
Structure Determination of Challenging Protein–Peptide 
Complexes Combining NMR Chemical Shift Data and Molecular 
Dynamics Simulations

Arup Mondal,
The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 
32611, United States

G.V.T. Swapna,
Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State 
University of New Jersey, Piscataway, New Jersey 08854, United States; Department of 
Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, 
Rensselaer Polytechnic Institute, Troy, New York 12180, United States

Maria M. Lopez,
Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary 
Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States

Laura Klang,
Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary 
Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States

Corresponding Authors: Monica J. Roth – Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The 
State University of New Jersey, Piscataway, New Jersey 08854, United States; roth@rwjms.rutgers.edu; Gaetano T. Montelione – 
Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic 
Institute, Troy, New York 12180, United States; monteg3@rpi.edu; Alberto Perez – The Quantum Theory Project, Department of 
Chemistry, University of Florida, Gainesville, Florida 32611, United States; perez@chem.ufl.edu.
Author Contributions
A.M., G.V.T.S., M.J.R., G.T.M., and A.P. designed and supervised the research. A.M., G.V.T.S., and A.P. carried out computational 
methods development, computational modeling calculations, and model analysis. J.H., L.K., and L.M. carried out experimental 
studies. The manuscript was written with contributions from all authors. All authors have given approval to the final version of the 
manuscript.

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jcim.2c01595

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.2c01595.
Supplementary results; CSP values for each residue of the ET domain (in this case, BRD3 ET) (Figure S1); ITC results for TP and 
NSD3 binding to BRD3 ET receptor (Figure S2); similarity between MELD and AlphaFold result for NSD3 and JMJD6 binding 
(Figure S3); confidence and diversity in the prediction of TP and NSD3 binding (Figure S4); MELD and AlphaFold predictions for 
LANA, BRG1, and CHD4 binding to ET domain (Figure S5); MELD and HADDOCK prediction comparison for TP and NSD3 
binding (Figure S6 and S7); comparison of the orientation of tryptophan in JMJD6 in MELD, AF2, experimental and explicit solvent 
simulation of experimental conformation (Figure S8); residue pairing comparison of MELD and AF2 results (Figure S9); dihedral 
angle information of TP peptide, predicted from CSP (Table S1); dihedral angle information of NSD3 peptide, predicted from CSP 
(Table S2); dihedral angle information of JMJD6 peptide, calculated from the native structure (Table S3); dihedral angle information 
of LANA peptide, calculated from the native structure (Table S4); dihedral angle information of BRG1 peptide, calculated from the 
native structure (Table S5); dihedral angle information of CHD4 peptide, calculated from the native structure (Table S6); dihedral 
angle information of JMJD6 peptide, predicted from CSP (Table S7); dihedral angle information of LANA peptide, predicted from 
CSP (Table S8); NOEs used in MELD simulation for JMJD6 (Table S9); and thermodynamic properties of TP and NSD3 obtained 
from ITC experiment (Table S10) (PDF)

The authors declare the following competing financial interest(s): GTM is a founder of Nexomics Biosciences, Inc. This affiliation is 
not a competing interest with respect to this study. The remaining authors declare no competing interests.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2023 May 01.

Published in final edited form as:
J Chem Inf Model. 2023 April 10; 63(7): 2058–2072. doi:10.1021/acs.jcim.2c01595.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/10.1021/acs.jcim.2c01595
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01595
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01595/suppl_file/ci2c01595_si_001.pdf


Jingzhou Hao,
Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary 
Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States

LiChung Ma,
Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State 
University of New Jersey, Piscataway, New Jersey 08854, United States

Monica J. Roth,
Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State 
University of New Jersey, Piscataway, New Jersey 08854, United States

Gaetano T. Montelione,
Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary 
Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States

Alberto Perez
The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 
32611, United States

Abstract

Intrinsically disordered regions of proteins often mediate important protein–protein interactions. 

However, the folding-upon-binding nature of many polypeptide–protein interactions limits the 

ability of modeling tools to predict the three-dimensional structures of such complexes. To 

address this problem, we have taken a tandem approach combining NMR chemical shift data 

and molecular simulations to determine the structures of peptide–protein complexes. Here, we 

use the MELD (Modeling Employing Limited Data) technique applied to polypeptide complexes 

formed with the extraterminal domain (ET) of bromo and extraterminal domain (BET) proteins, 

which exhibit a high degree of binding plasticity. This system is particularly challenging as 

the binding process includes allosteric changes across the ET receptor upon binding, and the 

polypeptide binding partners can adopt different conformations (e.g., helices and hairpins) in the 

complex. In a blind study, the new approach successfully modeled bound-state conformations and 

binding poses, using only protein receptor backbone chemical shift data, in excellent agreement 

with experimentally determined structures for moderately tight (Kd ~100 nM) binders. The hybrid 

MELD + NMR approach required additional peptide ligand chemical shift data for weaker (Kd 

~250 μM peptide binding partners. AlphaFold also successfully predicts the structures of some 

of these peptide–protein complexes. However, whereas AlphaFold can provide qualitative peptide 

rankings, MELD can directly estimate relative binding affinities. The hybrid MELD + NMR 

approach offers a powerful new tool for structural analysis of protein–polypeptide complexes 

involving disorder-to-order transitions upon complex formation, which are not successfully 

modeled with most other complex prediction methods, providing both the 3D structures of 

peptide–protein complexes and their relative binding affinities.

Graphical Abstract
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INTRODUCTION

Molecular modeling has become an essential toolset for predicting bound conformations 

in structural biology. These successes are attributable to advances in protein structure 

prediction, robust docking pipelines for small molecules, and accurate free energy 

methods for quantifying relative (and absolute) binding affinities.1 Despite these advances, 

the accuracy of these methods decreases rapidly for systems involving significant 

conformational changes upon complex formation, where receptors can accommodate 

multiple binding modes, and for highly charged systems.2,3 In particular, systems involving 

disorder-to-order transitions upon complex formation, including peptides that fold as they 

bind, challenge current protein–peptide docking methods. Machine learning tools have 

recently brought fast and accurate predictions for protein structures4,5 and are now being 

extended to predictions of complexes.5,6 More generally, three-dimensional structures of 

peptide–protein complexes provide essential information for understanding the mechanisms 

of multiprotein complex assembly and have the potential to inform drug discovery.

Here, we describe an integrative approach to structure determination for peptide–

protein complexes combining NMR chemical shift data and molecular simulations. 

High-information-content NMR studies rely on extracting many distance and orientation 

restraints to solve the structure of the peptide–protein complex.7 At the other extreme, 

lower-information-content NMR studies, such as backbone chemical shift data, which are 

prerequisites to more extensive studies, provide valuable information about the binding 

epitope and (in some cases) the bound-state conformation of the peptide. But such methods 

do not usually provide enough data to characterize the binding mode reliably and structures 

of the complex involving disorder-to-order transitions upon binding.

