolizing enzyme or transporter, which may or may not have unforeseen negative 

consequences. Results are then used to quantitatively predict the clinical impact of the 

interaction using in vitro to in vivo extrapolation (IVIVE). Potential clinically relevant 

pharmacokinetic NPDIs suggested by IVIVE are then evaluated via dynamic (e.g., 

physiologically based pharmacokinetic) modeling and simulation and/or human clinical 

studies [4].

Although effective, in vitro experiments followed by IVIVE often predict NPDIs that 

are not confirmed by more time-consuming and costly clinical studies. For example, 

a mechanistic static model predicted green tea to increase the systemic exposure to 

the selective estrogen receptor modulator raloxifene by inhibiting intestinal uridine 5’-

diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT), but the opposite 

was observed when tested in healthy volunteers [16,17]. Although green tea is promoted 

for weight loss, mental alertness, relieving headaches and digestive symptoms, and cardio 

protection, the popularity and widespread availability of green tea products, as well as 

the likelihood of co-consumption with pharmaceutical drugs increases the risk of potential 

clinically significant green tea-drug interactions [16].

Developing novel methods that help scientists make accurate and timely NPDI predictions 

is crucial to reduce the number of patients who experience adverse events from NPDIs. 

We hypothesized that a KG built using rigorous biomedical ontologies and enriched 

with domain-specific information from the scientific literature will generate plausible 

mechanistic explanations for pharmacokinetic NPDIs that can be used to guide robust NPDI 

research. In this study, we designed and built a novel KG, termed NP-KG, as a first step 

towards testing this hypothesis. We evaluated whether NP-KG accurately represented known 

pharmacokinetic mechanisms for NPDIs involving two exemplar natural products: green 

tea and kratom. Green tea was selected due to its worldwide use and the published results 

related to NPDIs discussed above. Kratom (Mitragyna speciosa) is an emerging botanical 

product commonly used to self-treat pain, anxiety, and opioid withdrawal symptoms. 

Kratom leaves contain numerous alkaloids that produce stimulant effects at low doses 

and opioid-like effects at higher doses. However, safety concerns have been raised by 

various federal agencies related to kratom toxicity and potential NPDIs [18–21]. We further 
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demonstrated the potential of NP-KG to generate hypotheses for mechanisms underlying 

pharmacokinetic NPDIs related to kratom reported in published case reports.

2. Materials and Methods

A biomedical KG combines concepts from different domains to represent entities such as 

molecules, genes, diseases, and chemical substances as nodes in the graph. Edges in the 

KG represent relations between the entities. We describe the construction of the ontology-

grounded KG, the process of semantic relation extraction from full texts of the literature, 

and integration into NP-KG (Figure 1). Semantic relation extraction produces predications 

(subject-relation-object triples) from texts, where the subjects and objects can form the 

nodes in the KG, and relations form edges between them. Lastly, we discuss the strategies 

used to evaluate NP-KG.

2.1. Data Integration

An ontology is a formal representation of knowledge in a domain of discourse. Ontologies 

are used to formally structure the classes and relations within a domain, where classes refer 

to sets of entities in the world and relations are properties that hold for two or more entities 

[22]. For example, the Chemical Entities of Biological Interest (ChEBI) is a biomedical 

ontology representing molecular entities, focusing on chemical compounds and relations 

between the entities [23]. ‘Catechin’ (ChEBI:23053) is an example of a class in ChEBI 

ontology and has a unique identifier, name, and definition. Biomedical ontologies represent 

our current understanding of biological reality and can be used to represent knowledge as 

knowledge statements. The Open Biological and Biomedical Ontology (OBO) Foundry is 

a family of interoperable ontologies in the biomedical domain following a set of principles 

that include open use, non-overlapping content, and common syntax, as well as relations 

[24]. As ontologies contain entities in a domain and relations between the entities, they can 

be represented as graphs, where nodes of the graph represent classes or instances and edges 

represent an axiom or relation involving the connected classes or instances [22].

We used the Phenotype Knowledge Translator (PheKnowLator) workflow to construct an 

ontology-grounded KG consisting of the OBO Foundry ontologies and linked data sources. 

PheKnowLator (v3.0.0) is a Python library that constructs large-scale, biomedical KGs 

by semantically integrating biomedical ontologies and complex heterogeneous data [25]. 

Entities from the OBO Foundry ontologies (diseases from Mondo Disease Ontology [26]; 

phenotypes from Human Phenotype Ontology [27]; anatomical entities from Uber Anatomy 

Ontology [28]; biological processes, cellular components, and molecular functions from 

Gene Ontology [29]; proteins from Human Protein Ontology [30]; pathways from Pathway 

Ontology [31]; chemicals from ChEBI ontology [23]; genes and variants from Sequence 

Ontology [32]; and cells from Cell Ontology [33] and Cell Line Ontology [34]) and linked 

data sources were integrated in the KG with the PheKnowLator workflow. The workflow 

was implemented in three steps: Ontology Merging, Data Preparation, and KG construction. 

The Ontology Merging step identified potential errors in the ontology files (such as 

identifier, entity normalization, and punning errors), handled duplicate terms, removed 

deprecated classes, and merged the ontologies. The Data Preparation step downloaded and 
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processed all data sources to build the edges for the KG as well as mapped identifiers 

between data sources for each edge type. Finally, the KG construction step created node and 

edge lists from the ontology and data sources in the prior steps, added node and edge data 

and attributes to the KG, and output the KG files with triples.

In addition to the ontologies and data sources originally included in the PheKnowLator 

workflow [35], we extended the workflow to include the Ontology of Adverse Events [36] 

and data from the following drug data sources in the ontology-grounded KG:

• Drug Interaction Knowledge Base (DIKB) (v2017) [37,38]: evidence of enzyme 

substrates and inhibition, including in vitro information, drug label statements, 

and results from randomized clinical trials. To simplify the knowledge 

representation, only the positive evidence present in DIKB was included in the 

KG.

• Drug Central database (v2017) [39]: in vitro evidence of enzyme inhibition, 

drug-transporter interactions, drug-bacteria interactions, and enzyme and 

transporter substrates.

• FDA Drug Interaction database (v2017) [40]: in vitro and clinical evidence of 

enzyme and transporter substrates and inhibitors. We included all data where 

the reported fold change in area under the receiver operating characteristic 

curve of the drug substrate for an enzyme or transporter is at least 2-fold in 

the presence of a purported inhibitor drug. This cut-off was chosen because it 

represents strong positive evidence of a clinically measurable pharmacokinetic 

mechanism (i.e., the primary drug clearance pathway involves a specific enzyme 

or transporter that can be inhibited by a drug to a clinically measurable extent).

The 2017 versions of the above databases were included to enable time-slicing in the KG. 

The time-slicing approach for KG evaluation splits the graph to predict chronologically later 

links. All entities in the above data sources were mapped to the OBO Foundry ontologies 

before integration into the KG. We then implemented the Network Transformation for 

Statistical Learning (OWL-NETS) method in the PheKnowLator workflow with a goal to 

build a semantically rich KG to facilitate hypothesis generation [41]. The OWL-NETS 

method decoded all Web Ontology Language (OWL)-encoded classes and axioms into 

clinically and biologically relevant edges in the graph. To extend the PheKnowLator 

workflow with the above data sources, we applied the instance-based approach for KG 

construction, where knowledge statements from the ontologies are added to the KG in 

the form of subject-relation-object triples without the associated logical definitions. The 

resulting KG was saved as subject-relation-object triples and as a Python NetworkX 

multidigraph [42], which is a directed graph containing nodes and edges of multiple types.

2.2. Representation of Natural Products

Inclusion of natural products and their chemical constituents in the OBO Foundry is limited. 

Natural products and their constituents are also limited in drug databases such as Drug 

Bank and Drug Central, which are commonly used to predict drug-drug interactions or 

drug-related adverse events. The Drug Ontology [43], FoodOn ontology [44], and the 
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NCBI Taxonomy [45] contain natural products but do not provide information about the 

pharmacokinetic interactions precipitated by natural products or their constituents. The 

ChEBI ontology contains some natural product constituents, including catechin and the 

kratom alkaloid mitragynine, but the coverage of constituents and their metabolites is 

incomplete. We addressed this gap by integrating extensions designed in our prior work 

in the ChEBI ontology to include information about natural products and link them to 

their constituents [46]. In brief, we created semantic representations for natural products 

using data from the Global Substance Registration System [47], including information about 

natural product constituents and their metabolites, translated them to logical statements in 

OWL, integrated the statements into the ChEBI (Lite) ontology, and finally into the KG.

2.3. Literature-based Graph

The literature-based graph (Figure 2) was created from full texts from the scientific literature 

related to green tea and kratom.

2.3.1. Semantic Relation Extraction—Semantic relation extraction produces 

predications from texts. We extracted predications from two biomedical relation extraction 

systems to add to the ontology-grounded KG. The scope of the literature for the literature-

based graph included all PubMed-indexed articles related to green tea and kratom (including 

keywords of scientific names, synonyms, and their constituents) and pharmacokinetic 

interactions. The search was restricted to English language articles only and placed no 

restrictions on animal or human studies. Articles included mechanistic NPDI studies, case 

reports, and clinical studies from January 1982 to March 2022 for green tea, and from 

January 1988 to March 2022 for kratom. The search strategies are available in Appendix A.

