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Abstract

Immunotherapy has demonstrated great success in clinical treatment, especially for cancer care. 

Here we review preclinical models, including cell lines, three dimensional (3D) cultures, and 

mouse models to support the need for tools enabling the development of novel immune–oncology 

(I–O) therapies. While in vitro studies have the advantage of being relatively simpler, faster, 

and higher throughput than in vivo models, they must be designed carefully to recapitulate the 

biological conditions that influence drug efficacy. The growing prevalence of 3D in vitro and 

ex vivo models has enabled screening and mechanistic studies in more complex, tissue-like 

environments containing multiple interacting cell types. On the other hand, syngeneic mouse 

models have been instrumental in the historical development of immunotherapies and remain 

an important tool in drug development, despite lacking fidelity to certain aspects of human 

physiology and pathology. Xenograft and humanized mouse models address some of these 

challenges, yet present limitations of their own. Successful development and translation of new 

I–O therapies will likely require thoughtful combination of several of these preclinical models, and 
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we aim to help research and development scientists utilize the appropriate tools and technologies 

to facilitate rapid transition from preclinical evaluation to clinical trials.

INTRODUCTION

The field of immune–oncology (I–O) has transformed the care for cancer patients. In the late 

19th century, William B. Coley, the father of immunotherapy, first attempted to harness the 

power of the immune system using ‘Coley’s toxin’ for treating cancer patients. This cocktail 

of live and inactivated bacteria achieved some durable complete remissions in a series of 

malignancies, including sarcoma, lymphoma, and testicular carcinoma [1]. In the 1980s, 

Rosenberg et al. demonstrated that administration of high dose cytokine IL-2 could lead 

to durable, complete, and apparently curative regressions in some patients with metastatic 

melanoma and renal cancer [2,3]. Inspired by Paul Ehrlich’s ‘magic bullets’ concept, in 

1997 rituximab became the first approved monoclonal antibody (mAb) for the treatment of 

lymphoma [4,5]. The discovery of cytotoxic T-lymphocyte associated protein 4 (CTLA-4) 

and programmed cell death protein 1 (PD-1) and the antibody drugs targeting them, immune 

checkpoint inhibitors (ICIs), propelled the I–O field into the current era [6–10]. On the other 

hand, chimeric antigen receptor T (CAR-T) cell therapy rewires patient immune cells to 

target tumor antigens independent of major histocompatibility complex (MHC) and there 

are six CAR-T products that have been approved by the US food and drug administration 

(FDA) [11–17]. The first pediatric patient in the world to receive CAR-T cell therapy has 

been tumor free for 10 years.

Through years of breakthroughs, as well as challenges and struggles, I–O therapies have 

been embraced by the oncology community due to their great clinical success. In this review 

article, we highlight emerging preclinical models for I–O therapy development [Table 1, 

Figure 1] and describe their ability to recapitulate the tumor microenvironment (TME), 

inclusion of extracellular matrix (ECM), discuss specific applications in drug development, 

and compare the advantages and limitations of current models.

2D cultures

Choosing a suitable cell line is critical for producing models reflective of tumor biology 

with appropriate antigenicity and driver mutations. Mutational statuses of cell lines used 

in I–O research should reflect tumor biology For example, the von Hippel–Lindau (VHL) 

gene is mutated in 90% of sporadic clear cell renal cell carcinoma (ccRCC) cases [18]. 

Other common mutations found in ccRCC include tumor suppressor genes, such as PBRM1, 

BAP1, SETD2 [19]. More than 20 cell lines are frequently used in renal cell carcinoma 

(RCC) research, including ACHN (uncertain RCC histotype), A-498 (used as a model of 

ccRCC and widely in cancer research), 786-O (used as a model of ccRCC), and SK-RC 

cell lines (obtained from ccRCC metastases) [20]. ACHN mRNA lacks mutations in VHL 

and hypoxia-inducible factor (HIF)-1α, 786-O bears mutated VHL, and SK-RC cell lines 

express either HIF-2α only or both HIF-1α and HIF-2α [20]. In order to use models 

most reflective of natural tumor biology, immunohistochemistry (IHC), gene sequencing, 

and histology analysis of tumors can provide insight into RCC subtypes to enhance the 

translational potential of experiments using 2D cultures [20].
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Cell line choice is not only determined based on gene mutation status, but also on 

different antigen expression. For example, hormone receptor status plays an important 

role in determining a suitable model for breast cancer research. Estrogen receptor (ER), 

progesterone receptor (PR), and amplification of human epidermal growth factor receptor 2 

