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Abstract

Herein, we have developed a novel approach to investigate the mechanism of bone regeneration 

in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-

scale agent-based model, experimental optimization of key parameters and experimental data 

validation of the predictive power of the model. The advantages of this study are that the 

impact of mechanical stimulation on bone regeneration in a porous biodegradable CaP scaffold 

is considered, experimental design is used to investigate the optimal combination of growth 

factors loaded on the porous biodegradable CaP scaffold to promote bone regeneration and 

the training, testing and analysis of the model are carried out by using experimental data, 

a data-mining algorithm and related sensitivity analysis. The results reveal that mechanical 

stimulation has a great impact on bone regeneration in a porous biodegradable CaP scaffold 

and the optimal combination of growth factors that are encapsulated in nanospheres and loaded 

into porous biodegradable CaP scaffolds layer-by-layer can effectively promote bone regeneration. 

Furthermore, the model is robust and able to predict the development of bone regeneration under 

specified conditions.
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1. Introduction

Bone reconstruction is a complex physiological process that exhibits nonlinear 

characteristics under different material and boundary conditions[2, 3]. The interaction 

between the external environment and internal factors makes the dynamic balance between 

osteoclasts and osteoblasts affect the formation of bone[4]. Recently, bone reconstruction 

has grown in significance in clinical studies due to its importance in human health. 

Nonetheless, because the microenvironment of bone growth is very complicated and 

involves various biological and physical processes, it is costly to perform in vivo/in vitro 
bone reconstruction experiments to investigate the bone formation process in detail. For 

this reason, this study proposes an in silico mathematics model that can not only simulate 

the bone reformation process within a porous biodegradable CaP scaffold under mechanical 

stimulation with a related experimental design, but can also predict the change in bone mass 

with respect to various growth factors that are encapsulated in nanospheres and loaded into 

porous biodegradable CaP scaffolds layer-by-layer after we optimize the key parameters and 

validate the predictive power of the model by experimental training and testing data.

Since the beginning of the 21st century, many biomaterials scientists have carried out 

many studies of bone reconstruction in different research areas such as the investigation 

of the relationship between osteoclasts and osteoblasts[4], osteogenic differentiation[5], 

mechanical stimulation of bone [6], cell mechanics[2], signalling pathways of bone cells 

[7, 8] and bone growth factors[9]. For example, Sun et al.[1] developed a multi-scale 

mathematical model, which not only reconstructed the 3D bone regeneration system and 

examined the effects of pore size and porosity on bone formation, but also studied the 

impact of growth factors on the change in bone mass. However, it did not take mechanical 

stimulation into consideration or use experimental design to investigate the priority of 

impact of bone mass-related growth factors. In addition, Checa et al.[10] developed a lattice-

based mechanical platform to model tissue differentiation under conditions of angiogenesis, 

but it neither investigated the impact of the key growth factors on bone formation nor 

verified the predictive power of the model via experimental data. Recently, Sanz-Herrera et 

al.[11] constructed a mathematical model of bone tissue regeneration that can investigate 

a set of physiological processes associated with bone cells, such as porosity, mechanical 

properties and permeability, but it did not perform parameter analysis or validate the 

robustness of the model.

For the first time, this study has integrated mechanical stimulation, a data-mining algorithm 

and experimental design into our established 3D multi-scale model of bone reconstruction 

[1, 12]. Therefore, it can not only predict changes in bone mass under stimulation 

by different growth factors via experimental design, but also investigate the impact of 

mechanical stimulation on bone reformation. In particular, this study employed the currently 

widely used calcium phosphate (CaP) scaffolds, which are ideal materials for bone repair 

owing to their biocompatibility, adjustable degradation rates, and excellent bioactivity. The 

results demonstrate that not only can mechanical stimulation significantly promote the 

growth of active osteoblasts (OBa), pre-osteoblasts (OBp) and mesenchymal stem cells 

(MSC), but the model also has good predictive precision and robustness for the prediction 
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of bone regeneration and reveals the priority of the impact of growth factors on bone 

regeneration via experimental design.