2.3.1.1. Relation Extraction Systems: SemRep [48] and the Integrated Network and 

Dynamic Reasoning Assembler (INDRA) [49] with the Reading and Assembling Contextual 

and Holistic Mechanisms from Text (REACH) biological reader [50] were used to extract 

semantic relations. SemRep (v1.8) is a natural language processing system that infers 

relations between entities in biomedical texts and is informed by syntactic and semantic 

constraints combined with biomedical domain knowledge [48]. SemRep uses MetaMap 

(v2018) to identify biomedical entities in texts and maps to Unified Medical Language 

System (UMLS) concepts [51]. SemRep achieved 0.69 precision and 0.42 recall for relation 

extraction from PubMed titles and abstracts in a test collection [48]. Although SemRep has 

mainly been used for titles and abstracts, our pipeline extended SemRep to process full texts.

REACH (v1.6.3) is an information extraction system designed to robustly parse full texts of 

biomedical literature and extract cancer signaling pathways. REACH focuses on extracting 

information about biochemical interactions of proteins and has demonstrated high precision 

and throughput in uncovering mechanistic knowledge from the literature compared to 

manually curated databases and other biological relation extraction systems [50]. Evaluation 

of REACH for extracting mechanistic information from the biomedical literature showed 

a precision of 0.62 and estimated recall of 0.486 based on a throughput evaluation [50]. 

INDRA (v1.19) provides a framework to extract predications using REACH. As the 

performance metrics of SemRep and REACH were computed from different datasets, and 
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SemRep has not yet been comprehensively evaluated on full texts, we performed a baseline 

evaluation on a subset of green tea articles to evaluate the relation extraction systems. Full 

texts of 13 articles were processed with both SemRep and REACH to extract predications. 

The predications were then compared with human extracted data from the Center of 

Excellence for Natural Product Drug Interaction Research (NaPDI Center) database [6] to 

calculate the recall for SemRep and INDRA/REACH.

We extracted full texts from the literature in our search strategy from PubMed Central 

and from text mining of PDFs using the PDFMiner library [52] and Python script adapted 

from Hoang et. al. [53]. The available full texts were processed separately by SemRep and 

INDRA/REACH to extract predications.

2.3.2. Literature-based Graph Construction—To create the literature-based graph 

from the extracted predications, we linked all subjects, objects, and relations from the 

SemRep and INDRA/REACH predications to the OBO Foundry ontologies to avoid 

ambiguity and standardize the graph. This process, termed entity linking, can be achieved 

with automated methods (such as named entity recognition tools) or curated mappings. 

We used a combination of both approaches to standardize subjects, objects, and relations 

in the predications to OBO Foundry ontologies. First, relations extracted by SemRep 

and INDRA/REACH were standardized to Relation Ontology terms based on domain, 

range, and definitions of the relations after consulting with experts in the field. SemRep 

also extracted negated predications involving negative relations such as neg_inhibits and 

neg_interacts_with. These were stored separately as there were no corresponding negative 

relations in the OBO Foundry ontologies. Next, gene functions and phenotype concepts 

identified by SemRep were mapped to concepts in the Gene Ontology and the Human 

Phenotype Ontology using database cross references in UMLS. Subjects and objects 

extracted by the INDRA/REACH system were mapped to the OBO Foundry ontologies 

using the INDRA BioOntology module.

We next applied the OntoRunNER OGER++ wrapper [54] with custom term lists containing 

OBO Foundry ontologies (from the ontology-grounded KG) to identify candidate mappings 

for the remaining unmapped subjects and objects. To reduce noise from the relation 

extraction systems, all candidate mappings were manually reviewed to determine the correct 

identifiers in the OBO Foundry, and predications with unmapped subjects and objects were 

excluded. We further filtered the predications to exclude relations that were not useful 

for hypothesis generation, such as converts_to, diagnoses, method_of, and process_of. 
Certain semantic types (such as activities and behaviors, concepts and ideas, organizations) 

and generic concepts (such as Animals, Disease, Persons, Organism, Syndrome, Patients) 

provided by Zhang et. al. [55] were also excluded. We used the INDRA assembly 

module for deduplicating, normalizing namespaces, and generating confidence scores for 

the predications extracted from INDRA/REACH.

After entity linking and processing, predications from SemRep and INDRA/REACH 

were combined into a single file with OBO identifiers for all subjects, relations, 

and objects. We then applied symmetric and transitive closure over the combined 

predications using the CLIPSPy library [56]. The closure process used entailment 
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properties to infer new predications (termed inferred predications) based on the rules 

for symmetry and transitivity of the relations. We included the relations ‘interacts_with’ 
and ‘molecularly_interacts_with’ in the symmetric closure rules and the relations ‘part 
of’, ‘precedes’, and ‘positively_regulates’ in the transitive closure rules based on the 

relation properties in the Relation Ontology. As an example, applying closure over a 

predication involving a symmetric relation, such as ‘catechin interacts_with nadolol’, results 

in the inferred predication ‘nadolol interacts_with catechin’. The inferred predications were 

combined with those extracted from the literature. We then created the literature-based 

graph as a NetworkX graph (separate from the ontology-grounded KG) from the combined 

predications, where the nodes in the graph represented the subjects and objects from the 

predications, and relations formed the edges between the nodes. The metadata related to 

each predication, including the PubMed ID of the article, year of publication of the article, 

confidence score (if available), and the sentence from which the predication was extracted, 

was also added in the graph.

2.4. Evaluation

We combined the ontology-grounded KG and the literature-based graph to create NP-KG 

and store as another NetworkX multidigraph. This combined KG is referred to as NP-KG in 

the following sections. We evaluated NP-KG with case studies of green tea and kratom. We 

also conducted an error analysis to identify errors from relation extraction and contradictory 

information in NP-KG.

2.4.1. Ground Truth—Potential pharmacokinetic interactions that have been identified 

through in vitro experiments and clinical studies were considered as ground truth for NPDIs. 

If a clinical study had not yet been conducted, results from in vitro experiments and 

mechanistic static model predictions sufficed as ground truth. In case of contradictory results 

between in vitro and clinical studies, the clinical studies were considered the ground truth. 

We obtained ground truth for KG evaluation from the NaPDI Center, which maintains 

a human curated database that contains results from in vitro experiments and clinical 

pharmacokinetic NPDI studies [6].

2.4.2. Evaluation Strategies

I. Knowledge Recapturing: We evaluated the potential of NP-KG to capture existing 

knowledge about green tea and kratom interactions with enzymes and transporters. We 

first collected OBO Foundry ontology identifiers for the enzymes and transporters in 

the NaPDI Center database. Next, for all nodes related to green tea (green tea and the 

green tea catechins (−)-epicatechin-3 gallate (ECG), (−)-epigallocatechin gallate (EGCG), 

epicatechin, catechin, and gallocatechin) and kratom (kratom and the kratom alkaloid 

mitragynine), we extracted direct edges (if any) and shortest paths (if any) from the 

nodes to enzymes and transporters in NP-KG. Edges and paths extracted from NP-KG 

were compared to the ground truth information in the database. Results from in vitro 
experiments and the published literature in the database involving inhibition, induction, and 

no interactions for the enzymes and transporters were included in the comparison.
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We calculated the number of congruences, contradictions, and missing knowledge from 

NP-KG while comparing to data in the database. Congruence was established when the 

direct edge or shortest path in NP-KG concurred with the ground truth information 

about the interaction. Contradiction was established if the direct edge or shortest path 

in NP-KG contradicted the results of the interaction in the database. An example of 

congruence and contradiction between nodes X and Y is shown (Figure 3). In case of both 

congruence and contradiction, we manually reviewed the evidence related to the information 

from metadata present in NP-KG. For edges or paths where congruence or contradiction 

could not be established, such as edges or paths involving the relations interacts_with, 
molecularly_interacts_with, and directly_regulates_activity_of, the edges and paths were not 

included in the calculation of congruences or contradictions. Shortest paths were obtained 

using the bidirectional shortest path algorithm in the NetworkX library.

II. Meta-path Discovery: Meta-paths are defined as sequences of connected relations 

between nodes, node types, or sequences of node types in a KG. They are commonly used 

in KG construction and hypothesis generation [55,57]. We applied direct edge searches 

and meta-paths in NP-KG to generate hypotheses for the pharmacokinetic NPDIs involving 

green tea and kratom. Figure 4 shows the direct edges and meta-path searches applied 

for discovering the interactions between a natural product or its constituent and a drug, 

with an interacting enzyme or transporter. The meta-path searches were implemented on 

the NetworkX multidigraph by finding all nodes and edges in the neighborhood of green 

tea and kratom nodes (including the green tea and kratom constituent nodes) in NP-KG 

and applying filters to the neighboring nodes and edges for relevant relations, enzymes, 

transporters, and drugs. The filtered nodes and edges that matched the sequences shown in 

Figure 4 were then extracted for visualization and review.

Relations A and B in the direct edges and meta-path searches (Figure 

4) were filtered to include the relations interacts_with, molecularly_interacts 
with, associated_with, directly_regulates_activity_of, positively_regulates, inhibits, 
capable_of_regulating, capable_of_positively_regulating, correlated_with, is_substrate_of, 
transports, and regulates_activity_of. We then evaluated the results based on the available 

ground truth information for the interactions.