(HER2) status provide information on tumor biology and therapeutic response, necessitating 

choosing cell lines for 2D culture that reflect tumor subtypes [21,22]. In addition, many of 

the long-established cell lines frequently used in research are derived from metastases, rather 

than primary tumors, which is not representative of varying stages of tumor progression 

[23]. Dai and colleagues categorized breast cancer cell lines into subtypes luminal A, 

luminal B, HER2+, triple negative breast cancer (TNBC) A (TNA), and TNBC B (TNB), 

from least to most aggressive, to better reflect differences in receptor statuses [21]. Luminal 

A cell lines, including MCF-7, BT-483, CAMA-1, HCC-1428, HCC-712, and IBEP-2, 

are ER+, HER2−, and have varying PR statuses [21]. Luminal B cell lines, including 

BSMZ, BT474, IBEP1, and IBEP3, are ER+, HER2+, and have varying PR statuses [21]. 

HER2+ cell lines, including 21MT2, HCC1008, HH315, and SKBR3 are ER−, HER2+, and 

typically PR− [21]. TNA cell lines, including DU4475, EMG3, HCC1937, MDAMB436, 

and MDAMB468, and TNB cell lines, including Hs578T, MDAMB157, MDAMB231, and 

SUM149PT are ER−, PR−, and HER2− [21].

One limitation of 2D culture is that standard incubators mimic atmospheric oxygen 

concentrations. These conditions are not reflective of the lower oxygen tension, termed 

hypoxia, or the insufficient delivery of oxygen to cells that is commonly found in solid 

tumors [24]. This important aspect of cell physiology can be achieved in 2D culture 

by using hypoxia mimetic agents to increase HIF-1α availability [24]. For example, 

CoCl2 is a commonly used hypoxia mimetic that competes with Fe2+ ions, inhibiting 

HIF-prolyl hydroxylases (PHDs) activity, which prevents the degradation of HIF-1α and 

thereby mimics hypoxia [24]. Adherent cell lines, even under ‘normoxic’ atmospheric 

concentrations, can experience hypoxia or anoxia, as oxygen exchange may only occur 

via diffusion from cell culture media, with oxygen availability and consumption rates 

periodically changing in response to one another [24]. Short-term, cyclic, ‘intermittent 

hypoxia’ (IH) experienced by cells in vivo may be mimicked in vitro through the use of 

flow-through systems supplying precise concentrations of oxygen through solenoid valves, 

growing adherent cells in a perfusion-based system of tube-like channels through which 

media is supplied, or using bioreactors with peristaltic pumps to periodically flow media 

with desired oxygen conditions [24]. Furthermore, cell culture media formulations also do 

not replicate the concentration of nutrients, amino acids, and electrolytes found in human 

plasma. The two most commonly used media formulations, Dulbecco’s modified Eagle’s 

medium and Roswell Park Memorial Institute-1640 (RPMI-1640), contain significantly 

higher glucose concentrations than physiologic and varying amounts of electrolytes [25]. 

Typically, cell culture media is supplemented with serum, often from fetal calves, to supply 

growth factors and other essential components lacking in the basal medium. However, 

serum is known to vary between batches, and there are now many efforts designed to 

reduce or eliminate the need for serum in cell culture. Among these reduced-serum or 

serum-free approaches, there are recently developed media designed to mimic human serum 

or plasma, with adjusted amino acid formulations. The balance of nutrients, metabolites, 
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amino acids, electrolytes, vitamins, and trace elements inevitably impact cell metabolism 

and gene expression, and adoption of more physiologic media may improve the likeness of 

cell culture to in vivo conditions [26,27].

Another challenge for 2D studies of cancer research is the heterogeneity of the TME, which 

in addition to cancer cells, include endothelial cells, epithelial cells, immune cells, and 

cancer-associated fibroblasts (CAFs), which are not replicated using cancer cell lines [28]. 

CAFs found in the stroma of human cancers provide signaling and remodeling functions, 

and typically exhibit upregulated ECM production and remodeling (e.g. collagen) and 

secretion of soluble pro-tumor cytokines and growth factors [28]. Recent scRNAseq studies 

have revealed that the heterogeneity of these CAFs in the TME may derive from the variety 

of spatial subgroups found in normal fibroblasts [28], and further work will be required to 

characterize the cross-talk between CAFs and other cell types in the TME [28]. These goals 

cannot be accomplished through the use of 2D culture alone but will require the use of 

co-cultured cells (in trans wells, for example) or 3D organoid culture to mimic the TME.