Molecular simulations approach the problem of peptide binding by sampling the binding/

unbinding landscape, including multiple binding modes and peptide conformations, relying 

on statistical mechanics to identify preferred conformations in the ensemble. Sampling 

multiple binding/unbinding events requires timescales much longer than the bound-state 

lifetime,8 entailing a significant computational effort even with special-purpose computers9 
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or advanced sampling technique strategies.10–14 Integrating experimental data reduces 

the conformational space, focusing sampling on structures that satisfy the physics and 

experimental data.15,16 This work identifies synergies between incomplete or “sparse” NMR 

data and simulations for structure prediction of peptide–protein complexes, focusing on 

applicability, transferability, and limitations. This pipeline allows a more rapid structure 

determination of complexes than conventional NMR approaches and can provide structures 

of complexes even for systems for which extensive NMR data cannot be obtained. We focus 

on the binding of polypeptides to the extraterminal domain (ET) of bromo and extraterminal 

domain (BET) proteins, which exhibit both disorder-to-order transitions of polypeptide 

binding partners and allosteric changes in the receptor and which also accommodate 

peptides binding in different conformations.7 This biologically important system exhibits 

a significant degree of plasticity in binding modes and peptide conformations,7,17–19 as well 

as a wide range of binding affinities, and poses challenges to current computational and 

experimental approaches.

The BET family of proteins plays important roles in eukaryotic gene regulation by 

recognizing and binding epigenetic signatures and recruiting other regulatory proteins. 

Structurally, BET proteins contain two bromodomains that recognize and bind acetylated 

signatures in histones and an extraterminal domain (ET) that serves as an anchor point to 

recruit other host regulatory and chromatin remodeling proteins.19 Some viruses, such as 

the murine leukemia virus (MLV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), 

encode proteins that also bind to the ET domain. For retroviral integration, this effectively 

facilitates their location near active transcription start sites and CpG islands.20 The MLV 

integrase contains an intrinsically disordered C-terminal polypeptide “tail” segment that 

becomes structured upon binding the ET domain. KSVH virus has a latency-associated 

nuclear antigen (LANA) protein that binds ET. Understanding and predicting how different 

polypeptide sequences bind the ET domain can potentially lead to new cancer treatment and 

gene replacement therapy approaches.

The structured region of the ET domain adopts a 68-residue three-helix bundle (see Figure 

1) with a binding site defined by a hydrophobic pocket flanked by a negatively charged loop 

region connecting helices α2 and α3. Proteins interact with the ET domain through short 

peptide epitopes that anchor hydrophobic residues in ET’s hydrophobic pocket and interlace 

positively charged residues of the ET-binding polypeptide segment with negatively charged 

residues of ET through a zipping mechanism.17 Interestingly, the binding mode, orientation 

of the bound polypeptide segment, and even secondary structure of the bound polypeptide 

can vary considerably for different polypeptide sequences, requiring the binding region of 

the ET receptor to adopt different conformations in different ET–polypeptide complexes (see 

Figure 1).

Several aspects have limited progress in characterizing ET complexes. First, many of 

these complexes involve disorder-to-order transitions of ET-binding regions of intrinsically 

disordered regions of protein partners, stabilized by transient interactions with medium to 

weak binding affinities, producing spectra with contributions from unbound and bound 

states. Second, despite the high homology between the ET domains of different BET 

proteins, there are marked differences in binding affinities (e.g., the host JMJD6 protein is a 
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weaker binder to BRD3-ET than to BRD4-ET19). Third, the choice of sequence/length of the 

selected peptide epitope during experimental binding affinity assays also dramatically affects 

the measurements. For example, the ET-binding segment of NSD3 has been characterized in 

complexes with BRD3-ET and BRD4-ET using either short or long sequences that bind as a 

single strand or as a hairpin, respectively, where the short peptide is a weaker binder than the 

longer construct; the short peptide binds to BRD3-ET with Kd = 950 μM and to BRD4-ET 

with Kd = 140 μM, whereas the longer polypeptide binds to BRD3-ET with Kd = 250 ± 150 

μM.21 This weak binding constant has made it difficult to determine the 3D structure of this 

complex.7 In this regime, both computational and experimental approaches are challenged.

The present work presents a solution to such challenging systems by combining 

computational tools and low-information-content NMR data (i.e., chemical shift data alone) 

to determine the structures of ET–peptide complexes (see Table 1 for peptides used in 

this work). We focus on peptides binding to BRD3-ET7 and BRD4-ET based on our 

available experimental data and those found in the literature.21,22 Future work will establish 

differences in binding affinities and mechanisms among ET domains from various BET 

proteins and how to exploit these differences for selectively targeting these different BET 

proteins.

We formulated this study in two stages. First, we conducted blind computational modeling 

with the MELD approach15 for two peptide–protein complex structures followed by an 

assessment of model accuracy based on high-quality NMR structures of these complexes.7 

Here, the experimental team provided NMR data sets for peptide–protein complexes for 

which structures were not yet deposited in the Protein Data Bank and not available to 

the prediction team, with increasing information content and collected predictions from 

the computational group at each stage (see Figure 2). The lowest-tier data used only 

backbone 15N-1H chemical shift perturbation (CSP) data measured on the receptor protein, 

effectively identifying possible binding hotspots. For ET, these CSP data reflect changes 

in nuclear environments at the peptide binding site and changes throughout the structure 

due to allosteric conformational shifts resulting from peptide binding.7 At the highest tier 

of experimental information, in addition to the backbone 15N-1H CSPs measured on the 

receptor protein, we also used dihedral angle restraints based on backbone chemical shift 

data for the isotope-enriched receptor-bound peptide.23,24 Although the principle regime of 

study is for tight (Kd < 1 μM) and weak (1 μM < Kd < 500 μM) complexes, in order to 

explore the impact of a few key contacts and the potential for docking very weak complexes 

(Kd > 500 μM), in addition to these chemical shift data, a few peptide–protein contacts based 

on the strongest NOEs observed between the protein and bound peptide were also provided 

in a third sparse-NMR data set. In the second stage of the study, we extended the method 

to other peptide–ET domain complexes for which three-dimensional structures were already 

published to assess the generality of our methods.

METHODS

Experimental Methods.

NMR Data.—Experimental NMR data were generated for the murine BRD3-ET domain 

(residues 554 to 640) and its complexes with the 23-residue C-terminal tail peptide (TP) 
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of MLV IN (residues 1716 to 1738 of the Gag-Pol polyprotein), and the ET-binding 

polypeptide segments of murine NSD3 (residues 151 to 184) as summarized in Table 

1. 13C,15N-enriched samples of ET were produced using standard methods.7,25 Isotope-

enriched peptides were produced as fusion proteins followed by proteolytic cleavage, as 

described elsewhere.7 Sequence-specific resonance assignments for peptide complexes (for 

both the ET protein and for the bound polypeptides) were determined using standard triple-

resonance NMR methods, also described elsewhere.7 NMR data for ET-binding domains 

of CHD421 (BMRB ID 30367), BRG121 (BMRB ID 30368), LANA17 (BMRB ID 26042), 

and JMJD618 (BMRB ID 30373) were obtained from the BioMagResDataBank (BMRB26). 

Backbone amide 15N-1H chemical shift perturbations (CSPs) of the apo BRD3 ET domain 

relative to values in the complex were calculated using ΔδN,H = ((ΔδN/6)2 + (ΔδH)2)0.5 

and plotted as a function of BRD3 ET sequence. The threshold for defining a significant 

CSP was determined by iterative analysis.27 The standard deviation (σ) of the shift changes 

ΔδN,H was first calculated. To prevent biasing the distribution by including the small number 

of residues with very large shift changes, any residues for which the shift change is greater 

than 3σ were excluded. The standard deviation (σ) of the remaining ΔδN,H values was 

then recalculated. Iteration of these calculations was performed until no further residues 

were excluded. The threshold value for a minimal CSP was then set to ΔδN,H = 3σ = 0.02 

ppm. 13C- and 15N-edited 3D NOESY spectra for uniformly 13C,15N-enriched ET-TP and 

ET-NSD3 complexes were recorded with NOE mixing times of 120 ms.