2. Methods

This study developed a 3D multi-scale agent-based model of bone regeneration with 

four biological and physical scales, namely, molecular, cellular, scaffold, and bone tissue 

scales (Fig. 1). It not only employed a set of reaction-diffusion equations to describe the 

diffusion of growth factors released from the porous biodegradable CaP scaffold and the 

transportation of nutrients by the vasculature, but also used an agent-based module[13] to 

simulate the activities of bone cells under mechanical stimulation and the related signaling 

transduction pathway. Here, the biodegradable CaP scaffolds contained both human cells 

(MSC, osteocytes and endothelial cells) and growth factors for bone tissue repair.

Fig. 1 shows that stimulated by the growth factors diffused in the scaffold scale and 

regulated by the nutrient transported in the bone tissue scale, the signaling pathway in the 

molecular scale determines cell’s phenotype switching on the cellular scale. On the contrary, 

cell’s phenotype switch can remodel and impact the scaffold environment and the diffusion 

of the growth factors on the scaffold and bone tissue scale, respectively.

2.1 Molecular scale: the signaling pathway

Runx2 and Osterix (Osx) are two crucial transcription factors in osteoblast differentiation 

and bone regeneration (refer to Fig. 1 in Sun et al.[12]). As reported by previous studies[4], 

their expression can be regulated by the release of growth factors (BMP2 and Wnt) via 

the activation of intracellular proteins or related transcription factors such as Smad1/5 (S1), 

Smad2/3 (S2) and β-catenin[14].

The molecular regulatory mechanisms involved in the intracellular signalling pathway were 

modelled using a system of ordinary differential equations such as Eq. 1, as detailed in our 

previous research[12]. Values of the key parameters of Eq. 1 are listed in [1].

d[S1]
dt = V 1 · [BMP2]

K1 · [BMP2] · ([TotalS1] − [S1]) − d1 · [S1] (1.1)

The change in concentration of phosphorylated Smad1/5 ([S1]) depends on the 

concentrations of BMP2 ([BMP2]) and unphosphorylated Smad1/5 ([TotalS1] − [S1]) and 

its dephosphorylation.

d[βCatenin]
dt = a − (( [Wnt] + b

c · [Wnt] + d ) · ( e
e + [βCatenin] + f) · [βCatenin]) (1.2)

where the concentrations of Wnt and β-catenin are represented by [Wnt]and [βCatenin], 

respectively.
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d[Runx2]
dt = V 1 · [S1]

K1 + [S1] + V 5 · [S2]
K5 + [S2] + V 6 · [βCatenin]

K6 + [βCatenin] − d1 · [Runx2] (1.3)

Runx2[15] has been found to be a crucial transcription factor in osteogenic differentiation. 

Its expression and activation can be promoted by BMP2 via Smad1/5 and Smad2/3 ([S2]) 

and by Wnt ligands via β-catenin and other proteins. The concentration of Runx2 is 

represented by [Runx2].

d[Osx]
dt = V 7 · [S1]

K7 + [S1] + V 8 · [Runx2]
K8 + [Runx2] − d5 · [Osx] (1.4)

Osx[16] is also a critical transcription factor in osteoblast differentiation, acting downstream 

of Runx2 and Smad1/5.

Here, the intracellular signaling pathway described by Eq. 1 is stimulated by the 

concentrations of the growth factors (BMP2, Wnt, Runx2 and Osx) released on the scaffold 

scale to determine the phenotype switch of the cell on the cellular scale.

2.2 Cellular scale: cell activities

2.2.1 Migration—MSC and OBp migrate along the gradient of the normalized 

concentration of growth factors, including bone morphogenetic protein 2 (BMP2), Wnt, 

and nutrients. The probability ( P i
mig) that MSC and OBp will migrate along the ith direction 

is given by Eq. 2. OBa is assumed not to migrate in this study, with reference to a previous 

report[17].

P j
mig ∝ (∇Gi + ∇O2) · 1j, i = 1, 2, 3; j = 1, 2, …, 6 (2)

where Gi and O2 are the concentrations of growth factors (BMP2 and Wnt ligands) and 

oxygen, respectively, and lj is the directional vector along the jth direction. There are six 

directions in which a cell can migrate in our three-dimensional lattice.