In addition to the variety of cell types that make up the TME, CAFs function to produce 

and assemble the complex composition of the tumor ECM through the production of 

fibrous proteins, proteoglycans, glycosaminoglycans, and glycoproteins, which contribute 

signaling and support for tumor growth and migration [28] and can also impede immune 

cell movement and activation. The composition of the ECM and resulting crosslinking of the 

tumor stroma impacts drug penetration, with CAFs playing an important role of remodeling 

the ECM through the production of lysyloxidase (LOX) family and MMP enzymes [28]. 

LOX oxidases catalyze the crosslinking of collagen and ELN in the ECM, increasing tumor 

stroma stiffness [28]. LOX oxidases are overexpressed in CAFs, with LOXL2 expression in 

gastric CAFs having been associated with invasive potential [28,29]. Inhibition of LOXL2 

and LOX in breast cancer has resulted in reduction of tumors, angiogenesis, and metastasis 

[30].

ECM proteins can also function as ligands, binding integrin receptors on cell membranes 

[28]. Interaction with the rigid ECM can lead to integrin molecule dimerization, activating 

the focal adhesion cascade [28]. Further, ECM rigidity can trigger SRC-YAP-MYL9/MYL2, 

leading to maintenance of the CAF phenotype with CAF function reinforcing ECM stiffness, 

promoting an environment that facilitates improved tumor cell invasion [28,30].

Targeting ECM proteins, therefore, is an attractive method for generating an environment 

that is more permissive to the delivery of anti-cancer therapies. Generating models that are 

reflective of the crosstalk between cell types and CAF-ECM protein interactions cannot be 

accomplished through 2D culture alone. However, the use of cell lines is beneficial as they 

are able to provide a relatively high number of cells for experiments, compared to primary 

cultures and animal models increasing the speed at which research can be conducted [20]. 

Further, 2D cultures are an unlimited self-replicating source [23]. An important drawback of 

the use of cell lines, however, is the inability of these simplified models to exhibit crosstalk 

between cells and interactions with the tumor microenvironment [20]. This limitation can be 

overcome through the use of 3D cultures or co-cultures [20].
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Another key benefit of using established cancer cell lines is experimental consistency and 

repeatability between labs. Short tandem repeat (STR) DNA profiling can be used to identify 

human cell lines to ensure the absence of cross-contamination or misidentification thereby 

improving the accuracy of assays [31]. STR DNA profiling uses DNA hypervariable regions, 

consisting of variable number tandem repeat (VNTR) units, for identification of a unique 

DNA ‘fingerprint,’ through the analysis of 1–6 bp core sequences of STR microsatellite 

regions [31]. The eight core STR loci used for identification include D5S818, D13S317, 

D7S820, D16S539, vWA, Th01, TPOX, and CSF1PO [31]. Cell lines are authenticated if 

the STR profile is a greater than 80% match with the tissue from which it originates. A 

match of 56% or more is considered unrelated, and values between 56 and 80% require 

further analysis [31]. In this way, independent research groups are capable of repeating and 

validating published studies using the same cell lines.

3D organoids

The ultimate promise of organoid technology is to improve the accuracy and predictive 

value of I–O research. Organoids represent a compromise between the simplicity and 

straightforwardness of traditional cell culture and the more complex and physiological 

conditions provided by in vivo experiments. While both of these methodological approaches 

will remain components of any research and discovery efforts, organoids have begun to 

take a larger role in basic and translational research programs. Whether these organoids are 

generated from differentiated stem cells to resemble specific tissue types, assembled from 

cell aggregates to form tumor spheroids, or are collected from patient samples for ex vivo 
organoid studies, they possess several advantages for I–O studies.

First, the most obvious feature of organoids and spheroids that distinguish them from 

traditional cell culture is their 3D structure. While this difference might seem subtle or 

arbitrary, cellular organization and culture substrates can have significant impacts on cell 

phenotypes in ways that influence tumor growth and immunity Through the years, many 

research groups have reported how conversion from 2D to 3D culture format changed cell 

phenotypes, with distinct gene signatures that are required to support 3D tumor growth 

identified by a recent CRISPR screen study [32].

When a cancer cell line is aggregated into tumor spheroids, they adhere to each other and 

form connections more similar to in vivo architecture, including the generation of ECM. 

Cancer cells produce more ECM in 3D than in 2D, and the 3D format may also alter 

the ratios between different ECM proteins, including collagens (I, III, IV, V), fibronectin, 

and laminin [33–36]. ECM organization can also evolve in 3D, in ways that cannot be 

modeled by simple 2D monolayers of cells [37], with these changes in the ECM likely to 

alter the density and stiffness of the tumor spheroid. Tumor mechanical properties such as 

stiffness may dramatically impact response to immunotherapies because lymphocytes are 

supremely mechanosensitive cells and respond to the mechanical conditions of both the 

microenvironment and of their target cells.