Isothermal Titration Calorimetry.—Isothermal titration calorimetry was carried out 

using a MicroCal VP-ITC Isothermal Titration Calorimeter in the Analytical Biochemistry 

Core Facility of the Center for Biotechnology and Interdisciplinary Sciences (CBIS) at 

Rensselaer Polytechnic Institute. TP (SRLTWRVQRSQNPLKIRLTREAP) was prepared by 

commercial solid-phase peptide synthesis and purified by reverse-phase HPLC (Peptide 

2.0). Recombinant NSD3 (EFTGSPEIKLKITKTIQNGRELFESSLCGDLLNEVQASE) was 

prepared as described previously.7 Samples of ET (~2.4 mL) and peptide binding partners 

(~300 μL) were prepared for ITC studies by dialyzing together in separate dialysis bags 

placed in the same beaker of the ITC buffer containing 20 mM Tris, 150 mM NaCl, and 1 

mM TCEP at pH 7.5. The ET and peptide binding partners were first dialyzed in 1 L ITC 

buffer at 4 °C for 8 h and then dialyzed into a new 1 L ITC buffer at 4 °C overnight. Protein 

and peptide concentrations were determined after dialysis by absorbance spectroscopy at 

280 or 205 nm28 using extinction coefficients for ET (ε280 = 4470 M−1 cm−1), TP (ε280 = 

5500 M−1 cm−1), and NSD3 (ε205 = 126,480 M−1 cm−1, contains no Tyr or Trp) calculated 

from their respective amino acid sequences.

Data Sets Used for the Blind Study.—We use three different experimental NMR 

data sets to mimic different levels of experimental NMR information: (1) CSP, (2) CSP 
+ TALOS, and (3) CSP + TALOS + NOE. For the lowest-information-content data 

set, experimental docking data include only backbone 15N-1H CSP data for the protein 

receptor in the presence/absence of a bound peptide. We call these CSP data sets. This 

approach uses the comparison of the [15N-1H]-HSQC spectra of apo and peptide-bound 

receptor and has the advantage that the peptide binding partner does not require isotope 

enrichment. Residues of the receptor (in this case, ET) for which there is a chemical shift 
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perturbation upon complex formation may be directly involved in binding or indirectly 

affected by allosteric conformational changes. Hence, these CSP data do not provide 

information about which specific protein atoms (e.g., backbone vs sidechain) are involved 

in the interaction with the peptide or which peptide residues might be involved in the 

binding. The CSP threshold for significant perturbations (calculated as described above) 

indicates that the 15N-1H chemical shifts of the majority of residues in the ET receptor are 

perturbed upon complex formation, with a broad range of CSP values (Figure S1). On the 

basis of the distribution of CSPs across the ET structure, for both the BRD3-ET:TP and 

BRD3-ET:NSD3 complexes, we assigned only residues with relatively large CSP values 

ΔδN,H > 0.25 ppm as “active residues”, likely to be in or near the peptide binding site. This 

conservative threshold is significantly larger than the estimated value of a minimal CSP, 

ΔδN,H = 0.02 ppm (cited above). These CSPs include 20 and 22 H-N sites, respectively, for 

the two complexes (Figure S1).

The second data set adds conformational restraints for phi/psi dihedral angle ranges for the 

bound peptide based on the backbone chemical shifts measured for the bound peptide in 

the complex, determined with the program TALOS 23,24 (CSP + TALOS data sets). These 

data require isotope-enrichment of the peptide ligand and NMR assignments for the bound 

peptide carried out as described previously.7 TALOS-generated peptide dihedral torsion 

restraints were used in MELD simulations with maximum and minimum values shown in 

Tables S1 and S2.

The third data set includes the same CSP and dihedral restraint information together with 

three additional restraints derived from three strong interchain NOEs among backbone and 

relatively easy to assign sidechain methyl or aromatic resonances (CSP + TALOS + NOE 
data sets). Generally speaking, significant additional effort is needed to obtain such NOE 

data, and this third approach was explored largely for the sake of exploring the limits of the 

MELD + NMR method. Specifically, in this third data set, distance restraints were imposed 

between Val 24 CG1/Trp 73 HH2, Ile 44 CD1/Ile 84 CD1, and Glu 47 CG/Leu 82 CD2 for 

the BRD3-ET:TP system and between Ile 44 H/Leu 73 H, Ile 42 H/Ile 75 H, and Val 24 

CG1/Phe 86 CD1 for the BRD3-ET:NSD3 system. Simulations were performed by trimming 

off 19 unstructured residues in the N-terminal region of ET (which are distant from the 

peptide binding site) and renumbering the resulting trimmed domain sequence to start at 

residue 1. Thus, the residue numbering convention used in the MELD + NMR calculations 

uses residues 1 to 68 for the ET receptor (corresponding to residues 573 to 640 of the 

BRD3 protein), with residues of the peptide binding partner numbered from 69 onward 

(corresponding residue numbers shown in Table 1).

Computational Methods.

MELD Approach.—MELD is a plugin to the OpenMM29 molecular simulations engine. 

It integrates data and simulations through Bayesian inference.15 The main advantage is 

that it accommodates data sources that are ambiguous and/or noisy, making it well-suited 

for the analysis of protein NMR data. For example, CSP information on the ET receptor 

protein identifies possible sites of interaction between the protein and peptide but does not 

distinguish which residues are at the interface and in contact with residues in the bound 
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peptide and which are never in direct contact (e.g., CSPs distant from the binding site can 

arise from allosteric or propagated structural changes). We thus include all possibilities, 

knowing that only a small subset will be present in the structure of the complex (see Figure 

2). MELD samples through conformations and different implementations (subsets) of the 

data to produce an ensemble that is compatible with a subset of data and the physics model 

(given a force field).

MELD Simulations.—As in previous studies, we used an H, T-REMD protocol30 to 

explore the energy landscape efficiently. We used 30 replicas running for 1.5 μs starting 

from an unbound folded receptor and extended peptide conformation placed 30 Å away from 

the receptor. The temperature increases geometrically from 300 K at the lowest replica to 

500 K at the 12th replica and is kept constant at 500 K afterward. The Hamiltonian changes 

according to how strongly we enforce the data [e.g., strongly, k = 350 kJ/(mol nm2), below 

replica 12th, and with no restraints at the 30th replica—changing nonlinearly in between the 

12th and 30th replicas]. The physics model uses the GBNeck2 implicit solvent model31 and 

a combination of the ff14SB32 (side chains) and ff99SB33 (backbone) force fields.