2.2.2 Differentiation—Activated Runx2 and Osx play different roles in different stages 

of an osteoblastic lineage. Both Runx2 and Osx can promote the differentiation of MSC 

into OBp, whereas Runx2 can inhibit the differentiation of OBp into OBa[14, 18]. The 

probabilities that MSC will differentiate into OBp ( PMSC OBp
diff ) and OBp will differentiate 

into OBa ( POBp OBa
diff ) are related to the levels of expression of activated Runx2 and Osx. We 

employ Hill functions[4] to model these situations by Eq. 3 and 4, as in previous studies[11].

PMSC OBp
diff = ( V D1, Runx 2 · [Runx 2]

KD1, Runx 2 + [Runx 2] + V D1, Osx · [Osx]

KD1, Osx + [Osx] ) · PMSC OBp
diff

(3)

POBp OBa
diff = ( 1

1 + [Runx 2]/KD2, Runx 2
+ V D2, Osx · [Osx]

KD2, Osx + [Osx] ) · pOBp OBa
diff

(4)
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where PMSC OBp
diff  and POBp OBa

diff  are the baseline probabilities that MSC will differentiate into 

OBp and OBp into OBa, respectively. Because both the concentration of oxygen and the 

strain[19] play major roles in the differentiation of MSC, we model this situation by the 

following rules (Fig. 2).

1. If (0.1 < S < 0.53) and O2 is greater than ThrO2
, then mature MSC differentiate 

towards OBa.

2. If (0.53 < S < 1) and O2 is greater than ThrO2
, then mature MSC differentiation 

towards OBp.

3. Otherwise, the direction of differentiation of MSC depends on Eq. 3 and 4, 

where ThrO2
 is the threshold of oxygen (O2) concentration.

2.2.3 Proliferation—MSC, OBp and OBa can proliferate with different probabilities 

(ppro). With reference to our previous research[20], we set these as constants. Here, Table 1 

lists the values of the important parameters for the model.

2.2.4 Apoptosis—Because hyperbaric oxygen will attenuate cell apoptosis[26], Eq. 5 

has been developed to describe the relation between the apoptosis rate of cells and the 

oxygen concentration. It is noted that if the oxygen concentration is less than the threshold 

(Thoxygen), osteoblast cells will die.

Papop = pb
apop + ϕ(O2

average − O2) (5)

where pb
apop and Papop represent the baseline probability and probability of apoptosis of MSC, 

OBp and OBa, respectively, O2
average represents the normal oxygen concentration, an φ is a 

positive constant[11].

2.3 Scaffold scale: scaffold degradation and growth factor release

In the same way as in our previous research[12], growth factors are encapsulated in 

nanospheres and loaded into porous biodegradable CaP scaffolds layer-by-layer. After being 

implanted into defected bone, calcium phosphate can be degraded via hydration reactions 

and network breakage. The diffusion of the extracellular liquid and disintegration of calcium 

phosphate are described by Eq. 6 and 7, respectively:

∂C
∂t = DC ∇2C − kCCM (6)

∂M
∂t = − kMCM (7)

where C and M are the water concentration and molecular weight of calcium phosphate, 

respectively, DC is the diffusivity of water, and kC and kM are the degradation rates for water 

and calcium phosphate, respectively.
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BMP2, Wnt ligands and VEGF are released from the degrading CaP scaffold and 

continuously diffuse within the scaffold pores. The paracrine and autocrine activity of these 

cytokines are ignored because we assume that the concentrations of these cytokines secreted 

by individual cells are quite low compared with those released from the CaP scaffold. These 

processes are modeled by Eq. 8 [1]:

∂Gi

∂t = DGi ∇2Gi + χscaffoldrGi(Gi, max − Gi) C
C + Kc

− χosteouGiGi − dGiGi (8)

where DGi is the diffusivity of each growth factor, Gi,max is the maximum concentration 

of each growth factor initially loaded into the scaffold, rGi is the release constant, uGi 

is the depletion rate of the cytokine, dGi is the degradation rate and Kc is the Michaelis 

constant. The time-dependent characteristic function χscaffold(t, x) is equal to 1 in the 

calcium phosphate matrix and 0 in the pores of the scaffold. The value of χosteo(t, x) is equal 

to 1 if an osteoblastic cell is present at x; otherwise, it is equal to 0. Both χscaffold and χosteo 

are updated at each simulation step.