Natural killer (NK) and T lymphocytes are mechanosensitive as a consequence of their 

mechanisms of cytotoxicity. The immunological synapse (IS) of a T cell consists of the 

joining of the T cell receptor (TCR) on the effector cell and the peptide-MHC on the 
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target cell or antigen presenting cell [38]. T cell cytotoxicity is correlated to the force 

generated at the IS, largely through the efficiency of perforin delivery. Increasing the 

membrane tension of the target cell enhances the speed and efficiency of pore formation 

and perforin-mediated killing [39]. Stiff environments, such as tissue culture plastic surfaces, 

enhance T cell cytotoxicity due to increased membrane tension in monolayers of cancer 

cells [39–41]. Similarly, NK cells employ perforin-mediated cytotoxicity, and they have 

also demonstrated more rapid killing in higher density collagen gels [42]. Furthermore, T 

cells rely on stiffness cues to regulate their proliferation, migration, and activation, and 

T cell expansion methodology has been improved by optimizing the stiffness imposed by 

microparticles carrying activating antibodies [43,44].

Beyond the influence on cytotoxic efficiency of tumor infiltrating lymphocytes, stiffness 

can modulate immune checkpoint molecule expression in the spheroids, with higher 

stiffness upregulating the expression of programmed death ligand 1 (PD-L1) in breast 

cancer spheroids [45]. Simply culturing tumor spheroids in 3D has been shown to alter 

PD-L1 expression heterogeneously by tissue type. PD-L1 increased as a result of spheroid 

culture in colorectal cancer, renal cell carcinoma, and breast cancer cell lines, but was 

unchanged in gastric adenocarcinoma [45–48]. Therefore, models that faithfully recapitulate 

the mechanical properties of the native tissue are important to ensure realistic levels of 

lymphocyte cytotoxicity occur as would be seen in vivo.

In addition to PD-L1, additional phenotypic shifts occur in cancer cell lines cultured in 

3D vs 2D monolayers, including changes in several cell surface molecules important to 

drug delivery and I–O studies. Studies examining NK or T cell killing in cancer spheroids 

have noted reduced activation and killing in 3D compared to 2D controls. Reduced T 

cell cytotoxicity was attributed, in part, to reduced expression of MHC-class I molecules 

by 3D spheroids [49], and these spheroids were less susceptible to cytokine-induced 

upregulation of MHC-class I [50]. On the other hand, HLA-E, an inhibitory ligand towards 

NK cells, was upregulated in cancer cells cultured in 3D [42,51]. Spheroids may also lose 

expression of death receptors required for apoptosis mediated by TNF-α -related apoptosis 

inducing ligand (TRAIL), through the upregulation of cyclooxygenase-2 and prostaglandin 

E2 (COX-2/PGE2) pathways [52]. 3D spheroids are also likely to increase expression of 

an efflux pump known as P-glycoprotein (P-gp), a recognized cause of multidrug resistance 

[53]. P-gp upregulation has been attributed to metabolic changes that occur in spheroids 

such as reactive oxygen species and activation of the HIF-1α pathway [54,55].

Hypoxia can be achieved in traditional cell culture using specialized equipment, but spatial 

gradients in oxygen tension occur naturally in spheroids due to the balance between 

diffusion and consumption. One study that measured the oxygen pressure in tumor spheroids 

found an average oxygen diffusion distance of 232 ± 22 μm [56]. Therefore, spheroids large 

enough to exhaust oxygen diffusion limits will develop concentric regions of oxygenation: 

from the well-oxygenated and proliferative outer shell, through a hypoxic transitional zone, 

and to a central anoxic, necrotic core [57,58]. Tumor spheroids have been observed to 

activate the HIF-1α pathway in cell lines that do not express it in 2D (e.g. HeLa, MCF-7) 

[59,60]. Hypoxia subsequently reduced the migration, infiltration and cytotoxicity of T cells 

in microfluidic models [50,61]. Like oxygen, nutrients must also diffuse sufficient distances 
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to reach distal cells in 3D organoids. A study of NK cell activation established a nutrient 

gradient in a microfluidic device and found that in the distal, nutrient-deprived region, NK 

cells became less proliferative and less responsive to cytokines, while at the same time, more 

pro-inflammatory [62].

Solid tumors have long been known to shift their metabolism to favor aerobic glycolysis, 

a phenomenon known as the Warburg effect [63]. Cancer spheroids exhibit increased 

expression of the glucose transporter 1 (GLUT-1) and lactate dehydrogenase, the enzyme 

responsible for lactate production [64,65]. As expected, levels of lactic acid and lactate have 

been found to be higher in 3D spheroids than in 2D, impairing T cell function [49,66]. 