The CSP data were modeled by all possible combinations between the set of all peptide 

residues and the set of ET active residues with CSP above the ΔδN,H = 0.25 ppm threshold 

using a flat-bottom harmonic restraint between Cβ’s of each pair. The restraints added no 

energy penalty up to 8 Å, and then the energy penalty increased quadratically until 10 Å 

and linearly beyond, with a force constant of 350 kJ/(mol nm2). The combinatorics leads 

to many possible restraints, but only a few are present in the bound structure; hence, 

we assigned a 4% confidence level to this data set. Which restraints are enforced is 

deterministic: at each timestep, all restraint energies are evaluated, and the 4% lowest energy 

restraints are enforced until the next timestep. Different replicas can satisfy different sets 

of restraints. An advantage of MELD is that each different data source can have different 

confidence values. For example, a second protocol created combinatoric restraints between 

only the hydrophobic residues in the peptide and the active protein residues. This resulted in 

a lower number of overall restraints and a higher confidence level (10%).

For the CSP + TALOS data sets, we modeled bound-peptide chemical shift data in a 

similar manner by enforcing phi and psi dihedral angle restraints based on the minimum 

and maximum values of backbone dihedral angles consistent with NMR data, as provided 

by TALOS (see Figure 2 and Tables S1–S6). Modeling of dihedral restraints is based 

on the TALOS analysis of the chemical shift values for each residue and is therefore of 

higher accuracy than the ambiguous modeling of CSP data. We set the confidence on this 

data to 80%. Finally, for CSP + TALOS + NOE data sets, we modeled NOE data with 

a 5 Å flat-bottom potential between backbone–backbone hydrogens. For NOEs between 

side-chain–sidechain or backbone–sidechain hydrogens, we mapped the sidechain hydrogen 

to the corresponding heavy atom and added a 6 Å fat-bottom potential. We used 100% 

confidence on this data set.

We also applied internal distance restraints to the ET structure in all simulations to avoid 

protein unfolding at high temperatures in the replica exchange. For this purpose, we 

calculated all Cα–Cα distances in the apo-protein, selected those closer than 8 Å, and 
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created a restraining potential for each using an 8 Å flat-bottom harmonic potential. To 

allow for possible conformational changes during binding, both locally to the binding site 

due to binding plasticity and distant from the binding site due to allosteric changes, we set 

this data set with a 90% confidence inside MELD. The accuracy parameter in the different 

data sources plays a critical role in guiding the search in MELD, but it is unknown a 
priori. Enforcing higher accuracy values results in more restrained systems and thus faster 

convergence (shorter simulation times). However, if the accuracy value is set too high, the 

restrained protein structure might not be compatible with all the data, leading to incorrect 

simulations.

Competitive Binding Study.—Relative binding affinities can be calculated from MELD 

simulations in which two (or more) peptides compete for the binding site. For this step, 

we presuppose that the individual structures of both peptide–protein complexes are known 

or have been determined with the previous approach. The relative binding affinities for 

BRD3-ET were assessed for the TP and NSD3 peptide sequences shown in Table 1. We 

selected three possible restraints common to both systems based on the experimentally 

determined structures of these complexes. In the starting conformation, both peptides were 

30 Å away from each other and from the receptor. In this case, the contacts we enforced 

had to be satisfied by either peptide at lower replicas, whereas both were unbound at higher 

replicas. We also added restraints to keep the two peptides from interacting with each other. 

The ratio of the populations of peptide molecules bound in the binding site is related to the 

relative binding free energy.34

Clustering.—We cluster the last 1 μs of the five lowest temperature replicas using RMSD 

as a similarity metric with a hierarchical agglomerative clustering algorithm implemented in 

cpptraj.35 All protocols for complexes use average linkage to calculate the distance between 

clusters with a 1.5 Å cutoff. For all cases, we have two clustering protocols: one using 

LRMSD (ligand root mean square deviation)36 calculated considering the whole peptide and 

another using LRMSD calculated on only the core region of the peptide (excluding floppy 

terminal regions). We report the centroid of the highest populated cluster as our prediction.

AlphaFold Predictions.—We used the AlphaFold4 advanced colab version (https://

github.com/sokrypton/ColabFold)37 in its early implementation with a 30-residue glycine 

linker as well as a newer protocol with no linker and with the AlphaFold multimer6 to 

predict the structures of these six complexes.38 From each of these AlphaFold models, five 

structural models were predicted for each complex and ranked according to their pLDDT 

scores.4 Related ET-peptide structures already published in the PDB were excluded in the 

input AlphaFold structure prediction. Each complex model was then refined with the ff99SB 

forcefield.33 Predictions were in agreement except for JMJD6, which remained unbound in 

the absence of a linker. Hence, we reported results only from the glycine linker protocol.

Analysis Methods.—Predicted structures were assessed using different state-of-the-art 

metrics used in the protein–protein or protein–peptide docking communities, including 

IRMSD, fnat, and ILRMSD.2,36,39 Experimental structures determined by NMR methods 

were reported as ensembles with 20 models. The medoid conformer of each NMR ensemble 
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was used to calculate each of these metrics. The medoid, or representative, structure for each 

complex was calculated using the PDBstat software package.7,40

RESULTS

Isothermal Titration Calorimetry Measurements.

Binding affinities of TP and NSD3 peptides to BRD3 ET, Kd of 13 ± 10 nM and 250 

± 150 μM at 10 °C, respectively, were estimated at pH 7.5 and 10 °C by isothermal 

titration calorimetry measurements (Figure S2). The binding affinity of TP to BRD3 ET at 

pH 7.5 and 25 °C, Kd of 90 ± 10 nM (Figure S2), is similar to that reported previously, 

Kd ~150 nM, for BRD4-ET:TP binding at pH 7.0 and 25 °C.22 There is a ~19,000-fold 

difference in affinities for BRD3 ET between TP and NSD3 peptides at 10 °C. For both 

cases, the stoichiometries of complex formation were 1:1. The NSD3 peptide showed signs 

of aggregation at 25 °C, requiring that we restrict our estimate of Kd by ITC to 10 °C.

Blind Studies Distinguish Different Binding Modes.

Figure 3 highlights our results using different data sets for the two blind studies (TP and 

NSD3 peptides binding to the BRD3 ET domain). In all cases, we report the centroid 

of the top population cluster from the ensembles. Interestingly, each peptide requires a 

different amount of data to determine the complex structure accurately. MELD + NMR 

using CSP for the ET receptor and TALOS backbone dihedral-angle restraints for the bound 

peptide (i.e., only chemical shift data) successfully identifies both peptides binding through 

antiparallel strands, with TP forming intermolecular antiparallel beta-sheet interactions with 

ET along its C-terminal region and NSD3 forming intermolecular beta-sheet interactions 

through its N-terminal region, resulting in flipped orientations for the peptide hairpin with 

respect to each other (see Figure 3). These binding modes are in excellent agreement 

with the experimental NMR structures of the two complexes (IRMSD = 2.28 and 1.97 Å, 

respectively). For the stronger-binding peptide (TP), CSP on ET data alone were sufficient 

to provide an accurate binding mode (see Figure 3A), and no data for the bound peptide 

were needed. Using the CSP on ET data from TP for predicting the structure of the BRD3-

ET:NSD3 complex also did not change the predictions (see the Supporting Information 

(SI)), demonstrating that even with a significantly different binding mode, a single study of 

CSPs on the receptor can be used to guide binding of other binding peptides using MELD 

successfully. For both complexes, adding the three distance restraints based on specific, 

strong intermolecular NOEs does not increase the accuracy of the prediction.