2.4 Bone tissue scale: angiogenesis and oxygen transportation

2.4.1 Angiogenesis—We assume that the motion of an individual endothelial cell located 

at the tip of a capillary sprout governs the motion of the entire sprout, and chemotaxis in 

response to VEGF gradients guides the motion of the endothelial cells at the tip of the 

capillary sprout. Eq. 9 defines the probability of migration of endothelial cells:

P j ∝ α kV

kV + v ∇V · lj, j = 1, 2, ⋯, 6 (9)

where V is the concentration of VEGF, α is the chemotactic coefficient and KV is a positive 

constant[27].

2.4.2 Nutrient transportation—Oxygen can be transported by the neovasculature to 

osteoblasts within scaffold pores, which is described by Eq. 10.

∂O2

∂t = DO2 ∇2O2 + χves(t, x)qO2(O2
blood − O2) − χosteo(t, x)uO2O2 (10)

where DO2 is the diffusivity of oxygen, qO2 is the permeability of the vessel for oxygen, 

O2
blood is the blood oxygen concentration, and uO2 is the oxygen uptake rate of the cell.

2.5 Establish computational models by Abaqus[4]

Because our research aims to investigate the mechanism of bone regeneration in a porous 

biodegradable calcium phosphate (CaP) scaffold[1], we have to consider the impacts of 

nutrient transportation, growth factors, angiogenesis, and mechanical stimulation together 

from the biological perspective of the system. In particular, because biodegradable material 

is used to repair the bone tissue scaffold, it indirectly affects mechanical stimulation via 

regulating the release of cytokines owing to its material properties. However, because 

mechanical stimulation is sufficiently complicated, this study integrates a well-established 
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mechanical stimulation[11] module into the model to study the mechanism of bone 

regeneration as follows.

The time course of tissue formation and vascularization of the scaffold is modeled as an 

iterative process (Fig. 2a). Fig. 2b shows how to compute the number of cells in each sub-

cube at each run. The densities of mature bone consisting of OBp (Densityp) and immature 

bone consisting of OBa (Densitya) are described by Eq. 11.1 and Eq. 11.2, respectively:

Densityp = NOBp/V sc (11.1)

Densitya = NOBa/V sc (11.2)

where NOBp and NOBa represent the number of OBp and OBa, respectively, and Vsc is the 

volume of the sub-cube.

The computation of stress for each small cube (Fig. 2b) is illustrated as follows.

1. For each sub-cube, if Densityp is greater than Densitya, then the material type of 

the sub-cube is set to immature bone; otherwise, it is set to mature bone.

2. Eq. 12.1 and Eq. 12.2 are employed to compute the Young’s modulus[4] of 

immature and mature bone, respectively:

E = Density × Sp (12.1)

E = Density × Sa (12.2)

where Sp and Sa represent the speed of propagation of sound in immature and 

mature bone, respectively.

3. The stress (S) for each sub-cube can be computed by Eq. 13.

S = E × D (13)

where D is the strain of the sub-cube[4].

2.6 Model training and testing

To make the results of the model believable, this study optimized the key parameters and 

estimated the predictive capacity of the model by using experimental data (Table 2) and a 

data-mining algorithm. The experimental data were obtained on the designated days after 

treating MSCs with BMP2 on day 1 followed by Wnt on day 4. Alkaline phosphatase (ALP) 

and double-stranded DNA (dsDNA) are two critical biomarkers for quantifying the early 

differentiation rate of MSC towards OBp and the total cell number, respectively.

A particle swarm optimization (PSO) algorithm[28] was used to train two key parameters 

(ThrO2
 and Vi) of the model by fitting the simulated data against the experimental data using 
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Eq. 14. ThrO2
 and Vi represent the oxygen concentration and the speed of propagation of 

sound in the material, respectively:

Θ∗ = argmin ∑
i = 1

N
∑
j = 1

T
ω(xi

sim(tj, Θ) − xi
exp(tj))2

(14)

where ωi = 1 ( max
j

xi
exp(tj))2, N and T denote the number of cells and time points, 

respectively, and xi
sim(tj, Θ) and xi

exp(tj) represent the number of cells at each time step of 

the simulation and experiment, respectively.

Eq. 15 was used to compute the average relative error (ARE)[17, 29, 30] for testing the 

predictive precision of the model:

ARE = ∑
i = 1

R ∣ Estθi − Lθ ∣
R × ∣ Lθ ∣ × 100 % (15)

where R represents the number of repetitions for the simulation and Estθi and Lθ represent 

the simulated and experimental results, respectively.