Acidification of the TME reduces lymphocyte efficacy in a number of ways including 

impaired cytotoxicity, reduced cytokine production, increased immunoinhibitory activity of 

the VISTA pathway [67], diminished expression of T cell receptors and CD25/IL-2Rα, and 

decreased activation of signal transducer and activator of transcription 5 and extracellular 

signal-regulated kinase [68–70].

Therefore, establishing 3D tumor geometries that allow realistic gradients of oxygen, 

nutrients, and pH will influence the results of I–O studies based on the altered response 

of lymphocytes to these conditions.

Patient-derived organoids

Tumor organoids derived from fresh patient tissue (patient-derived organotypic tumor 

spheroids or PDOTS), yield even more similarities to in vivo human tumors than organoids 

generated from cancer cell lines. PDOTS maintain the molecular characteristics of the native 

tumor sample, preserve intra-tumoral heterogeneity that does not exist in cell line models, 

and can retain the original stroma and immune cell populations, depending on the method 

of generation [71–73]. Sources for PDOTS include surgical resections, biopsies (both core-

needle and fine-needle aspiration), or pleural effusion, and the PDOTS generated can be 

expanded, passaged, and cryopreserved [74–77]. Typically, mechanical and/or enzymatic 

digestion are used to break down tissue before straining to isolate small spheroids or 

single cells. Methods that fully dissociate samples into single cells then re-form spheroids 

by culturing in ultra-low attachment multi-well plates [78]. Several groups isolate small 

spheroids (<100 μm) using incomplete digestion of patient-derived tissue, which ensures 

that PDOTS generated in this way retain intact stroma from the native tumor, as well 

as a representative population of immune cells, including a matching repertoire of T cell 

receptors as the original tumor [73,79].

PDOTS may be immediately used in experiments or expanded using air-liquid interface or 

submerged hydrogel techniques [80,81]. With growing adoption of patient-derived organoid 

models, more groups have begun to use them for drug screening and validating that 

the response in PDOTS correlates to the response of the patient from which the tumor 

fragments were isolated [71,82]. Studies that obtain PDOTS from patients in clinical trials 

can compare the response rate observed in organoids to the patient response (generally using 

RECIST criteria or progression-free survival as metrics) using quantifications of spheroid 

size changes or viability [71]. While some such studies have only small numbers of samples, 

they often report clear concordance between organoid and patient responses to targeted 
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therapies [83]. Larger studies have compared the molecular features of the native tumor 

to the PDOTS and found no significant differences between the genotype and phenotype 

of the tumor and PDOTS [84,85]. Furthermore, for immunotherapy testing, matched T 

cells can be obtained from peripheral blood mononuclear cells (PBMC) or from tumor 

infiltrating lymphocytes (TILs), and these can be added to PDOTS culture to assess spheroid 

infiltration and cytotoxicity by lymphocytes [73,86–88]. Further studies are required to 

determine the information gained from adding PBMC-derived immune cells vs. retaining 

the native immune population for immunotherapy efficacy. For example, PDOTS with intact 

stroma and immune cells were found to have a highly immunosuppressive environment [84]. 

PDOTS from colorectal cancer had high levels of myeloid-derived suppressor cells and low 

levels of effector lymphocytes such as NK cells and CD8+ T cells.

The exploration and development of patient-derived organoids presents the opportunity to 

use them for ‘personalized medicine’ or ‘precision clinical trials’ [72]. Obtaining tissue for 

PDOTS isolation at the start of a new trial will allow researchers to correlate the ex vivo 
response of PDOTS to the clinical response of each patient, which could increase the speed 

of determining drug response in the future, since organoid drug screening studies typically 

last for days to weeks rather than the weeks to months necessary to determine clinical 

responses. Such trials have reported good correlation between organoids and the clinic, with 

one study reporting 100% sensitivity and 93% specificity when testing immune checkpoint 

blockade in melanoma [89]. Beyond I–O therapy, many groups have used patient-derived 

organoid models for drug screening. This means that testing PDOTS should be able to 

identify ineffective therapies and point clinicians toward drugs more likely to be effective in 

an individual patient, such as a recent study involving breast cancer in which an organoid 

drug screen was used to identify the most effective drug for a patient experiencing early 

metastatic relapse [90]. Treating the patient with the drug identified resulted in disease-free 

progression 3-times longer than any other drug. Other studies have screened large drug 

libraries against PDOTS and validated the results with xenograft mouse models [91] or 

with correlation to clinical outcomes for chemotherapies currently in clinical use [92]. 