We selected five natural product-drug pairs for the meta-path discovery, namely 

green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-

venlafaxine. These interactions were chosen due to the published clinical results and case 

reports that provided evidence and potential mechanisms for the interactions. Green tea has 

been shown to interact with the anti-osteoporosis drug raloxifene by decreasing raloxifene 

systemic exposure, likely due to green tea-mediated alterations in processes involved in the 

intestinal absorption of raloxifene [16,17]. As mentioned above, the interaction between 

green tea and nadolol led to reduced systemic exposure and blood pressure-lowering effects 

of nadolol [8]. Potential pharmacokinetic interactions between kratom and quetiapine and/or 

venlafaxine were published in a recent case report on kratom use disorder [58]. The kratom-

quetiapine interaction was also reported in a case report of a kratom-related death [59]. 

Proposed mechanisms for these interactions include inhibition of CYP3A activity by the 

kratom alkaloid mitragynine [60,61].
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3. Results

3.1. Data Integration

The ontology-grounded KG created from the PheKnowLator workflow included entities 

from ontologies representing diseases, genes, phenotypes, chemicals, anatomy, cell lines, 

proteins, and pathways from 10 OBO Foundry ontologies and 13 publicly available data 

sources [35]. After integrating green tea, kratom, and their constituents and metabolites, 15 

classes, 96 axioms, and 13 individuals were added to ChEBI Lite ontology, bringing the 

total to 156,113 classes, 1,201,077 logical axioms, and 13 individuals. The merged ChEBI 

ontology, individual semantic representations, and logical extensions are publicly available 

[46].

The ontology-grounded KG contained 745,250 nodes and 7,224,186 edges. Appendix A 

Table A.1 shows the number of edges in the ontology-grounded KG with the edge type, 

edge source, and edge label. The edges chemical-transporter (N=90), chemical-molecule 
(N=391), chemical-inhibitor (N=272), and chemical-substrate (N=514) were included in the 

extended workflow from the drug data sources.

3.2. Literature-based Graph

We obtained full texts of 735 scientific articles for green tea and 59 articles for kratom 

from PubMed. INDRA/REACH extracted 12,270 predications from 716 full-text articles 

(89.05%). SemRep extracted 250,360 predications from 637 full-text articles (79.23%). 

There were 13,676 predications from SemRep for green tea and kratom after deduplication, 

concept reduction, and filtering. There were 7,999 predications for green tea and kratom 

from INDRA/REACH after processing with the INDRA assembly module. Implementation 

of the transitive and symmetric closures over the predications resulted in an additional 

13,637 inferred predications. Appendix Table A.2 describes the predications extracted from 

the literature with their counts, source, and the OBO Foundry ontology mapped relation.

The baseline evaluation of SemRep and INDRA/REACH with 13 green tea articles resulted 

in 522 predications extracted by SemRep and 123 predications extracted by INDRA/

REACH compared to 179 predications from the NaPDI Center database. The recall values 

for SemRep and INDRA/REACH were 0.31 and 0.20, respectively. The combined recall for 

the systems was 0.42.

The literature-based graph constructed from the combined and deduplicated predications 

for green tea and kratom contained 3,510 nodes and 25,421 edges. Figure 5 presents an 

overview of the types of nodes and edges in the literature-based graph. Figure 6 shows the 

distribution of the edges in the literature-based graph by edge type.

3.3. Evaluation

After integration of the ontology-grounded KG and the literature-based graph, the 

heterogeneous NP-KG contained 745,512 nodes and 7,249,576 edges. The literature-based 

graph added 262 unique nodes and 25,390 unique edges to NP-KG. Table 1 describes the 

graph counts for the ontology-grounded KG, the literature-based graph, and NP-KG.
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The integration of the literature-based graph resulted in a 0.035% and 0.35% increase in 

nodes and edges, respectively, in NP-KG. As the literature search strategy was focused on 

green tea- and kratom-drug interactions, the impact of including the literature-based graph 

was highest for the green tea and kratom nodes. Figures 7(a) and 7(b) compare the in- 

and out-degrees of green tea and kratom nodes in the ontology-grounded KG and NP-KG, 

where in-degree is the number of edges into the node and out-degree is the number of edges 

exiting the node. The in- and out-degrees of every node, except kratom, increased after the 

integration of the literature-based graph in NP-KG.

I. Knowledge Recapturing—Table 2 summarizes the congruent and contradictory 

knowledge from NP-KG related to pharmacokinetic interactions between the natural 

products-related nodes and enzymes and transporters when compared to the ground truth 

information. For the green tea-related nodes, we performed 59 searches for direct edges or 

shortest paths in NP-KG involving 19 enzymes and 8 transporters. For the kratom-related 

nodes, we performed 14 searches for direct edges or shortest paths involving 10 enzymes 

and 1 transporter. Figure 8 shows examples of direct edges and shortest paths in NP-KG. 

Some nodes contained multiple edges between them, such as catechin and UGT1A1 (Figure 

8a), mitragynine and CYP3A (Figure 8d), and mitragynine and CYP2D6 (Figure 8e). 

Results with both congruent and contradictory edges between the nodes were manually 

reviewed to verify congruence and/or contradiction.

Examples of manually reviewed searches include the following:

• The edges inhibits, positively_regulates, and 

directly_positively_regulates_quantity_of between EGCG and CYP1A2 and 

EGCG and UGT1A1 suggest both congruence and contradiction. Manual review 

showed that contradictions in the literature were responsible for the evidence of 

both congruence and contradictions in NP-KG.

• Mitragynine, the major alkaloid in kratom leaves, is a time-dependent inhibitor 

of CYP3A and reversible inhibitor of CYP2D6 [60]. The edges inhibits and 

directly_positively_regulates_quantity_of between mitragynine and CYP3A4 

(Figure 8d) imply both congruence and contradiction with the ground truth. 

Manual review of the edges shows evidence of statements in the literature 

suggesting mitragynine inhibits (PubMed ID: 24174816) and induces (PubMed 

ID: 23274770) CYP3A4 in vitro.

• The inhibits edges and positively_regulates edge between mitragynine and 

CYP2D6 (Figure 8e) imply both congruence and contradiction with ground truth 

information. Manual review in this case revealed errors from relation extraction 

for the positively_regulates edge between mitragynine and CYP2D6.

Congruence or contradiction could not be established for 25 (42.37%) searches for green tea 

nodes and 3 (21.43%) searches for kratom nodes as the edges included general interaction 

predicates such as interacts_with and regulates_activity_of. For example, NP-KG found that 

mitragynine interacts_with CYP2C19, although the ground truth is that mitragynine inhibits 
CYP2C19. The search was thus insufficient to conclude congruence or contradiction in 
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this case. Supplementary File 1 presents edges and paths between nodes for the knowledge 

recapturing evaluation strategy for all kratom and green tea-related nodes.

II. Meta-path Discovery—We applied direct edge and meta-path searches for discovery 

of pharmacokinetic NPDIs involving green tea and kratom in NP-KG (Figure 4). 

Table 3 summarizes the results from the direct edges and meta-path discovery for 

green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-

venlafaxine.

Green tea-raloxifene:  Raloxifene is an anti-osteoporosis agent and an intestinal UGT 

substrate. Results from in vitro experiments showed concentration-dependent inhibition of 

intestinal UGT activity by green tea and green tea catechins [16]. In the subsequent clinical 

study conducted to determine the effects of green tea on raloxifene pharmacokinetics in 

16 healthy adult participants, an interaction was observed. Specifically, relative to water, 

green tea decreased the area under the plasma concentration versus time curve (AUC) of 

raloxifene by ~30%. However, the change in raloxifene AUC was opposite to the in vitro-in 

vivo prediction (increase in raloxifene AUC). These observations, combined with the lack 

of effect of green tea on raloxifene half-life and the raloxifene-to-glucuronide AUC ratios, 

suggested that inhibition of intestinal UGT activity was not responsible for the interaction 

[17]. Meta-path discovery in NP-KG identified CYP3A4 and UGTs for the pharmacokinetic 

interaction between green tea and raloxifene. NP-KG also identified raloxifene to be a 

substrate for CYP2C9 but with no connection to green tea. Figure 9 shows a graphical 

snapshot of the paths among green tea, green tea constituents, and raloxifene nodes in 

NP-KG focusing on pharmacokinetic interactions.

Green tea-nadolol:  Nadolol is a non-selective beta-adrenoceptor blocker used to treat 

hypertension. A clinical pharmacokinetic interaction study involving a green tea beverage 

and nadolol showed green tea to decrease nadolol AUC by 80% and to decrease the 

systolic blood pressure lowering effects of nadolol in ten healthy adults [8]. In vitro 
experiments showed that nadolol is a substrate for OATP1A2 and that EGCG inhibited 

OATP1A2-mediated nadolol uptake using OATP1A2-expressing human embryonic kidney 

cells. However, the existence of OATP1A2 remains controversial [62,63], and the interaction 

may involve other mechanisms, such as upregulation of efflux transporters [8]. Meta-path 

discovery in NP-KG identified 8 drug metabolizing enzymes and 12 transporters for the 

pharmacokinetic interaction between green tea and nadolol. The list of drug metabolizing 

enzymes and transporters is available in Appendix Tables A.4 and A.5, respectively.

Kratom-midazolam:  Midazolam is a short-acting benzodiazepine and a CYP3A substrate. 