Interestingly, using no experimental data for these two complexes, AlphaFold performs 

similarly to chemical-shift guided MELD (IRMSD = 1.35 and 1.55 Å, respectively). For 

the BRD3-ET:NSD3 complex, AlphaFold also predicts an additional alpha helix in the 

tail of NSD3, which is unstructured in the experimental NMR structure (see Figure 3 

and Figure S3). These results demonstrate the potential to use AlphaFold either to screen 

for potential binding poses prior to beginning experimental studies, such as NMR-guided 

MELD modeling, or for providing a validation of the results of MELD + NMR studies.
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Funneling of the Binding Landscape in MELD + NMR Ensembles Is Informative of the 
Expected Accuracy of the Predictions.

Funneling plots capture the ability of MELD ensembles to sample and direct toward 

the native complex. Each funneling plot shows all the cluster centers in the ensemble 

as a function of the RMSD to the complex structure (see Figure 4). MELD simulates 

multiple binding/unbinding events driven by the data. Unbound states are represented as 

low population clusters sampled at a high replica index (red). At lower replica indexes, 

the simulation samples bound (green clusters) and misbound (blue clusters) states. We 

seek approaches that have funneling toward the green regions as seen for the TP peptide. 

Although the final top representative structure is identified based on clustering on the lower 

replicas, these funneling plots clustering on all replicas are useful to identify confidence in 

the results of MELD + NMR and can be used to determine if a docking study can provide 

a reliable result. When the experimental structure is unknown (e.g., during these blind 

studies), we use the top scoring cluster as a reference for RMSD calculations. Typically, we 

run independent simulations satisfying different amounts of contacts between the peptide 

and protein and use funneling plots to determine the best protocol. We select protocols that 

lead to more funneled landscapes and higher populations of the top cluster.44 For the TP 

peptide, different protocols agreed in modeling the same bound conformation, increasing the 

confidence in our predictions (see Figure S4). For the NSD3 peptide, using CSP data alone, 

different protocols were not in agreement (see the higher number of misfolded states in 

Figure 4), with top predictions from different protocols differing by more than 5 Å backbone 

RMSD between them. Adding backbone dihedral restraints for the bound peptide ligand, 

determined from chemical shift data on the bound peptide using TALOS,24 narrowed the 

number of clusters, allowing the identification of a core region of the NSD3 peptide that 

was bound with a flexible terminal region. This flexible region was responsible for a higher 

diversity of binding modes and lower populations of the top cluster; clustering on the core 

region rapidly identified a top cluster with the highest confidence (49% population of the top 

cluster). A posteriori analysis looking back at the CSP-only data set shows that the correct 

binding mode was identified as the fifth cluster, what in the docking field is considered 

a scoring failure. Adding dihedral restraints for the bound peptide reduces the number 

of clusters by 50% concerning the initial protocol (see Figure S4). Similarly, a posteriori 
analysis for TP reveals that excluding the disordered terminal region residues from the 

clustering calculation improved the confidence score for the correct prediction (populations 

above 55%, see Figure S4). In our experience, when the population of the first cluster is 

above 30%, MELD predictions correctly represent experimental structures.45

Studies on Known Peptide–ET Complexes.

Four additional peptide–ET complexes have been previously experimentally characterized 

(BRD4-ET:JMJD6, BRD4-ET:-LANA, BRD3-ET:CHD4, and BRD3-ET:BRG1). These four 

peptides are all much weaker binders than TP (Kd ~16018 ~635,17 ~95,21 and ~7 μM,21 

respectively). Like NSD3, binding affinity measurements with ITC for these weaker-binding 

peptides generally have large uncertainty (see, for example, Figure S2C). Of these, JMJD6 

binds as an alpha-helix,18 with the rest binding as single antiparallel β-strands. MELD + 

NMR calculations were carried out for these published complexes to further explore the 

interplay between binding affinity, the information content of the data, and MELD’s ability 
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to predict structures of weak binding to very weak binding complexes such as JMJD6 

and LANA. JMJD6 is the only solved structure binding as a helix,18 illustrating the broad 

binding mode plasticity of the ET domain. However, JMJD6 is also a special case, as access 

to the ET-binding epitope (amino-acid residues 84–96)18 requires a conformational change 

in the JMJD6 protein structure to expose these residues for binding into the ET cleft.

Some low-affinity complexes exhibit weaker CSP effects on the ET receptor. This challenge 

was addressed, assuming competitive binding of these peptides with TP, using the CSP 

data for the BRD3-ET:TP complex in MELD + NMR modeling of these other complexes. 

Similarly, fast or intermediate exchange on the NMR chemical shift timescale also 

results in ensemble-averaging of the bound-state peptide chemical shift data, precluding 

the straightforward determination of the bound-state peptide backbone dihedral angles 

from these chemical shift data for weakly binding complexes using TALOS (see Tables 

S7 and S8). In principle, in the intermediate or fast exchange regime of very weak 

complexes, bound-state peptide backbone chemical shifts can be determined using more 

sophisticated NMR experiments such as relaxation dispersion (e.g., Carr–Purcell-Meiboom–

Gill46 (CPMG)), chemical exchange by saturation transfer (CEST),47 and/or peptide titration 

experiments. To mimic such NMR data for testing MELD + NMR’s applicability even 

for weakly binding systems, for these very weak binders, we obtained phi/psi restraint 

ranges directly from the experimental structures using MDTraj48 (see Tables S3–S6). For 

consistency with the blind study, we also simulated three strong NOEs based on the 

experimental structures (see Table S9) for generating intermolecular distance restraints for 

the CSP + TALOS+NOE data set.

Of the four peptides, MELD recovers the experimental binding modes for tighter-binding 

CHD4 and BRG1 complexes (Kd < 100 μM) using only CSP on ET data and no data for 

the bound peptide (see SI and Figure S5), as was observed for the BRD3-ET:TP complex. 

LANA is the weakest binding peptide in the set (Kd ~635 μM), and using only the CSP 

on ET data produces incorrect binding modes and peptide conformations. Adding peptide 

backbone dihedral angle restraints for the LANA peptide in the BRD4-ET:LANA complex 

suffices to allow MELD + NMR to model a binding mode quite similar to the experimental 

structure, as was also observed (above) in modeling the BRD3-ET:NSD3 complex (Kd 

~250 μM). The accuracy of the BRD4-ET:LANA binding pose is further improved by 

adding a few simulated NOE restraints (backbone–backbone contacts, see SI and Figure S5), 

demonstrating the value of such data if they can be obtained.

However, the weak and unique BRD4-ET:JMJD6 complex was more challenging. Here, 

we selected the BRD4-ET variant over BRD3-ET because previous studies detect weak or 

no binding to the latter.19 JMJD6 was found to bind as a helix using each of the three 

different data sets, with a bound-state structure similar to that observed in the experimental 

structure of this complex.18 However, the helix is displaced from the experimental binding 

mode when using CSP and CSP + TALOS data. Interestingly, AlphaFold predicts a 

helical structure for this system for the bound peptide. However, this binding pose is also 

significantly different from the reported experimental structure (Figure S3). The top five 

AlphaFold predictions are diverse in binding mode and more closely agree with the MELD 

predictions than the experimental BRD4-ET:JMJD6 complex structure. As expected, adding 
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three strong-NOE-based distance restraints simulated from the experimental structure to 

MELD + NMR simulations recovers the experimentally observed binding pose (see Figure 

4).