However, limitations still exist, and not all studies report high specificity, such as a trial in 

colorectal cancer that found that interferon γ (IFN-γ) production by T cells in PDOTS did 

not correlate well with patient response to immunotherapy [93]. This discordance between 

ex vivo and in vivo response may not be due to inherent differences in tumor phenotype, 

but rather due to the aspects of the microenvironment missing from PDOTS studies. For 

example, immune cell trafficking (adhesion to vasculature, extravasation, and migration to 

tumors) remains a significant barrier to mounting a productive immune response to tumors, 

even with the administration of immune checkpoint blockade therapies. Therefore, studies 

that combine microvascular models, patient-derived organoids, and circulating immune cells 

will be required to recapitulate the full TME and additional barriers to response produced by 

the stroma [94–96].

Limitations of tumor organoid methods

While tumor organoid models offer several advantages that will ensure their continued 

use for I–O studies, there are a number of limitations as well. First, organoid models 

are more complex than traditional 2D cultures, and thus will require additional training 

Wang et al. Page 8

Immuno-oncol Insights. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and resources, and potentially have reduced throughput. Cell line organoids generated 

in ultra-low attachment (ULA) plates do not require significantly more expertise that 

monolayer culture, but many other methods described here require more complex plating 

such as the air-liquid interface or submerged hydrogel methods for expansion of PDOTS, 

or microfluidic devices with compartments for tumor spheroids, stroma (vasculature, CAFs, 

etc.), immune cells, cell culture medium, etc. Many biological labs do not have equipment or 

expertise needed for soft-lithography fabrication of microfluidic devices. This limitation can 

be overcome by purchasing commercial microfluidic devices on the market, but at greater 

cost than tissue culture plastics and without the ability to customize device designs to suit 

specific needs.

Additionally, 3D organoid culture introduces additional variables that are not present in 

traditional cell culture, especially the choice of hydrogel for organoid embedding. Care 

must be taken to standardize and characterize these hydrogels. There is a growing desire to 

develop synthetic gels and culture conditions to eliminate these sources of uncertainty and 

variability [71]. Since lymphocytes are highly sensitive to mechanical cues, subtle changes 

in matrix density, stiffness, or composition could produce differences in therapeutic response 

that will be difficult to attribute to a single cause without thorough understanding of the role 

the microenvironment plays in lymphocyte behavior. However, this is also a key benefit of 

using micro physiological systems for basic science studies of interactions between tumor, 

stroma, and immune cells.

While many tumor spheroid models exist and have been described here, there are also 

increasingly sophisticated tissue-specific organoid models of normal tissue being developed. 

However, few groups have combined normal and tumor organoids [97]. Future cancer 

organoid models could integrate tumor spheroids with healthy organoids from the same 

tissue, which would enable us to model additional aspects of tumor growth and development 

such as invasion and metastasis. Similarly, micro physiological models of the immune 

system, such as lymph node on-a-chip, have been developed but not combined with tumor 

organoids, so there are opportunities to model features of lymphocyte maturation and 

proliferation that these platforms enable [98,99].

Finally, since the behavior of CD8+ effector T cells is critical to response to ICIs, 

multicellular organoid models must address mismatched human leukocyte antigen (HLA) 

types and the graft vs host response that can result from combining cells from multiple 

donors. Though syngeneic mouse cells circumvent this limitation and can be used in 

organoid platforms, the need for human models remains [100–103]. An alternative is to 

use HLA-matched cells, such as the combination of HLA-A*0201 melanoma and MART-1 

specific, HLA-A*0201 restricted T cells [49], or engineered MHC-non-restricted CAR-T 

or TCR T cells [50,61]. For patient-derived models, T cells can be isolated from the same 

patient and re-introduced into the organoid model [86,87]. However, these approaches may 

not work for all pre-clinical immune-oncology studies and new approaches such as knockout 

of MHC molecules on cell types required to generate the microenvironmental architecture 

could be employed [104,105].
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Mouse models

In the early-stage development of immunotherapies, researchers heavily depend on the 

in vitro models which lack of systemic immunity to provide response from endogenous 

immune cells. Using mouse models to assess immunotherapy efficacy provides researchers 

a means to inquiry the relationship between tumor cells and immune cells, as well as 

assess efficacy and safety of immunotherapies in presence of systemic immunity. Here, 

we summarize multiple mouse models for preclinical research, including syngeneic mouse 

model, tumor bearing immunodeficient mouse model, and humanized mouse model.