A kratom extract and the kratom alkaloid mitragynine have been shown to inhibit CYP2D6, 

CYP2C9, and CYP3A activities in vitro [60,61]. A mechanistic static model predicted 

a pharmacokinetic interaction between kratom and midazolam based on time-dependent 

inhibition of CYP3A by mitragynine [60]. Meta-path discovery in NP-KG identified 2 

interacting enzymes, CYP3A4 and CYP2D6, and one transporter, P-glycoprotein, for the 

pharmacokinetic interaction between kratom and midazolam. However, midazolam is not a 

substrate for CYP2D6 nor P-glycoprotein
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Kratom-quetiapine and kratom-venlafaxine:  Venlafaxine is an antidepressant and a dual 

CYP3A/CYP2D6 substrate. Quetiapine is an antipsychotic and a CYP3A substrate. A recent 

case report described potential pharmacokinetic kratom-drug interactions involving these 

two drugs [58]. Proposed mechanisms for the interactions include inhibition of CYP3A and 

CYP2D6 [58]. Meta-path discovery in NP-KG identified CYP3A4 and P-glycoprotein for 

the interaction between kratom and quetiapine and CYP3A4 and CYP2D6 for the interaction 

between kratom and venlafaxine. Figures 10a and 10b show graphical snapshots for paths 

between kratom and interacting drugs.

Appendix Table A.3 presents the results from the meta-path discovery searches for the 

natural product-drug pairs examined.

Error Analysis: Error analysis of predications related to green tea-drug interactions (Figures 

8–9) and kratom-drug interactions (Figures 8, 10a-b) showed that multiple incorrect 

predications exist in NP-KG generated by the relation extraction systems. Examples of 

incorrect predications included midazolam inhibits CYP2D6 (2014), mitragynine inhibits 
UGT2B7 (2014), mitragynine stimulates midazolam (2021), 7-hydroxymitragynine inhibits 
mitragynine (2014).

Manual verification of the predications identified broad errors from the relation extraction 

systems from the literature. First, sentences in texts containing ‘increase or decrease in 

area under the plasma concentration-time curve’ were commonly misread by the systems 

and not represented accurately by the extracted predication. Second, in some cases, 

negation in sentences was not accurately extracted, leading to inaccurate predications. 

Third, substrates of enzymes and transporters mentioned in the literature are not extracted 

by either of the relation extraction systems as they do not contain rules to identify 

the ‘substrate of’ relation in text. Improving relation extraction from the literature and 

applying constraints to NP-KG during construction and hypothesis generation can help 

resolve some of the errors. Other errors from the ontology-grounded KG also exist, such 

as midazolam interacts_with CYP2E1 (source: Comparative Toxicogenomics Database), 
UGT1A4 moleculary_interacts_with UGT1A6 (source: STRING Database), and CYP1A2 
molecularly_interacts_with CYP2C8 (source: STRING Database).

There are several contradictory edge pairs between nodes in NP-KG that are not 

included in the errors described above. Contradictory edges may be defined as 

edges that contradict each other semantically, such as inhibits and positively_regulates. 

For example, the pairs mitragynine inhibits CYP2D6 (2013, 2017) and mitragynine 
positively_regulates CYP2D6 (2013), mitragynine inhibits CYP3A4 (2013) and mitragynine 
directly_positively_regulates_quantity_of CYP3A4 (2013), EGCG inhibits UGT (2018) 
and EGCG positively_regulates UGT seem contradictory. These contradictions can be 

reasonable in cases where the evolution of knowledge leads to multiple edges between 

nodes, as the evidence related to the nodes is updated (in the literature or elsewhere). 

Although we can track the year of publications for the sources of the predications, manual 

verification and fact-checking of the contradictory edges are required to improve the 

hypotheses generated by NP-KG. These procedures can be aided by automated filtering 

strategies for incorrect predications due to relation extraction [64].
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5. Discussion

To our knowledge, this study is the first to combine existing curated information from 

biomedical ontologies with computable knowledge extracted from full texts of scientific 

articles to construct a KG focused on NPDIs. NP-KG is novel in that it combines biomedical 

ontologies, publicly available databases, and domain-specific information from the scientific 

literature to generate mechanistic hypotheses for potential pharmacokinetic NPDIs. We 

demonstrated that NP-KG can be used to recapture knowledge about pharmacokinetic 

NPDIs, as well as provide a template for predicting NPDIs that have not been studied 

extensively to guide researchers in the design and conduct of new studies.

We applied two evaluation strategies to validate the hypotheses generated from NP-KG for 

green tea- and kratom-drug interactions. The first provided direct edges and shortest paths 

between nodes related to the natural products in NP-KG and potential interacting enzymes 

and transporters. When compared to curated data from the NaPDI Center database, we 

identified both congruent and contradictory information in NP-KG. Further analysis showed 

that contradictory information was the result of contradictions present in the literature or 

errors from the relation extraction systems. Manual review was required in multiple cases 

where both congruent and contradictory edges existed between the nodes (15.25% searches 

for green tea, 21.43% searches for kratom). Although our targeted searches could identify 

some contradictions, a complete contradiction analysis of NP-KG was out of scope for this 

study.

Resolving contradictions in literature-based discovery and biomedical KGs is an active 

area of research. An investigation of clinically relevant, contradictory predications in 

SemMedDB [65] (semantic predications database for PubMed abstracts generated using 

SemRep) revealed multiple reasons for the contradictions, including characteristics related 

to the patients, known controversies, contradictions present in the literature, and the 

progression of knowledge [66]. Although the analysis was restricted to abstracts in the 

clinical domain, both the immediate context (source sentence) and full abstract were 

required to detect and resolve the contradictions [66]. Similarly, Sosa and Altman [67] 

demonstrated that literature-based KGs suffer from several challenges that give rise to 

contradictory information in the drug repurposing domain, namely, errors in relation 

extraction, errors in entity normalization leading to false positive contradiction pairs, 

contradictions in the biomedical literature due to progression of science and variation 

in research methods, and inconclusive evidence. Enhancing NP-KG with contextual 

information, including more granular information, quantitative facts (e.g., dosage), negative 

results, confidence scores, and source sections of the predications can help resolve 

contradictions and improve knowledge inference.

The second evaluation strategy for NP-KG applied direct edges and meta-path searches 

for select natural product-drug pairs, specifically green tea-raloxifene, green tea-nadolol, 

kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine. Meta-paths are also known 

as discovery patterns or pathways in literature-based discovery and can be of varying 

lengths. Prior work suggests that they can correspond to mechanisms of pharmacological 

efficacy and thus may be used to generate plausible hypotheses from KGs [57]. In 
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related work, Schutte et. al. [12] applied meta-paths (Dietary_Supplement-Gene-Drug and 

Dietary_supplement-Gene1-Biological_Function-Gene2-Drug) to identify NPDIs involving 

supplements from a literature-based KG. Meta-path discovery for the green tea-raloxifene 

interaction identified CYP3A4 and UGTs involved in the mechanism. Although inhibition 

of intestinal UGT by green tea catechins is supported by in vitro data, the clinical study 

did not confirm this mechanism [16,17]. This in vitro-in vivo disconnect suggests that 

NP-KG may need to be expanded to more data domains, including physicochemical 

properties of drugs and natural products, and the gut microbiome domain such as with 

the gutMEGA database [68] and microbe-drug associations from the microbiota-active 

substance interactions database [69], to generate mechanistic hypotheses.

For the green tea-nadolol interaction, although the meta-path searches identified OATP1A2 

as one of the transporters involved in the interaction, other enzymes and transporters 

may or may not be involved in the interaction and require further review. There is no 

evidence to support that nadolol is a substrate of the CYP enzymes identified by NP-KG 

for the interaction between green tea and nadolol (Appendix Table A.4). NP-KG meta-

path discovery results suggested that mechanisms of putative pharmacokinetic interactions 

between kratom and midazolam, quetiapine, and venlafaxine primarily involve CYP3A4, 

CYP2D6, and P-glycoprotein. Some of these results are supported by the published 

literature [60,70–72] while some are yet unknown. The evaluation results suggest that 

NP-KG provides a major advance in support of our hypothesis for computational discovery 

of pharmacokinetic NPDI mechanisms by combining biomedical ontologies and databases 

with the scientific literature.

Constructing a KG by integrating full texts of the scientific literature with biomedical 

ontologies is challenging due to the limited availability of full texts in computable format 

and lack of interoperability within vocabularies used in ontologies, databases, and relation 

extraction systems. Large-scale KGs developed for drug-related applications, such as drug-

drug interaction, drug-target prediction, and drug repurposing [55,57,73,74], are typically 

constructed either from curated data sources (such as ontologies, drug databases) or 

the scientific literature. KGs constructed from the scientific literature typically rely on 

manual annotations or automated relation extraction systems (e.g., SemRep). The literature-

based graph constructed in this study combined predications from two relation extraction 

systems for more than 700 full-text articles. Node and edge types in the literature-based 

graph (Figures 5 and 6) showed that the relation extraction systems can capture relevant 

information from the scientific literature for different types of biomedical entities and 

supplement the ontology-grounded KG with domain-specific knowledge.

Comparison of the node degrees between the ontology-grounded KG and NP-KG showed 

greater connectivity of the green tea and kratom nodes in NP-KG. Although the number 

of nodes and edges added from the literature-based graph were significantly less than the 

nodes and edges in the ontology-grounded KG, integration of the literature-based graph 

contributed to filling the gaps in knowledge about green tea- and kratom-drug interactions in 

the ontology-grounded KG. As green tea is a popular natural product and is used worldwide, 

there were substantially more articles and predications related to green tea in NP-KG 

relative to kratom. There were also more ground truth interactions available for green tea 
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in the knowledge recapturing evaluation strategy. We expect that this bias will remain 

when scaling NP-KG to include more natural products; however, the integration of different 

knowledge domains and KG completion methods can help discover unknown results about 

the interactions and mechanisms of less researched natural products.