Competitive Binding Simulations Identify TP as a Stronger Binder than NSD3, 
Consistent with Experimental ITC Measurements.—We recently introduced a 

competitive binding assay with AlphaFold49 that is able to correctly rank order the strongest 

binders in the set of peptides studied here. However, this modeling approach does not 

provide any information about their binding affinities. Although more computationally 

demanding, MELD calculations sample multiple states, relying on a statistical–mechanical 

analysis to assess their relative importance; in competitive binding simulations, the 

populations of each peptide in the active site allow us to calculate the relative binding 

affinity. Previous results on 20 peptides binding MDM2 and MDMX show that this MELD-

based method predicts relative binding affinities for medium and strong binders.34,50 We 

used this strategy for comparing the binding affinities of the TP and NSD3 peptides for 

the ET in our blind study. For these simulations, we chose a common set of information to 

guide each peptide to the binding site (see Methods and Figure 5A). Figure 5B summarizes 

the population of each peptide in the binding site along each replica. Whereas, at high 

replica indexes, both peptides are unbound early in the binding process, there is a marked 

preference for TP binding over NSD3. The latter peptide can sample the binding site 

multiple times, especially in intermediate replicas, but it is rarely sampled at the lowest 

replica. On the basis of these results, we predict a relative binding affinity of TP and NSD3 

to BRD3-ET, ΔΔGTP/NSD3, of −2.45 ± 0.20 kcal/mol (see SI). The ITC experiments at pH 

7.5 demonstrate that the TP peptide is a better binder, with experimental relative binding free 

energy (at 10 °C) of −5.5 ± 1 kcal/mol (Figure S2) obtained using the Kd values in Table 

S10. Both experiments and computations agree that the TP peptide is a significantly stronger 

binder. Although there is good qualitative agreement between calculated and observed 

binding affinities, the difference reflects in part the high experimental and computational 

uncertainties associated with estimating the Kd’s of such weak binders (e.g., NSD3).

DISCUSSION

The protein–protein and peptide–protein docking field has significantly advanced thanks to 

community efforts such as CAPRI (Critical Assessment of Prediction of Interaction).51,52 

However, it is an unsolved challenge to reliably predict binding poses without any 

experimental data when a large degree of conformational flexibility is involved, which is 

generally the case for peptides binding to receptors. Such docking studies are particularly 

challenging for binding receptors like ET that exhibit binding plasticity, where peptides can 

bind with significantly different conformations. Moreover, although docking can be more 

successful when the bound-state peptide conformation is known, such docking studies do 

not provide insights about the entropic cost for peptide folding and, as such, challenge the 

understanding of how likely it is that a particular peptide sequence would fold into the 

required conformation for binding.

Our strategy is to develop a reliable physics-based approach for predicting structures and 

relative energetics of protein receptor–peptide complexes that is guided by low-information-
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content NMR data, such as backbone chemical shift data. Chemical shift data are 

particularly attractive for this application because they are (i) a prerequisite for further NMR 

studies to provide higher-information-content data and (ii) obtained by either solution-state 

or solid-state NMR studies. Backbone chemical shifts can be determined by solution-state 

NMR for systems as large as 60–80 kDa53 and potentially for even large complexes using 

solid-state NMR. For very weak binding systems, these data may need to be supplemented 

with the strongest backbone/backbone, backbone/methyl, backbone/aromatic, or methyl/

methyl NOEs, which can generally be obtained even for modestly large protein–peptide 

complexes. However, only backbone CSP data for the receptor were required for most of 

the complexes studied here. These backbone CSP data provide a general guide to MELD for 

locating the binding hotspot on the protein surface, and they need not be very complete or 

accurate. This information could even be transferred from one complex to another.

Methods like HADDOCK already use this general CSP approach,54,55 addressing the 

challenge in interpreting the ambiguity in the CSP data by creating ambiguous contact 

restraints, and are successful in predicting docking between folded proteins guided by 

such data. The key advantage of HADDOCK is speed because it is based on docking and 

heuristic scoring functions. However, the folding-upon-binding nature of protein–peptide 

complexes makes them particularly challenging systems for docking predictions with all 

available methods, including HADDOCK, and especially difficult when the receptor can 

accommodate peptides in different binding modes and different peptide conformations (e.g., 

helices and strands as observed for ET–peptide complexes). We find that providing peptide 

ensembles and CSP or CSP + TALOS data is not enough to predict the conformation of the 

complex with HADDOCK for either TP (see Figure S6) or NSD3 (see Figure S7). When 

we provide the conformation of the bound peptide (single structure docking), HADDOCK 

predicts the conformation of the BRD3-ET:TP complex but not that of BRD3-ET:NSD3. In 

contrast, the MELD + NMR approach uses simulations and statistical mechanics to identify 

low free energy states and is thus suitable to account for the entropic component of folding 

upon binding. The main advantage of such an approach is the production of models that 

agree with both a physical model and experimental data, providing valuable biophysical 

parameters such as relative free energies of binding.

A unique strength of the MELD + NMR method is that the energy funneling plots (Figure 

4) provide an assessment of the reliability of any particular docking study. Given a particular 

set of experimental chemical shift perturbation data, docking trajectory landscapes that are 

highly funneled lead to successful predictions. For examples, in Figure 4, the BRD3-ET:TP 

CSP, BRD3-ET:TP CSP + TALOS, and BRD3-ET:NSD3 CSP + TALOS trajectories are 

highly funneled and result in accurate docking models, whereas the BRD3-ET:NSD3 CSP 

trajectory is not highly funneled and does not provide a correct docking model. All of 

the trajectories in Figure 4 that include some intermolecular contacts are highly funneled 

and provide reliable docking models. However, it may not generally be possible to obtain 

such interchain NOE data for challenging protein–peptide complexes for which the CSP 

+ TALOS method, using chemical shift data for both the protein receptor and the bound 

peptide, is not successful.
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In this study, we also observe that AlphaFold can successfully predict structures of these 

ET–peptide complexes. Similar applications of AlphaFold for peptide docking have also 

been recently reported by other groups.56 However, the deep-learning-based AlphaFold 

models do not provide quantitative information about relative binding affinities,49 which 

is a natural product of MELD binding simulations. Novel research on the applicability 

and limitations of AlphaFold is starting to provide qualitative insights into binding 

affinities.49,57 In the case of the BRD4-ET:JMJD6 complex, AlphaFold returns multiple 

models with different binding poses. In this sense, NMR-guided MELD + NMR and data-

independent AlphaFold calculations provide both validating and complementary information 

for accurately modeling receptor–peptide complexes.

Here, we demonstrate a successful approach for accurately modeling protein–peptide 

complexes by combining NMR backbone chemical shift data and MELD simulations. The 

goals of the blind study are multiple: (i) determine if the method is successful, (ii) assess 

its sensitivity to sequence and conformation, (iii) determine the amount of data needed for 

confident determination of the structures, and (iv) assess if MELD + NMR simulations 

can provide reliable relative free energies of binding. We observe that for tight (Kd < 1 

μM) and even for some of the weak ET–peptide complexes, MELD + NMR can reliably 

predict bound-state conformations of the peptide using only backbone chemical shift data 

for the protein receptor (CSP). Specifically, in the best cases of the BRD3-ET:TP, BRD3-

ET:BRG1, and BRD3-ET:CHD4 complexes, only CSP data on the receptor (i.e., ET) side 

of the complex were sufficient for an accurate NMR-guided MELD docking. For weaker 

complexes, some additional data are also required for the bound-state conformation of the 

peptide; e.g., for the BRD3-ET:NSD3 and BRD3-ET:LANA complexes, accurate modeling 

also requires backbone chemical shifts for the bound peptide, which are used to define 

backbone dihedral restraints with TALOS. Significantly, the method is successful in blind 

binding studies involving very different binding modes; e.g., the TP peptide and NSD3 

peptide both bind ET as beta hairpins but bind in “flipped” orientations (see Figure 1). 