3. Results

This section consists of the following three major results. Firstly, we investigate the effects 

of mechanical stimulation, angiogenesis and bone formation in detail after the 3D bone 

regeneration system within a porous biodegradable CaP scaffold is developed. Secondly, 

we compare the changes in bone mass between the presence and absence of mechanical 

stimulation. Thirdly, we employ training data to optimize the key parameters of the model 

and use testing data to validate the predictive power of the model, as well as analyzing the 

robustness of the model by sensitivity analysis.

3.1 Simulation of 3D vascularized bone regeneration

Based on our previous research[1], we reconstruct the system of vascularized bone 

regeneration within the 3D porous CaP scaffold, which consists of the coupled processes 

of the evolution of scaffold degradation (Eq. 6 and 7), exogenous growth factor release (Eq. 

8), angiogenesis (Eq. 9), differentiation of MSCs (Eq. 3 and 4), and cell growth within the 

scaffold pores over time.

This research incorporates mechanical stimulation into the well-developed model of 3D 

bone regeneration[1] within a porous biodegradable CaP scaffold to investigate the impact 

of mechanical stimulation on bone regeneration. More importantly, because the dynamics of 

the differentiation of MSCs will cause changes in OBs as described by Eq. 3, it is directly 

related to the bone mass. Fig. 3 shows a 2/3D simulation of the bone regeneration process 

under mechanical stimulation. On day 10, blood vessels were rare and scattered on the 

surface of the porous CaP scaffold (Fig. 3a and d); on day 20, newly formed blood vessels 

grew into the pores located at the periphery of the scaffold and several blood vessels started 

branching to form a tree (Fig. 3b and e). On day 28, a branched vasculature was observed 
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within the peripheral pores of the scaffold and a few blood vessels were already growing 

into the pores at the center of the scaffold (Fig. 3c and f).

Fig. 4 shows the dynamics of the various cells over time in the presence and absence of 

mechanical stimulation within a porous biodegradable CaP scaffold. The changes in the 

trend in the cell numbers for MSC, OBa and OBp are similar regardless of the presence or 

absence of mechanical stimulation, but Fig. 4a, b and c indicate that mechanical stimulation 

will significantly increase the cell numbers for these three types of cell after 28 days, 

especially for OBa. The numbers of MSC, OBa and OBp increased in the beginning and 

decreased after reaching peaks at different times. The number of MSC peaked around day 3 

(Fig. 4a), that of OBa peaked around day 7 (Fig. 4b), and that of OBp peaked around day 14 

(Fig. 4c).

3.2 Training and testing of the model

The predictive power of the model was verified by fitting the simulated results against the 

experimental results. A PSO algorithm [31] was employed to train the model by setting the 

initial values of the key parameters and the training data. The refinement step was repeated 

five times to obtain optimal and stable results (Fig. 5), which show a similarity between the 

simulated and experimental results after the model training process. We define the important 

variables and equations for the testing and training of the model in Table 3.1, and list the 

related results in Table 3.2.

In the training process, simulated data ( CS1
MSC OBp and CS2

MSC OBp) were employed to 

optimize the key parameters of the model by fitting them against experimental data 

( CE1
MSC OBp and CE2

MSC OBp). In the testing process, a leave-one-out cross-validation 

(LOOCV) [32] algorithm was employed to validate the predictive power of the model 

by using three time points of the experimental data as the training data set ( CS2
MSC OBp

and CS3
MSC OBp) for the key parameters of the optimization of the model and the remaining 

time points of the experimental data as the testing data set ( CE2
MSC OBp and CE3

MSC OBp) for 

computation of the accuracy of the model (Eq. 16). The small relative error (RE) indicates 

high predictive accuracy.

RE = χi
sin(tj, θ) − χi

exp(tj)
χi

exp(tj)
(16)

As computed by Eq. 16, the average and standard deviation of the predictive power of the 

model are 62.21% and 0.019, respectively.