Automated extraction and integration of the predications from the literature enabled us to 

draw inferences from NP-KG suggested in the published literature, and metadata included in 

the graph were used to verify the accuracy of the edges. Data integration and KG inference 

were further supported by the choice of instance-based representation for data integration, 

where subject-relation-object triples were retained in the ontology-grounded KG and the 

literature-based graph. The standardization of relations extracted by SemRep and INDRA/

REACH to OBO Foundry ontologies presented in this study (Appendix Table A.2) will 

further facilitate the integration of literature-based knowledge with biomedical ontologies. 

Analysis of the predications also revealed errors in the relation extraction systems that, if 

improved, can lead to more accurate results and fewer contradictions.

Our overall goal is to use NP-KG to understand the knowledge gaps pertaining to NPDIs 

and generate mechanistic hypotheses for novel NPDIs with supporting evidence. This goal 

can be accomplished in several ways following the inclusion of more natural products 

in NP-KG. First, symbolic approaches using meta-paths and literature-based discovery 

methods similar to those described in this study can be used to discover unknown NPDIs. 

Second, NP-KG can be used to generate hypotheses and verify biological plausibility of 

pharmacovigilance signals from spontaneous reporting systems. Recent studies to detect 

adverse events related to natural products and NPDIs from spontaneous reporting systems, 

including the FDA Adverse Event Reporting System and CFSAN Adverse Event Reporting 

System, have shown promise [75–77]. The third approach involves graph representation 

learning methods for KG completion and hypothesis generation through link prediction and 

semantic similarity. KG completion methods can be used to overcome the gaps in knowledge 

about natural products in NP-KG. Recent advances in graph representation learning methods 

that generate embeddings from the KG have shown promise in discovering new edges in 

KGs and ranking mechanisms based on the similarity of nodes and edges in the embedding 

space [10,55,78]. The generated hypotheses can then be validated through manual review by 

domain experts, in vitro experiments, physiologically based pharmacokinetic modeling and 

simulation, and clinical studies [79,80]. To generalize the above approaches for all NPDIs, 

we need broader inclusion of knowledge domains to represent the mechanisms, broader 

processing of published literature, improved capture of context to address contradictions 

and assign confidence to edges, and rigorous evaluation of inference relative to specific use 

cases.

Limitations and Challenges

There are several limitations to this study. First, no manual filtering was used for the search 

strategies, which could have added non-relevant predications to the literature-based graph. 

Second, the literature-based graph contains known relation extraction errors due to incorrect 

entity recognition, missing predications (due to low recall), and complex sentence syntax 

[50]. The reported recall for relation extraction from abstracts with SemRep is 42% [48]; 
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however, our baseline evaluation showed that the recall is lower for full texts from the 

pharmacokinetic literature compared to human curated data. SemRep has not been formally 

evaluated on full texts. Third, the relation extraction systems extracted predications from 

the full texts without targeting specific sections or information in tables. Fourth, our current 

approach for entity linking in the literature-based predications mapped only 60–70% of 

all subjects and objects in the predications, leading to potential missing information in 

NP-KG. Extensions of named entity recognition systems with custom data sources and 

relation extraction systems for natural products, such as in SemRepDS [12], can help 

improve entity linking in the KG. Potential data sources include the Integrated Dietary 

Supplements Knowledge Base [81] and FoodKG [82] to increase representation of natural 

products in existing resources. Fifth, this study applies meta-paths and shortest path searches 

in the KG for evaluation and although this approach is computationally efficient, the results 

are limited. For example, meta-paths applied in this study do not use information about 

metabolites of the natural product or the drug that could improve the understanding of 

the mechanism(s) underlying a given NPDI. Graph representation learning methods can 

also be applied to generate embeddings from the KG and broaden the scope of the results 

beyond the symbolic approaches used in this study. Finally, validation of NPDI mechanisms 

is challenging due to the limited availability of ground truth information. Drug Bank and 

Drug Central do not include data on NPDIs that can be used to evaluate predictions, as 

is common for drug-drug interactions. The Natural Medicine Interaction Checker database 

and Natural Medicines Comprehensive Database provide limited information for validating 

new hypotheses for drug-supplement interaction mechanisms [11,12]. Validation of NPDIs 

is thus either accomplished through the published literature or adaptation of drug-drug 

interaction datasets for food-drug interactions [11–13,83]. Our evaluation focused on green 

tea and kratom with ground truth information extracted from the NaPDI Center database. 

We only searched for enzymes or transporters with known interactions in the knowledge 

recapturing evaluation strategy. Although not shown in this study, utilizing NP-KG to 

discover beneficial natural product-drug interactions is possible. A broader search for 

other pharmacokinetic targets (e.g., nuclear receptors) may lead to more insights into these 

complex interactions.

6. Conclusions

NP-KG combined existing curated information in the form of ontologies and databases 

with domain-specific full texts of scientific articles to construct a KG focused on NPDIs. 

We demonstrated the potential of NP-KG to generate hypotheses that are grounded in both 

existing knowledge and suggested mechanisms from the scientific literature. NP-KG can 

be used to narrow the scope of potential hypotheses for pharmacokinetic NPDIs and help 

scientists in the preclinical assessment of potential clinically significant NPDIs. Future work 

will seek to address limitations of the relation extraction systems, extend NP-KG to other 

natural products, and apply improved hypothesis generation methods and evaluation. We are 

adding more natural product information in the KG, including additional natural products 

of interest and other knowledge domains. NP-KG is publicly available at https://doi.org/

10.5281/zenodo.6814507. The code for relation extraction, KG construction, and hypothesis 

generation is available at https://github.com/sanyabt/np-kg.
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Appendix A

Search Strategies

Search strategies for green tea and kratom were adapted from the following:

Birer-Williams C, Gufford BT, Chou E, Alilio M, VanAlstine S, Morley RE, McCune 

JS, Paine MF, Boyce RD. A new data repository for pharmacokinetic natural product-

drug interactions: from chemical characterization to clinical studies. Drug metabolism and 

disposition. 2020 Oct 1;48(10):1104–12.

Search Strategies for Green tea

Clinical Studies

(Clinical Trial [PT] AND (“green tea”[All Fields] OR “green teas”[All Fields] OR “green 

tea extract”[All Fields] OR “Camellia sinensis”[All Fields] OR “Cha ye”[All Fields] 

OR “Cha-yeh”[All Fields] OR “Camelliae folium”[All Fields] OR “Camelliae sinensis 

folium “[All Fields] OR “Matcha tea”[All Fields] OR “Sencha tea”[All Fields] OR 

“Thea sinensis”[All Fields] OR “Catechin”[All Fields] OR “Catechins”[All Fields] OR 

“epicatechin”[All Fields] OR “gallocatechin”[All Fields] OR “epigallocatechin”[All Fields] 

OR “epigallocatechin gallate”[All Fields] OR “EGCG”[All Fields] OR “Epicatechin-3-

gallate”[All Fields] OR “(−)-epigallocatechin gallate”[All Fields] OR “(−)-epicatechin”[All 

Fields] OR “(−)-epigallocatechin”[All Fields] OR “(−)-epicatechin-3-gallate”[All Fields]) 

AND “drug interactions”[All Fields]) NOT Review [PT]

Case Reports

Case Reports [PT] AND (“green tea”[All Fields] OR “green teas”[All Fields] OR “green 

tea extract”[All Fields] OR “Camellia sinensis”[All Fields] OR “Cha ye”[All Fields] 

OR “Cha-yeh”[All Fields] OR “Camelliae folium”[All Fields] OR “Camelliae sinensis 

folium “[All Fields] OR “Matcha tea”[All Fields] OR “Sencha tea”[All Fields] OR 

“Thea sinensis”[All Fields] OR “Catechin”[All Fields] OR “Catechins”[All Fields] OR 

“epicatechin”[All Fields] OR “gallocatechin”[All Fields] OR “epigallocatechin”[All Fields] 

OR “epigallocatechin gallate”[All Fields] OR “EGCG”[All Fields] OR “Epicatechin-3-

gallate”[All Fields] OR “(−)-epigallocatechin gallate”[All Fields] OR “(−)-epicatechin”[All 
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Fields] OR “(−)-epigallocatechin”[All Fields] OR “(−)-epicatechin-3-gallate”[All Fields]) 

AND “drug interactions”[All Fields]

Mechanistic Studies

Step 1) Log into My NCBI and go to Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/.

Step 2) In the advanced search form, clear the search history.

Step 3) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#1” in the rest of this search strategy:

“Cytochrome P-450 Enzyme System”[MeSH Terms] OR “Cyto- chrome P450 Family 

1”[MeSH Terms] OR “Cytochrome P450 Family 2”[MeSH Terms] OR “Cytochrome 

P450 Family 3”[MeSH Terms] OR CYP1A1[All Fields] OR CYP1A2[All Fields] OR 

CYP1A3[All Fields] OR CYP1A4[All Fields] OR CYP1A5[All Fields] OR CYP2D6[All 

Fields] OR CYP2C9[All Fields] OR CYP2A6[All Fields] OR CYP2C8 [All Fields] 

OR CYP2C19[All Fields] OR CYP2B6[All Fields] OR CYP2B1[All Fields] OR 

CYP2E1[All Fields] OR CYP3A4[All Fields] OR CYP3A5[All Fields] OR UGT1[All 

Fields] OR UGT1A1[All Fields] OR UGT1A3[All Fields] OR UGT1A4[All Fields] OR 

UGT1A5[All Fields] OR UGT1A6[All Fields] OR UGT1A7[All Fields] OR UGT1A8[All 

Fields] OR UGT1A9[All Fields] OR UGT1A10[All Fields] OR UGT2[All Fields] OR 

UGT2A1[All Fields] OR UGT2A2 [All Fields] OR UGT2A3[All Fields] OR UGT2B4[All 

Fields] OR UGT2B7[All Fields] OR UGT2B10[All Fields] OR UGT2B11[All Fields] 

OR UGT2B15[All Fields] OR UGT2B17[All Fields] OR UGT2B28[All Fields] OR 

B3GAT1[All Fields] OR B3GAT2[All Fields] OR B3GAT3[All Fields].