Syngeneic mouse models

The syngeneic mouse model is able to mimic the pathological transformation process of 

oncogenesis from normal cells into malignant cells [106], and can be categorized into 

three classes, subcutaneous tumor cell line, orthotopic tumor cell line and genetically 

engineered orthotopic tumor development. Kirsten rat sarcoma virus gene mutations are 

presented in approximately 25% of lung adenocarcinoma and are associated with a worse 

prognosis [107,108]. Tumor cells derived from Kraslox-stop-lox(lsl)-G12D/+; p53flox/

flox (KP) inversion induced Joined neoantigen (NINJA) mice expressed neoantigens, 

were immunogenic and able to response to ICIs, including anti-PD1 and anti-CTLA4 

mAbs [109,110]. In addition to NINJA, Cre-Lox system enables mammalian genome 

modification in vivo, carrying out deletions, insertions, translocations and inversions at 

specific tissues via tamoxifen induced Cre recombinase activation [111,112]. For example, 

ccRCC is characterized by inactivation of the VHL gene. The dysfunction of VHL leads 

to HIF hyperactivation, resulting in overexpression of many downstream genes involved 

in angiogenesis, metabolism, and cell-cycle regulation including which represent important 

therapy targets for patients with ccRCC [113,114]. A tamoxifen inducible ccRCC mouse 

model generated by renal epithelial cells with specific deletion from Vhl, Trp53, and Rb1 is 

able to mimic the cancer pathological process from proximal tubule epithelial cells and share 

similar transcriptional signatures with human ccRCC [115,116]. Overall, the cell lines have 

natural number of neoantigens and the spontaneous developed tumor has fewer neoantigens.

Immunodeficient mouse models

Immunodeficient mice were designed to overcome the rejection of human cancer cells as 

well as human immune cells mediated by the mouse adaptive and innate immune responses, 

and serve as powerful tools to assess I–O therapies [117]. For example, the fork head 

box N1 (Foxn1null) mutation, commonly known as nude, lacks a thymus and therefore 

is deficient in T cells but has functional B cells and NK cells [118,119]. Knocking out 

the recombination activating gene 1 (Rag1) [120], recombination activating gene 2 (Rag2) 

[121], protein kinase DNA-activated catalytic polypeptide (Prkdc) genes [122] that are 

essential for variable (V), diversity (D), and joining (J) rearrangements, results in murine T 

and/or B cell deficiency Depletion of interleukin 2 receptor subunit gamma (IL2rg) [123] 

or β2-microglobulin (B2m) [124] genes that are required in interleukin signaling and NK 

development, leads to the absence or functional impairment of murine NK cells in non-obese 

diabetic (NOD) mouse model [125]. Combinations of these genetic strategies have been 

applied to develop the popular immunodeficient mouse strains, such as NOD/Prkdcscid 
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(NOD/SCID) [124], NOD/SCID IL2rg−/− (NSG or NOG) [126,127], and Balb/c Rag1−/− 

IL2rg−/− (BRG) that have all been used in human oncology studies [117].

To choose an appropriate immunodeficient mouse model for a specific project, a number of 

factors should be taken into consideration, including gene background, endogenous immune 

cell components, leakiness (B and T cell development), lifespan, and husbandry [128]. The 

table 2 summarizes the immune cell components (T cells, B cells, NK cells) in several 

commonly used immunodeficient mouse models. Leakiness refers to the tendency of some 

mouse strains to develop functional B and T cells as the mice age. In general, leakiness is 

higher in mice with the C57BL/6J and BALB/cByJ backgrounds, lower in the ones with 

C3H/HeSn-JSmn background [129]. Due to the severe immunodeficiency, Rag1null and 

Pkrdcscid mice have specific husbandry requirements including that they should be housed 

in specific pathogen-free (SPF) environments. In addition, due to lack of efficient DNA 

repair, the Prkdcscid mice are radiation sensitive [130] and therefore cannot be as intensively 

irradiated as other immunodeficient models before being engrafted.

Cell-derived xenograft (CDX) models and patient-derived xenograft (PDX) models

CDX [118] and PDX [136] models developed in immunodeficient mice are widely used in 

cancer studies. A cell-derived COLO205 colorectal cancer cell xenograft mouse model is 

able to assess the synergistic effect of combination therapy of anti-death receptor 5 antibody 

TRA-8 and SN-38, an active metabolite of antitumor agent irinotecan (CPT-11) [137]. 

Orthotopic, tumor-bearing, mouse models provide more relevant development environments 

compared to an ectopic model in evaluation of I–O therapies, such as antibody therapies 

[138] and CAR-T cell therapies [139–141], and could have a better predictive value of 

disease [142–145].