3.3 Parameter sensitivity analysis in our model

Sensitivity analysis [17] was employed to evaluate the impact of the parameters on the 

behavior of the model. The value of each parameter in Table 4.1 was varied independently 

over the specified range [17] about 10 times, while keeping the values of the other 

parameters the same as their baseline. Table 4.2 lists the Spearman rank-order correlation 

coefficient [33] and p value for each parameter. Also, Table 4.2 shows that the parameters 

Zhang et al. Page 9

Nanoscale. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V6, K6, d1, Sp, and Sa are sensitive to OBp, the parameters V6, d1, V8, ds, Sp, and Sa are 

sensitive to OBa, and the parameters Sp and Sa are sensitive to MSC.

3.4 Significance of effects of growth factors on bone formation

It is well known that using orthogonal experimental design [34] can reduce the number of 

experiments. Therefore, an orthogonal test table L9(34) [35, 36] was employed to investigate 

which single growth factor or combination of these growth factors (VEGF, BMP2 and Wnt) 

will most effectively promote bone formation. Therefore, three major growth factors (BMP2, 

VEGF and Wnt) were set as the experimental factors (columns 2, 3 and 4 in Table 5.1) for 

the experimental design with three levels: high (10), medium (5) and low (0), in accordance 

with the principles of experimental design [35, 36]. The cumulative number of OBa was 

set as the experimental test index [37] to represent the bone mass at the designated times 

(columns 5 and 6 in Table 5.1) in the experimental design, because the growth rate of bone 

mass is proportional to the number of OBa. Table 5.1 shows that the number of OBa under 

mechanical stimulation is greater than the number of OBa not under mechanical stimulation. 

Table 5.2 and Table 5.3 [35, 37] indicate that the optimal combination of experimental 

factors is always BMP2 (medium), VEGF (medium) and Wnt (high), and the order of 

priority of the growth factors (BMP2 > VEGF > Wnt) is statistically significant regardless of 

mechanical stimulation, respectively.

4. Discussion

This study considers the impact of angiogenesis on bone growth [26]. Fig. 3a, b and c 

demonstrate that angiogenesis can promote the accumulation of VEGF in the center of the 

porous biodegradable CaP scaffold rather than on the surface, whereas new blood vessels 

will start growing on the surface of the porous biodegradable CaP scaffold rather than in the 

center because of inhibition by the wall of the porous biodegradable CaP scaffold. These 

phenomena imply that blood vessels will develop much faster in the loose structure of the 

scaffold rather than in the dense structure, and also that a more uniform distribution of 

VEGF in the scaffold will significantly promote the growth of blood vessels. Moreover, Fig. 

3d shows that the initial porous biodegradable CaP scaffold has a pore structure, whereas 

Fig. 3e and f show that the porous biodegradable CaP scaffold moves into the center of 

the bone over time. This phenomenon demonstrates that the scaffold made from calcium 

phosphate is hydrolyzed during bone regeneration, as was expected.

As reported by previous research [1], because mechanical stimulation will result in the 

differentiation of more MSC to OBa and OBp, it will increase the bone mass density and 

finally change the material properties. Here, Fig. 4 indicates that mechanical stimulation 

plays a role in bone regeneration, because the numbers of the three kinds of cells (MSC, 

OBp and OBa) under mechanical stimulation are significantly greater than the number not 

under mechanical stimulation, while they display almost the same dynamic trend. Also, 

Fig. 4 indicates that the decreasing trend in the numbers of MSC, OBp and OBa slows 

down around day 10, because mechanical stimulation significantly changes the rate of 

differentiation of MSC to OBa or OBp (Fig. 2a).
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After the training (Fig. 4), testing (Fig. 5) and sensitivity analysis (Table 4.2) procedures, the 

model is robust enough to predict bone regeneration with high accuracy.

The small p values in Table 4.2 indicate that the parameters (V6 and d1) that determine the 

expression of Runx2 are significantly related to OBp and OBa, and also that the parameters 

(V8 and ds) that determine the expression of Osx are significantly related to OBa. These 

results prove that Runx2 actually plays an important role in promoting the differentiation of 

MSCs into OBp and inhibiting the differentiation of OBp into OBa [38], and also that Osx 

will promote OBa via the intracellular signaling pathway [4].

Finally, experimental design was employed to investigate the impact of key growth factors 

such as BMP2 and Wnt on bone regeneration. By comparing the number of OBa (Table 

5.1 and 5.2) in the presence and absence of mechanical stimulation, we can conclude 

that mechanical stimulation is positively related to bone regeneration. Also, Table 5.3 

demonstrates that the priority of the impact of the key growth factors is regardless of 

mechanical stimulation.