Step 4) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#2” in the rest of this search strategy.

“Solute Carrier Proteins”[MeSH Terms] OR “Membrane Transport Proteins”[MeSH Terms] 

OR “P-gp”[All Fields] OR “p-glycoprotei- n”[All Fields] OR BCRP[All Fields] OR 

OCT2[All Fields] OR “Organic Cation Transporter 2”[MeSH Terms] OR “Organic Cation 

Transport Proteins”[MeSH Terms] OR MATE1[All Fields] OR “SLC4A Proteins”[MeSH 

Terms] OR MATE-2K[All Fields] OR “SLC4A Proteins”[MeSH Terms] OR OATP[All 

Fields] OR OAT1 [All Fields] OR “Organic Anion Transport Protein 1”[MeSH Terms] OR 

OAT3[All Fields] OR UGT1[All Fields] OR “Glucuronosyltransfer- ase”[MeSH Terms] OR 

ABC[All Fields] OR “ATP-Binding Cassette Transporters”[MeSH Terms].

Step 5) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#3” in the rest of this search strategy.

(“green tea”[All Fields] OR “green teas”[All Fields] OR “green tea extract”[All Fields] 

OR “Camellia sinensis”[All Fields] OR “Cha ye”[All Fields] OR “Cha-yeh”[All Fields] 

OR “Camelliae folium”[All Fields] OR “Camelliae sinensis folium “[All Fields] OR 

“Matcha tea”[All Fields] OR “Sencha tea”[All Fields] OR “Thea sinensis”[All Fields] 

OR “Catechin”[All Fields] OR “Catechins”[All Fields] OR “epicatechin”[All Fields] 
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OR “gallocatechin”[All Fields] OR “epigallocatechin”[All Fields] OR “epigallocatechin 

gallate”[All Fields] OR “EGCG”[All Fields] OR “Epicatechin-3-gallate”[All Fields] 

OR “(−)-epigallocatechin gallate”[All Fields] OR “(−)-epicatechin”[All Fields] OR “(−)-

epigallocatechin”[All Fields] OR “(−)-epicatechin-3-gallate”[All Fields]) Step 6) Paste in 

this query into builder (using “edit”) and click “add to history”—this is referred to as “#4” in 

the rest of this search strategy.

(Pharmacokinetics[MeSH Terms] OR pharmacokinetic[All Fields]) or (inhibit[All Fields] 

or inhibition[All Fields]) OR substrate[All Fields]. Step 7) Paste in this query into builder 

(using “edit”) and click “add to history”—this is referred to as “#5” in the rest of this search 

strategy.

#3 AND #4 AND (#1 OR #2)

Search Strategies for Kratom

Clinical Studies

(Clinical Trial [PT] AND (“Kratom”[All Fields] OR “mitragynine”[All Fields] OR 

“mitragynine ethanedisulfonate”[All Fields] OR “SK and F 12711”[All Fields] OR 

“SKF 12711”[All Fields] OR “SK and F-12711”[All Fields] OR “mitragynine, (16E)-

isomer”[All Fields] OR “mitragynine, (3beta,16E)- isomer”[All Fields] OR “mmitragynine, 

(3beta,16E,20beta)-isomer”[- All Fields] OR “kratom alkaloids”[All Fields] OR 

“kmitragynine monohydrochloride”[All Fields] OR “Mitragyna speciosa”[All Fields] OR 

“Nauclea speciose”[All Fields] OR “Biak-biak”[All Fields] OR “Cratom”[All Fields] OR 

“Gratom”[All Fields] OR “Ithang”[All Fields] OR “Kakuam”[All Fields] OR “Katawn”[All 

Fields] OR “Kedem- ba”[All Fields] OR “Ketum”[All Fields] OR “Krathom”[All 

Fields] OR “Kraton”[All Fields] OR “Kratum”[All Fields] OR “Madat”[All Fields] OR 

“Mambog”[All Fields] OR “Mitragynine”[All Fields] OR “Mitra- gynine extract”[All 

Fields] OR “Thang”[All Fields] OR “Thom”[All Fields] OR “7-hydroxymitragynine”[All 

Fields] OR “7-hydroxy-mitra- gynine”[All Fields] OR “mitragynine pseudoindoxyl”[All 

Fields] OR “Paynantheine”[All Fields]) AND “drug interactions”[All Fields]) NOT Review 

[PT]

Case Reports

Case Reports [PT] AND (“Kratom”[All Fields] OR “mitragynine”[All Fields] OR 

“mitragynine ethanedisulfonate”[All Fields] OR “SK and F 12711”[All Fields] OR 

“SKF 12711”[All Fields] OR “SK and F-12711”[All Fields] OR “mitragynine, 

(16E)-isomer”[All Fields] OR “mitragynine, (3beta,16E)-isomer”[All Fields] OR 

“mmitragynine, (3beta,16E,20beta)-isomer”[All Fields] OR “kratom alkaloids”[All Fields] 

OR “kmitragynine monohydrochloride”[All Fields] OR “Mitragyna speciosa”[All Fields] 

OR “Nauclea speciose”[All Fields] OR “Biak-biak”[All Fields] OR “Cratom”[All 

Fields] OR “Gratom”[All Fields] OR “Ithang”[All Fields] OR “Kakuam”[All Fields] 

OR “Katawn”[All Fields] OR “Kedemba”[All Fields] OR “Ketum”[All Fields] 

OR “Krathom”[All Fields] OR “Kraton”[All Fields] OR “Kratum”[All Fields] OR 

“Madat”[All Fields] OR “Mambog”[All Fields] OR “Mitragynine”[All Fields] OR 
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“Mitragynine extract”[All Fields] OR “Thang”[All Fields] OR “Thom”[All Fields] OR “7-

hydroxymitragynine”[All Fields] OR “7-hydroxy-mitragynine”[All Fields] OR “mitragynine 

pseudoindoxyl”[All Fields] OR “Paynantheine”[All Fields]) AND “drug interactions”[All 

Fields]

Mechanistic Studies

Step 1) Log into My NCBI and go to Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/.

Step 2) In the advanced search form, clear the search history.

Step 3) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#1” in the rest of this search strategy:

“Cytochrome P-450 Enzyme System”[MeSH Terms] OR “Cyto- chrome P450 Family 

1”[MeSH Terms] OR “Cytochrome P450 Family 2”[MeSH Terms] OR “Cytochrome 

P450 Family 3”[MeSH Terms] OR CYP1A1[All Fields] OR CYP1A2[All Fields] OR 

CYP1A3[All Fields] OR CYP1A4[All Fields] OR CYP1A5[All Fields] OR CYP2D6[All 

Fields] OR CYP2C9[All Fields] OR CYP2A6[All Fields] OR CYP2C8 [All Fields] 

OR CYP2C19[All Fields] OR CYP2B6[All Fields] OR CYP2B1[All Fields] OR 

CYP2E1[All Fields] OR CYP3A4[All Fields] OR CYP3A5[All Fields] OR UGT1[All 

Fields] OR UGT1A1[All Fields] OR UGT1A3[All Fields] OR UGT1A4[All Fields] OR 

UGT1A5[All Fields] OR UGT1A6[All Fields] OR UGT1A7[All Fields] OR UGT1A8[All 

Fields] OR UGT1A9[All Fields] OR UGT1A10[All Fields] OR UGT2[All Fields] OR 

UGT2A1[All Fields] OR UGT2A2 [All Fields] OR UGT2A3[All Fields] OR UGT2B4[All 

Fields] OR UGT2B7[All Fields] OR UGT2B10[All Fields] OR UGT2B11[All Fields] 

OR UGT2B15[All Fields] OR UGT2B17[All Fields] OR UGT2B28[All Fields] OR 

B3GAT1[All Fields] OR B3GAT2[All Fields] OR B3GAT3[All Fields].

Step 4) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#2” in the rest of this search strategy.

“Solute Carrier Proteins”[MeSH Terms] OR “Membrane Transport Proteins”[MeSH Terms] 

OR “P-gp”[All Fields] OR “p-glycoprotei- n”[All Fields] OR BCRP[All Fields] OR 

OCT2[All Fields] OR “Organic Cation Transporter 2”[MeSH Terms] OR “Organic Cation 

Transport Proteins”[MeSH Terms] OR MATE1[All Fields] OR “SLC4A Proteins”[MeSH 

Terms] OR MATE-2K[All Fields] OR “SLC4A Proteins”[MeSH Terms] OR OATP[All 

Fields] OR OAT1 [All Fields] OR “Organic Anion Transport Protein 1”[MeSH Terms] OR 

OAT3[All Fields] OR UGT1[All Fields] OR “Glucuronosyltransfer- ase”[MeSH Terms] OR 

ABC[All Fields] OR “ATP-Binding Cassette Transporters”[MeSH Terms].