PDX established directly from patient tumor tissue, conserves patient tumor signatures as 

well as the complex interplay between cancer cells and TME and has a better prediction 

for response and prognosis [146]. It has been reported that PDX share remarkable similarity 

in response rates compared to respective clinical trials [147], and serve as a critical tool 

in personalized medicine [148,149]. The patient-derived colorectal cancer models can 

retain intratumoral clonal heterogeneity and chromosomal instability and can be used for 

prediction of the response to an anti-epidermal growth factor receptor (EGFR) antibody, 

cetuximab, in patients [150,151]. The RCC models maintain the ability to evaluate tumor 

angiogenesis, retain genetic and histological characteristics [152], and accurately represent 

their respective original patient tumors [153]. In 2016, US National Cancer Institute (NCI) 

decided to retire the NCI-60 (a panel of 60 human cancer cell lines), and preferentially use 

PDX models derived from patient clinical samples and tagged with their clinical information 

for drug screening because the TME in PDX mimics human tumor better [154].

Humanized mouse models

The application of CDX and PDX models remarkably facilitates human cancer research and 

antitumor drug development. However, recent studies have demonstrated that the absence of 

human immunity in these models severely compromise their value in translational research 

and the development of novel I–O therapies [106,155]. The construction of humanized 
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animal models through transplanting human tissues (such as bone marrow-liver-thymus, 

aka BLT), PBMCs (such as Hu-PBL-SCID) or hematopoietic stem cells (HSCs) (such as 

SRC-Hu) into immunodeficient mice has allowed for the development a rudimentary level of 

innate and adaptive human immunity in small animals [156].

In hu-PBL-SCID mice, the human T cells are highly engrafted and expanded and the mice 

developed severe graft-versus-host disease (GVHD) [157]. Using PBMC-engrafted NSG and 

SGM3 mice, Ye et al. were able to capture alloreactivity in the form of cytokine release 

syndrome (CRS) from individual human PBMC donors [158]. Thus, hu-PBL-SCID mouse 

models serve as a rapid, sensitive, and reproducible platform to screen novel therapeutics 

for CRS, and provides a potential translational bridge for the study and prediction of CRS 

in vivo [159]. HSC-derived humanized mouse models derived from CD34+ progenitor cells 

are used to evaluate I–O therapies, such as anti-PD-1 mAb [160] and study antitumor effect 

in a physiologically relevant immune environment [161]. The humanization efficiency is 

determined by the mouse species, the CD45 cell resource, as well as the age of the mouse 

recipient [162]. The NSG-SGM3 strain is a particularly good mouse model for humanization 

to assess immunotherapies and to study the TME [117,163], as it expresses human stem cell 

factor, GM-CSF, and IL-3 transgenes, supporting HSCs engraftment and the development 

of myeloid cells in vivo [164–166, 167]. It has been reported that transferring cord blood 

or fetal liver derived HSCs results in a higher engraftment of human CD45 cells compared 

to engrafting the bone marrow or mobilized peripheral blood derived HSCs [168,169]. In 

general, newborn recipients exhibited a better reconstitution of human CD45 cells compared 

to adult recipients [167,170,171].

Due to the lack of human thymus in HSCs derived humanized mice, the T cell are educated 

in mouse thymus, leading to poor human thymopoiesis [160] and deficient HLA dependent 

antigen specific immune responses [172]. The Thy/HSC [173] and BLT [174] models 

can overcome this limitation, providing robust human thymopoiesis and generating HLA-

restricted antigen specific human T cell reactions. However, this model is limited by the 

accessibility of fetal tissues and local policy regulation [106]. On the other hand, Chang et 

al. matured DCs to present tumor antigens to prime T cells in vitro, to assess cytotoxicity 

of CCR4 targeted mAb in vivo. Those tumor primed T (TP-T) cells had an increased IFN-γ 
expression reacting to the same tumor cells compared to unprimed T cells from the same 

donor in vitro and exhibited superior tumor control in combination with anti-CCR4 mAb in 

an ovarian cancer bearing mouse model [175].

CONCLUSION

Here, we summarize the applications of 2D culture, 3D cultures, and mouse models in 

I–O in order provide insights for research scientists trying to choose appropriate models 

in different phases of therapy development and to speed up the process of translating 

preclinical research to clinical trials. Selecting appropriate models will be critical to achieve 

robust results that enable accurate identification of effective and ineffective drugs and the 

successful clinical translation of new technologies. Therefore, researchers must carefully 

consider which features the TME are of key importance for testing a new therapeutic. 

Convincing I–O researchers to consider this additional layer of methodological scrutiny 
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and fostering greater understanding of the relative strengths and weaknesses of each of 

these preclinical drug screening methods will benefit the field as a whole by improving the 

predictive power of preclinical studies.
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FIGURE 1. 
Preclinical immuno-oncology models.
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