However, for some of the weaker complexes studied here, a few additional intermolecular 

distance restraints improve the modeling of the complex. The JMJD6 peptide is an outlier 

in this set, as it is reported to bind BRD4-ET more strongly than NSD3 and LANA 

bind BRD3-ET, yet our methods do not accurately predict some details of this complex 

(see below). Finally, MELD provides a framework to calculate relative free energies of 

binding for TP versus NSD3. Although we observe good agreement across replicas from 

our calculations (ΔΔGTP/NSD3 of −2.45 ± 0.20), the accuracy with respect to experiments 

is not great (3.05 kcal/mol difference). The discrepancy in accuracy is not surprising, as 

even the accuracy in state-of-the-art calculations for small molecule binders is around 1–

2 kcal/mol,58 and methods for flexible binders, such as those studied here, have not yet 

achieved this level of accuracy. Despite this, it is encouraging to find qualitative agreement 

for this system, as we have observed for other systems using MELD competitive binding 

strategies.34,50

In binding to peptides, the ET domain exhibits CSPs throughout the domain structure, 

reflecting an allosteric conformational change propagated across most domains.7 The 

biological significance of these structural changes resulting from partner binding is not 

yet understood. As expected, the unstructured N-terminal segment of ET, which remains 
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unstructured in the complex, does not exhibit CSPs due to peptide binding and/or allosteric 

changes.7 The CSP data in Figure S1 show insignificant chemical shift changes in this 

N-terminal unstructured region of ET, not involved in binding, where ΔδN,H chemical shift 

changes between apo and peptide-bound forms are all <0.02 ppm. For peptide docking, 

we set the threshold CSP as >0.25 ppm, a threshold value that is enough to capture the 

highest perturbations, while bearing in mind that smaller ΔδN,H CSPs (0.02–0.25 ppm) are 

also significant changes arising from allosteric changes, protein–peptide interaction, or both 

effects. As seen in Figure 2 and Figure S1, with this CSP threshold, we identify ~20 residues 

as potentially involved in peptide binding, but MELD can correctly identify that only a 

subset of these contacts is present in the peptide binding epitope of ET, with the rest of these 

CSPs corresponding to conformational changes of ET (both in and distant from the binding 

site) that accompany peptide binding. Hence, MELD + NMR does not require complete or 

highly accurate backbone CSP data to guide the modeling of the complex.

The ET-JMJD6 complex was especially challenging to model. Using CSP data transferred 

from the BRD3-ET:TP system to the BDR4-ET:JMJD6 complex (Kd ~160 μM18), MELD + 

NMR docking simulations result in a binding pose similar to the experimental structure, 

except that the binding mode is shifted by ~6 Å RMSD relative to the native pose. 

Similar results were obtained using the BRD3-ET domain in the MELD + NMR docking 

calculations and for models of this complex returned by AlphaFold (Figure S8). We also 

performed explicit solvent molecular dynamics simulations starting from the experimental 

NMR structure (without restraints). These simulations also exhibited shifting of the peptide 

out of the hydrophobic cleft of ET after 100 ns of simulation (Figure S8). Whereas the 

experimental structure shows a tryptophan residue of the JMJD6 buried in the hydrophobic 

cleft of the highly homologous BRD4-ET domain, this is not observed in the MELD + 

NMR, AlphaFold, or explicit solvent simulations starting from the experimental structure. 

These results suggest that the displaced pose observed in both MELD + NMR and 

AlphaFold might represent a true conformational state of the complex that is not modeled 

by the published experimental NMR structure analysis. This discrepancy could arise from 

well-known challenges in interpreting ensemble-averaged NMR data. Simulations provide 

the structure with the most weight in the Boltzmann ensemble. NOESY experiments yield 

peaks in the spectra when two atoms are close in space. The intensity of the peaks is an 

ensemble average over the experimental observable, which rapidly decays with increasing 

distance between the two atoms (as <1/r6>).59,60 In practical terms, short distances between 

two atoms have a stronger weight in conventional NMR structure determination protocols 

than longer distances. A structure exhibiting a long distance between two atoms 70% of the 

time and a close distance 30% of the time may be interpreted by conventional modeling 

methods as a short distance in one single (or dominant) conformation present in the sample. 

We believe that this could be of special importance in the case of weak peptide binders, 

such as JMJD6. If multiple binding modes are present, some of the NOEs observed may 

arise from a minor population with short interproton distances. Satisfying these NOE-based 

distance restraints could then overweight the representation of these structures in the final 

ensemble reported by traditional NMR-based modeling methods. This is a general challenge 

for docking studies using NOE data. It provides a good illustration of why NMR-guided 

MELD + NMR protocols using exclusively chemical shift data may be even better suited 
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for modeling the dominant poses of peptide–protein complexes than conventional methods 

using such ensemble-averaged NOE data.

In developing MELD + NMR, we carefully considered the accessibility of experimental 

NMR data needed to model complexes successfully. The method assumes extensive (though 

not necessarily complete) backbone 15N-1H CSPs for the receptor protein, which can 

generally be obtained for systems of up to 60–80 kDa. For studies of a series of peptides 

binding to a common receptor, it may often be sufficient to use the CSP data from one 

complex in modeling a second complex with a peptide known to compete for binding with 

the peptide of the first complex, as shown here for the BRD3-ET:TP and BRD3-ET:NSD3 

complexes. In some cases, it is also helpful to have backbone chemical shift data for the 

bound peptide for generating backbone dihedral angle restraints, requiring the production 

of isotope-enriched peptides. Several recently described peptide–protein fusion systems 

facilitate the high-level production of isotope-enriched peptides.7 Although not the focus 

of the present study, other types of NMR data, such as residue dipolar couplings (RDCs) 

or paramagnetic relaxation enhancements (PREs), could be valuable to orient the peptide 

concerning the protein secondary structure elements,61 albeit with the same caveats for the 

effects of dynamic averaging in weaker binding complexes discussed above for chemical 

shift and NOE data. The nature of such data requires new restraint types and replica 

exchange optimizations in MELD, which are planned developments for future work.

A few key caveats should be emphasized. For some flexible, dynamic protein–peptide 

complexes, it may be difficult to determine backbone resonance assignments needed for CSP 

measurements even when using a perdeuterated 15N,13C,2H-enriched protein sample. It is 

one step more challenging to determine backbone 15N,13C,1H resonance assignments of a 

bound isotope-enriched peptide needed to determine dihedral angle restraints in the CSP + 

TALOS method required for weaker binding peptides. Hence, the approach outlined here 

is limited to cases where extensive backbone (though generally not sidechain) resonance 

assignments can be obtained for the protein receptor and (for weaker complexes) the 

isotope-enriched bound peptide. It remains to be seen how many systems meet these 

requirements. For complexes that do not provide strongly funneled trajectories using 

chemical shift data alone, like the ET–JMJD6 complex (Figure 4), more sharply funneled 

docking trajectories may sometimes be obtained given a few strong intermolecular NOE-

based contacts. However, this is not a generally usable approach for the MELD + NMR 

method, as it may in fact be difficult to obtain required sidechain resonance assignments, 

or any experimental distance restraints at all, for very weak and/or large protein–peptide 

complexes.