Step 5) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#3” in the rest of this search strategy.

(“Kratom”[All Fields] OR “mitragynine”[All Fields] OR “mitragynine 

ethanedisulfonate”[All Fields] OR “SK and F 12711”[All Fields] OR “SKF 12711”[All 

Fields] OR “SK and F-12711”[All Fields] OR “mitragynine, (16E)-isomer”[All 

Fields] OR “mitragynine, (3beta,16E)-isomer”[All Fields] OR “mmi- tragynine, 
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(3beta,16E,20beta)-isomer”[All Fields] OR “kratom alka- loids”[All Fields] OR 

“kmitragynine monohydrochloride”[All Fields] OR “Mitragyna speciosa”[All Fields] OR 

“Nauclea speciose”[All Fields] OR “Biak-biak”[All Fields] OR “Cratom”[All Fields] OR 

“Gratom”[All Fields] OR “Ithang”[All Fields] OR “Kakuam”[All Fields] OR “Kataw- 

n”[All Fields] OR “Kedemba”[All Fields] OR “Ketum”[All Fields] OR “Krathom”[All 

Fields] OR “Kraton”[All Fields] OR “Kratum”[All Fields] OR “Madat”[All Fields] OR 

“Mambog”[All Fields] OR “Mitragynine”[All Fields] OR “Mitragynine extract”[All Fields] 

OR “Than- g”[All Fields] OR “Thom”[All Fields] OR “7-hydroxymitragynine”[All Fields] 

OR “7-hydroxy-mitragynine”[All Fields] OR “mitragynine pseudoindoxyl”[All Fields] OR 

“Paynantheine”[All Fields]).

Step 6) Paste in this query into builder (using “edit”) and click “add to history”—this is 

referred to as “#4” in the rest of this search strategy.

(Pharmacokinetics[MeSH Terms] OR pharmacokinetic[All Fields]) or (inhibit[All Fields] 

or inhibition[All Fields]) OR substrate[All Fields]. Step 7) Paste in this query into builder 

(using “edit”) and click “add to history”—this is referred to as “#5” in the rest of this search 

strategy.

#3 AND #4 AND (#1 OR #2)

Table A.1.

Edges in the ontology-grounded KG with edge counts, edge labels, and edge data source(s).

Edge Type Edge Count Edge Label Edge Source(s)

chemical-disease 171,506 substance that treats BioPortal, CTD

chemical-gene 16,701 interacts with BioPortal, CTD

chemical-biological process 304,686 molecularly interacts with BioPortal, CTD

chemical-molecular function 26,788 molecularly interacts with BioPortal, CTD

chemical-cellular component 46,372 molecularly interacts with BioPortal, CTD

chemical-pathway 29,248 participates in Reactome Pathway Database

chemical-protein 66,828 interacts with BioPortal, CTD

chemical-transporter 90 transports FDA Drug Interaction database

chemical-molecule 391 molecularly interacts with FDA Drug Interaction database, DIKB, 
Drug Central

chemical-inhibitor 272 inhibits FDA Drug Interaction database, DIKB

chemical-substrate 514 substrate of FDA Drug Interaction database, DIKB, 
Drug Central

gene-pathway 107,025 participates in CTD

gene-phenotype 23,525 causes or contributes to DisGeNET

gene-protein 19,523 has gene product UniProt

pathway-cellular component 15,982 has component Reactome Pathway Database

pathway-molecular function 2,424 has function Reactome Pathway Database

protein-anatomy 30,682 located in GTEx, Human Protein Atlas

protein-cell 75,318 located in GTEx, Human Protein Atlas
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Edge Type Edge Count Edge Label Edge Source(s)

protein-biological process 129,408 participates in UniProt

protein-molecular function 70,085 has function UniProt

protein-cellular component 82,366 located in UniProt

protein-pathway 118,158 participates in Reactome Pathway Database

protein-protein 618,069 molecularly interacts with STRING database

Table A.2.

Edges in the literature-based graph with edge counts, edge source(s), OBO label, and OBO 

identifier (N=25,421).

Edge Name Edge Count (%) Edge Source(s) OBO Label OBO Identifier

acetylation 3 (0.012) INDRA/REACH protein acetylation GO_0006473

activation 2515 (9.893) INDRA/REACH directly regulates activity of RO_0002448

affects 353 (1.389) SemRep capable of regulating RO_0002596

associated_with 110 (0.433) SemRep correlated_with RO_0002610

augments 236 (0.928) SemRep capable of positively regulating RO_0002598

causes 126 (0.496) SemRep causally influences RO_0002566

coexists_with 1434 (5.641) SemRep existence overlaps RO_0002490

complicates 1 (0.004) SemRep exacerbates condition RO_0003309

decrease_amount 354 (1.393) INDRA/REACH directly negatively regulates 
quantity of

RO_0011010

dehydroxylation 5 (0.02) INDRA/REACH molecularly interacts with RO_0002436

demethylation 3 (0.012) INDRA/REACH protein demethylation GO_0006482

dephosphorylation 25 (0.098) INDRA/REACH protein dephosphorylation GO_0006470

deubiquitination 1 (0.004) INDRA/REACH protein deubiquitination GO_0016579

disrupts 153 (0.602) SemRep negatively regulates RO_0002212

glycosylation 6 (0.024) INDRA/REACH protein glycosylation GO_0006486

hydroxylation 8 (0.031) INDRA/REACH protein hydroxylation GO_0018126

increase_amount 437 (1.719) INDRA/REACH directly positively regulates 
quantity of

RO_0011009

inhibits 3326 (13.084) SemRep, INDRA/
REACH

inhibits RO_0002449

interacts_with 2421 (9.524) SemRep interacts with RO_0002434

methylation 7 (0.028) INDRA/REACH protein methylation GO_0006479

part_of 1927 (7.58) SemRep part of BFO_0000050

phosphorylation 64 (0.252) INDRA/REACH phosphorylates RO_0002447

precedes 1 (0.004) SemRep precedes BFO_0000063

predisposes 27 (0.106) SemRep causes or contributes to 
condition

RO_0003302

prevents 53 (0.208) SemRep capable of inhibiting or 
preventing pathological process

RO_0002599

produces 248 (0.976) SemRep produces RO_0003000
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Edge Name Edge Count (%) Edge Source(s) OBO Label OBO Identifier

stimulates 11071 (43.551) SemRep positively regulates RO_0002213

treats 505 (1.987) SemRep is substance that treats RO_0002606

ubiquitination 1 (0.004) INDRA/REACH ubiquitinates RO_0002480

Table A.3.

Results from meta-path discovery in NP-KG for natural product-drug pairs. Meta-path 

descriptions are available in Figure 4.

Meta-path Results

Green Tea – Raloxifene

Green tea | Green tea constituent – Relation – Raloxifene 1. EGCG inhibits raloxifene
2. EGCG coexists with raloxifene
3. EGCG interacts with raloxifene

Raloxifene – Relation – Green tea | Green tea constituent No results

Green tea | Green tea constituent – Relation A – Enzyme 
or Transporter – Relation B – Raloxifene

No results

Green tea | Green tea constituent – Relation A – Enzyme 
or Transporter, Raloxifene – Relation B – Enzyme or 
Transporter

1. Green tea inhibits UGT, Raloxifene inhibits/
interacts with UGT
2. ECG inhibits UGT, Raloxifene inhibits/interacts 
with UGT
3. Catechin positively regulates/interacts with/directly 
regulates activity of UGT, Raloxifene inhibits/
interacts with UGT
4. Catechin positively regulates CYP3A4, Raloxifene 
inhibits CYP3A4
5. EGCG inhibits/positively regulates UGT, 
Raloxifene inhibits/interacts with UGT
6. EGCG positively regulates CYP3A4, Raloxifene 
inhibits/interacts with UGT

Green Tea – Nadolol

Green tea | Green tea constituent – Relation – Nadolol 1. Green tea inhibits nadolol
2. EGCG inhibits nadolol
3. EGCG directly regulates activity of nadolol
4. Catechin interacts with nadolol

Nadolol – Relation – Green tea | Green tea constituent 1. Nadolol positively regulates EGCG
2. Nadolol interacts with EGCG
3. Nadolol positively regulates catechin
4. Nadolol positively regulates green tea leaf

Green tea | Green tea constituent – Relation A – Enzyme 
or Transporter – Relation B – Nadolol

SLCO1A2 gene (OATP1A2)

Green tea | Green tea constituent – Relation A – Enzyme 
or Transporter, Nadolol – Relation B – Enzyme or 
Transporter

See Tables A.4 and A.5.