In brief, this model can not only predict vascular bone regeneration by using experimental 

data [39] and a data-mining algorithm [40], but can also employ experimental design [41] 

to investigate which growth factors play major roles in bone regeneration under mechanical 

stimulation within the porous biodegradable calcium phosphate (CaP) scaffold. However, it 

does not consider the impact of sequential drug delivery or employ the experimental data 

to optimize the key parameters of the related signaling transduction pathway. Therefore, we 

are going to develop related biological experiments and mathematical models to investigate 

potential cytokine combinations, optimal drug doses and drug delivery sequences within the 

porous biodegradable CaP scaffold in the near future.
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Figure 1. 
Schematic of the computational flow
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Figure 2. 
(a) Workflow of the computational algorithm (b) Finite element analysis model
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Figure 3. 
3D bone formation and 2D slices of bone formation over time. (a), (b) and (c) show the 

3D model under mechanical stimulation on days 10, 20 and 28, respectively. (d), (e) and 

(f) show 2D slices of bone formation on days 10, 20 and 28, respectively. The porous CaP 

scaffold, MSC, OBa, angiogenesis and pore structure are colored cyan, yellow, blue, red and 

white, respectively.
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Figure 4. 
Dynamics of MSC (a), OBp (b) and OBa (c) over 28 days.
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Figure 5. 
Results of training (a) and testing (b)
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Table 1

Values of the important parameters for the model

Symbol Value Unit Description Reference

pMSC OBp
diff 0.3 Day−1 Differentiation rate of MSC to OBp [6, 10, 21]

pOBp OBa
diff 0.3 Day−1 Differentiation rate of OBp to OBa [6, 10, 21]

KD1, Runx 2 500 [−] Regulation coefficient 1 regarding Runx2 [12]

KD1, Osx 4000 [−] Regulation coefficient 1 regarding Osx [12]

VD1, Runx 2 8000 [−] Hill regulatory factor 1 regarding Runx2 [12]

VD1, Osx 4 × 104 [−] Hill regulatory factor 1 regarding Osx [12]

KD2,Runx2 0.8 [−] Regulation coefficient 2 regarding Runx2 [12]

KD2, Osx 100 [−] Regulation coefficient 2 regarding Osx [12]

ppro 0.6 Day−1 Proliferation rate of MSC and OBp [6, 10, 21]

pMSC
apop 0.05 Day−1 Apoptosis rate of MSC [6, 10, 21]

pOBp
apop 0.10 Day−1 Apoptosis rate of OBp [6, 10, 21]

pOBa
apop 0.16 Day−1 Apoptosis rate of OBa [6, 10, 21]

ϕ 125 [−] Positive constant Estimated

thoxygen 0.0015 [−] Threshold of cell apoptosis Estimated

DC 6.7 × 10−8 cm2 s−1 Diffusivity of water [22]

kC 0.15 [−] Degradation rate of water [23]

kM 0.15 [−] Degradation rate of CaP molecular weight [23]

D G i 1.55 × 10−5 cm2 s−1 Diffusivity of growth factor in water [24]

r G i 0.2 [−] Growth factor release constant Estimated

u G i 10 ng/106 cells/day Depletion rate of cytokine by osteoblastic cells [25]

d G i 0.03 Day−1 Degradation rate of cytokine [25]

KC 0.5 [−] Michaelis constant Estimated

α 2600 cm2s−1M−1 Chemotactic coefficient [20]

kV 1.67 ×10−10 [−] Positive constant controlling chemotactic sensitivity [20]

DN 8 × 10−5 cm2s−1 Diffusivity of oxygen [20]

qN 0.5 [−] Vessel permeability for oxygen [20]

Nblood 0.0025 [−] Blood oxygen concentration [20]

uN 6.25 ×10−4 [−] Cell uptake rate of oxygen [20]
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Table 2

ALP and dsDNA data

ALP dsDNA

Day Mean SD Mean SD

1 8.643728 0.499756 0.138832 0.005635

3 160.7598 7.218334 0.348147 0.017524

7 74.13583 6.928568 0.361439 0.031959

10 73.31991 10.62254 0.491355 0.067455
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