The eruption of machine learning into the field of structural biology has many exciting 

prospects. We took advantage of the AlphaFold pipeline as an orthogonal computational 

approach. Although AlphaFold was not originally designed for the purpose of peptide 

binding, a recent report shows that a tethered protein–peptide method using AlphaFold, 

similar to the approach used in this work, is about ~40% accurate in peptide–protein 

docking benchmarks.56 The AlphaFold predictions for three of the six systems analyzed 

in detail here were remarkably good matches to the MELD + NMR models. In particular, 

both methods provide accurate models of both the BRD3-ET:TP and BRD3-ET:NSD3 
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complexes (see Figure 3). For the JMJD6 peptide, both methods modeled a helix as the 

bound-state peptide conformation, consistent with the experimental structure, and both 

predicted a binding mode displaced with respect to the experimentally reported binding 

site (Figure S3). AlphaFold can capture the overall native structure for the three other 

systems studied. However, caution is needed as some of the complexes predicted with 

AlphaFold exhibit a one- or two-residue register shift in the strand pairing between the 

protein and the peptide with respect to the experimental structure (Figure S9). MELD 

+ NMR, however, provided models for these complexes in excellent agreement with the 

experimental structures. Overall, we take these predictions with optimism that deep-learning 

approaches such as AlphaFold can be used to filter and identify where and how peptides 

are likely to interact with a protein receptor. However, as they are predictions, they need to 

be compared with at least some experimental data before building studies based on these 

models. The MELD + NMR approach used here is more computationally expensive at run 

time but produces models that are already compatible with experimental NMR data.

MELD + NMR accounts for peptide conformational entropic preferences through sampling 

and can be exploited for virtual competitive binding studies to assess binding affinities. 

These types of calculations are, however, subject to convergence issues. We have previously 

found that when competing peptides with large differences in binding affinities or competing 

with weak binders, the calculations are more qualitative than quantitative.34,50 In our blind 

study, MELD predicted the TP to be a stronger binder than NSD3, in good agreement with 

experiments. However, for the large difference in experimental binding affinities (−5.5 ± 

1 kcal/mol), we should not expect quantitative predictions from MELD.34 Recently, we 

have shown the ability to carry competitive binding simulations with AlphaFold as a higher-

throughput methodology.49 In this mode, AlphaFold provides a qualitative answer when 

comparing two peptides: either similar binding affinities or one peptide favored for binding. 

Powerful strategies will combine both methods in assessing peptide ligand candidates, where 

AlphaFold can first filter peptides predicted to bind and then perform competitive binding to 

evaluate the expected top binders. Finally, MELD can provide quantitative ranking among 

the top binders. This strategy will thus be useful to inform which peptides are worth 

exploring with more expensive experimental NMR studies.

CONCLUSIONS

The novel MELD + NMR protocol produces valuable insights and predictions for the 

problem of polypeptide folding upon binding, an important and challenging area of 

computational modeling. We have shown reliable predictions for tight and even for relatively 

weak peptide–protein complexes using only backbone chemical shift perturbation data for 

the receptor. For weaker complexes, the method is enabled by bound-state chemical shift 

data, which provide dihedral angle restraints. However, a few limitations are apparent. The 

current protocols struggle to find the correct bound-state conformation for some weaker 

binders without at least some NOE-based distance restraints. This is attributable, at least in 

part, to conformational averaging between the bound and free state in very weak complexes, 

which confounds the interpretation of NMR data. Generally speaking, weak peptide binders 

are very challenging for structural analysis using any experimental method. However, 

future work will improve performance in weak binders where several conformations might 
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be contributing to the binding affinity. This tandem experimental/computational approach 

can also be useful for rational peptide design, where a large number of peptide designs 

directed to a common receptor can be rapidly screened for potential complex formation with 

AlphaFold and then tested more rigorously using MELD + NMR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plasticity of ET–peptide complex formation. (A) Experimental structures of the ET domain 

of BET proteins interacting with different peptides highlight differences across the binding 

modes observed in different ET–peptide complexes (PDB ID shown in parentheses). (B) A 

network of alternating positively (blue) and negatively (red) charged interactions between 

the peptide and protein residues in a zipper-like interaction mechanism that is further 

stabilized by hydrophobic packing between a cleft in the protein and hydrophobic peptide 

sidechains.
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Figure 2. 
General flowchart of the current work. The upper left plot shows NMR CSP values for each 

residue in the receptor, with the threshold cutoff used to define active residues shown as an 

orange horizontal line. Given the active residues, the lower left circular plot represents the 

combinatorics of possible restraints between the peptide (orange circles) and the receptor 

(gray circles); each line between pairs of residues is a potential contact. Purple lines 

represent contacts that are not present in the native structure, and green lines show the 

ones present (true positives). For some active residues, there are no green lines, indicating 
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that their high CSP values were due to an allosteric or propagated structural changes. The 

lower right plot shows the dihedral restraints on the binding peptide conformation, with their 

uncertainties (orange lines) used in MELD with TALOS data. The Ramachandran plot is 

made using https://github.com/gerdos/PyRAMA.
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Figure 3. 
Predicted binding modes. The top panel shows the top MELD prediction using different 

experimental data sets (first three columns) for the blind study along with AlphaFold (fourth 

column) predictions overlaid over the experimental structure (cyan): (A) BRD3-TP and (B) 

BRD3-NSD3. (C) Predictions for the known helical binder BRD4-JMJD6. The numbers 

below each structure represent IRMSD/ILRMSD/fnat in the first row and the population of 

the top clusters in the second row.
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Figure 4. 
Binding funnel plot. Each point represents the centroid of a cluster center arising from the 

clustering of MELD ensembles. The size of the cluster is proportional to the population. 

Each cluster centroid is represented at the average replica index of the cluster to which 

they belong and the LRMSD of the centroid structure with respect to the experimental one. 

Clusters sampled at a high replica index are shown in red; clusters sampled at lower replicas 

are shown in green (LRMSD <5 Å) or blue. Blue represents misbound conformations. 

Successful simulations have strong funneling behavior and high populations of green 

clusters. Reported values for Kd for TP and NSD3 at 10 °C based on the current study 

and for JMJD6 based on literature18 at 20 °C.
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Figure 5. 
Competitive binding simulations. (A) Three equivalent handpicked contacts used to guide 

sampling for competitive binding. Red and blue spheres represent oxygen and nitrogen, 

respectively. (B) Population of native bound conformation for each peptide at each of the 

30 replicas (replica index 0 represents the lowest temperature and flat-bottom harmonic 

restraints fully enforced). The error bars represent the variation in population across three 

independent simulations. (C) Superposition of snapshots in which the TP peptide (orange) or 
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NSD3 (blue) is found binding the protein in the lowest replica ensemble. Only the Cα’s of 

the peptide are represented (as dots) for clarity.
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