Kratom – Midazolam

Kratom | Kratom constituent – Relation – Midazolam No results

Midazolam – Relation – Kratom | Kratom constituent 1. Mitragynine inhibits midazolam
2. Mitragynine positively regulates midazolam

Kratom | Kratom constituent – Relation A – Enzyme or 
Transporter – Relation B – Midazolam

No results

Kratom | Kratom constituent – Relation A – Enzyme 
or Transporter, Midazolam – Relation B – Enzyme or 
Transporter

1. Mitragynine interacts with/inhibits/directly 
regulates activity of/directly positively regulates 
quantity of CYP3A4, Midazolam is substrate of/
interacts with CYP3A4
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Meta-path Results

2. Mitragynine inhibits/interacts with/positively 
regulates CYP2D6, Midazolam inhibits CYP2D6
3. Mitragynine inhibits/directly negatively regulates 
quantity of ABCB1, Midazolam interacts with 
ABCB1

Kratom – Quetiapine

Kratom | Kratom constituent – Relation – Quetiapine No results

Quetiapine – Relation – Kratom | Kratom constituent No results

Kratom | Kratom constituent – Relation A – Enzyme or 
Transporter – Relation B – Quetiapine

No results

Kratom | Kratom constituent – Relation A – Enzyme 
or Transporter, Quetiapine – Relation B – Enzyme or 
Transporter

1. Mitragynine interacts with/inhibits/directly 
regulates activity of/directly positively regulates 
quantity of CYP3A4, Quetiapine is substrate of 
CYP3A4
2. Mitragynine inhibits/directly negatively regulates 
quantity of P-glycoprotein, Quetiapine transports P-
glycoprotein

Kratom – Venlafaxine

Kratom | Kratom constituent – Relation – Venlafaxine No results

Venlafaxine – Relation – Kratom | Kratom constituent No results

Kratom | Kratom constituent – Relation A – Enzyme or 
Transporter – Relation B – Venlafaxine

No results

Kratom | Kratom constituent – Relation A – Enzyme 
or Transporter, Venlafaxine – Relation B – Enzyme or 
Transporter

1. Mitragynine interacts with/inhibits/directly 
regulates activity of/directly positively regulates 
quantity of CYP3A4, Venlafaxine is substrate of 
CYP3A4
2. Mitragynine inhibits/interacts with/positively 
regulates CYP2D6, Venlafaxine is substrate of/
inhibits CYP2D6

Table A.4.

Enzymes identified from meta-path discovery in NP-KG for green tea-nadolol.

Enzyme OBO Identifier

cytochrome P450 1A1 (CYP1A1) PR_000006101

cytochrome P450 1A2 (CYP1A2) PR_000006102

cytochrome P450 2D6 (CYP2D6) PR_000006121

cytochrome P450 2E1 (CYP2E1) PR_000006122

cytochrome P450 3A4 (CYP3A4) PR_000006130

cytochrome P450 7A1 (CYP7A1) PR_000006148

sulfotransferase 1A1 (SULT1A1) PR_000015818

UDP-glucuronosyltransferase 1A1 (UGT1A1) PR_000017048

Table A.5.

Transporters identified from meta-path discovery in NP-KG for green tea-nadolol.

Transporter OBO Identifier

high affinity copper uptake protein 1 (SLC31A1) PR_000015083
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Transporter OBO Identifier

ileal sodium/bile acid cotransporter (IBAT / SLC10A2) PR_000014918

long-chain fatty acid transport protein 4 (FATP-4 / SLC27A4)

multidrug and toxin extrusion protein 2 (SLC47A2 / MATE2) PR_000015153

multidrug resistance-associated protein 4 (MOAT-B / ABCC4) PR_000003560

phospholipid-transporting ATPase ABCA1 PR_000003537

phospholipid-transporting ATPase IB (ATP8A2) PR_000029291

sodium-dependent dopamine transporter (DA transporter / SLC6A3) PR_Q01959

solute carrier family 22 member 6 (SLC22A6 / OAT1) PR_000014993

solute carrier organic anion transporter family member 1A2 (SLCO1A2 / OATP1A2) PR_000015222

solute carrier organic anion transporter family member 1B3 (SLCO1B3 / OATP1B3) PR_000015224

zinc transporter ZIP4 (SLC39A4) PR_000015131

Abbreviations

ChEBI Chemical Entities of Biological Interest

CYP Cytochrome P450

DIKB Drug Interaction Knowledge Base

ECG (−)-epicatechin-3 gallate

EGCG (−)-epigallocatechin gallate

FDA Food and Drug Administration

INDRA Integrated Network and Dynamical Reasoning Assembler

IVIVE In vitro to in vivo extrapolation

KG Knowledge Graph

NPDI Natural Product-Drug Interaction

OATP Human Organic Anion Transporting Polypeptide

OBO Open Biological and Biomedical Ontology

OWL Web Ontology Language

OWLNETS Network Transformation for Statistical Learning

PheKnowLator Phenotype Knowledge Translator

REACH Reading and Assembling Contextual and Holistic 

Mechanisms from Text

UGT uridine 5’-diphospho-glucuronosyltransferase (UDP-

glucuronosyltransferase)
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UMLS Unified Medical Language System

US United States
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Statement of Significance

Problem of 
Issue

Understanding the mechanisms of pharmacokinetic natural product-drug interactions 
(NPDIs) is key to preventing adverse events.

What is 
Already Known

Pharmacokinetic NPDIs occur when a natural product alters the absorption, 
distribution, metabolism, and/or excretion of a co-consumed drug, potentially resulting 
in adverse events. NPDI mechanisms and clinical effects are less studied than drug-
drug interactions, and computational discovery of NPDIs can guide robust NPDI 
research.

What this 
Paper Adds

A knowledge graph (KG) was developed that combined biomedical ontologies, 
scientific literature, and linked open data to generate mechanistic hypotheses for 
pharmacokinetic NPDIs. The KG was evaluated using the exemplar natural products 
green tea and kratom.
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Figure 1. 
Overview of NP-KG that combines biomedical ontologies, drug databases (FDA Drug 

Interaction Data, Drug Central, Drug Interaction Knowledge Base), natural products, and 

literature-based graph constructed from green tea and kratom publications.
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Figure 2. 
Workflow for semantic relation extraction and literature-based graph construction.
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Figure 3. 
Congruence and contradiction between node X and an enzyme or transporter Y in NP-KG, 

where ground truth information between the nodes states that X inhibits Y.
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Figure 4. 
Direct edges and meta-path searches implemented in NP-KG for natural products or natural 

product constituents and drugs with an interacting enzyme or transporter.
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Figure 5. 
Node types and edge types in the literature-based graph (with edge counts greater than 100). 

Rectangles represent edges with edge labels from the graph.
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Figure 6. 
Distribution of edges in the literature-based graph, including edges extracted from the 

literature and inferred edges. The x-axis presents the log of the number of edges and 

y-axis presents the edge labels mapped to OBO Foundry ontologies. Edges included in 

the symmetric closure are marked with *, and edges included in the transitive closure are 

marked with **.
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Figure 7. 
Comparison of green tea and kratom node degrees between ontology-grounded KG and 

NP-KG. 7a. In-degrees of green tea and kratom nodes. 7b. Out-degrees of green tea and 

kratom nodes. The x-axis presents the log of the in- and out-degrees and y-axis presents the 

node labels.
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Figure 8. 
(a-c) Edges and/or shortest path(s) between green tea and UGT enzymes (UGT, UGT1A1, 

UGT1A8, and UGT1A10) in NP-KG. (d-e) Shortest path(s) between kratom and 

cytochrome P450 enzymes (CYP3A4, CYP2D6) in NP-KG. If an edge in the path is 

derived from the literature, the year of publication is noted with the edge label. The rounded 

rectangles represent nodes and rectangles represent edges in NP-KG.
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Figure 9. 
Nodes and edges in NP-KG related to pharmacokinetic interactions between green tea and 

raloxifene with enzymes (CYP3A4, CYP2C9, UGT). Rounded rectangles represent nodes 

and rectangles represent edges in NP-KG. If an edge is derived from literature, the year of 

publication is noted with the edge label. Note that nodes can contain multiple edges between 

them.
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Figure 10a. 
Nodes and edges in NP-KG related to pharmacokinetic interactions between mitragynine 

and midazolam with interacting enzymes (CYP3A4, CYP2D6) and a transporter (P-

glycoprotein). 10b. Nodes and edges in NP-KG related to pharmacokinetic interactions 

between mitragynine and drugs (quetiapine and venlafaxine) with interacting enzymes 

(CYP3A4, CYP2D6) and a transporter (P-glycoprotein). Rounded rectangles represent 

nodes and rectangles represent edges in NP-KG. If an edge is derived from the literature, the 

year of publication is noted with the edge label.
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Table 1.

Graph counts for ontology-grounded KG, literature-based graph, and NP-KG

Parameter Ontology-grounded KG Literature-based Graph NP-KG (% change from ontology-grounded KG)

Nodes 745,250 4,157 745,512 (0.035%)

Edges 7,224,186 27,784 7,249,576 (0.35%)

Average Degree 9.69 6.68 9.72 (0.31%)

Node Density 1.301 × 10−5 0.002 1.304 × 10−5 (0.23%)
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Table 2.

Summary of congruences and contradictions for direct edges and shortest paths in NP-KG compared to ground 

truth information.

Green Tea (%) Kratom (%)

Congruence 23 (38.98) 7 (50.0)

Contradiction 9 (15.25) 3 (21.43)

Edges/paths exist but no congruence or contradiction 25 (42.37) 3 (21.43)

Both congruence and contradiction 2 (3.39) 1 (7.14)

Total searches 59 14
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Table 3.

Summary of results of meta-path discovery in NP-KG for the natural product-drug pairs.

Natural product-drug pair Enzyme(s) Transporter(s)

Green tea-raloxifene CYP3A4, UGT ND

Green tea-nadolol See Appendix Table A.4 See Appendix Table A.5

Kratom-midazolam CYP2D6, CYP3A4 P-glycoprotein

Kratom-quetiapine CYP3A4 P-glycoprotein

Kratom-venlafaxine CYP2D6, CYP3A4 ND

(ND=None Detected)
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