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Abstract

Background & Aims: Detailed investigation of the biological pathways leading to hepatic 

fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for 

pediatric cholestasis.

Approach & Results: A targeted ELISA-based panel of 9 biomarkers (lysyl oxidase 

(LOX), tissue inhibitor matrix metalloproteinase 1 (TIMP1), connective tissue growth factor 

(CTGF), interleukin-8 (IL-8), endoglin, periostin, mac-2-binding protein (mac2-BP), matrix 

metalloproteinase-3 and −7 (MMP-3, MMP-7) was examined in children with biliary atresia (BA, 

n=187), alpha-1 antitrypsin deficiency (A1AT, n=78) and Alagille syndrome (ALGS, n=65) and 

correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and 

LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations 

between LSM and endoglin (p=0.04), IL-8 (p<0.001) and MMP-7 (p<0.001) in BA. The best 

prediction model for LSM in BA using clinical and lab measurements had an R2=0.437; adding 

IL-8 and MMP7 improved R2 to 0.523 and 0.526 (both p<0.0001). In A1AT, CTGF and LSM 

were negatively correlated (p=0.004); adding CTGF to a LSM prediction model improved R2 

from 0.524 to 0.577 (p=0.0033). Biomarkers did not correlate with LSM in ALGS. A significant 

number of biomarker/lab correlations were found in BA but not A1AT or ALGS.

Conclusions: Endoglin, IL-8, and MMP-7 significantly correlate with increased LSM in 

children with BA, while CTGF inversely correlates with LSM in A1AT; these biomarkers appear 

to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of 

change in these biomarkers over time and as predictors of clinical outcomes will be important.
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Background

Detailed investigation of the biological pathways that lead to early and severe fibrosis and 

identification of non-invasive biomarkers of liver fibrosis can facilitate early interventions 

for pediatric cholestatic liver disorders. Biomarkers identified by genomic, proteomic, and 

metabolomic technologies offer new strategies to study etiopathogenesis, inform clinical 

decision-making or predict outcomes in pediatric liver diseases (1–4). However, each liver 

disease is unique with different contributory factors and the likely interplay of anatomy, 

epigenetics, fibrosis, inflammation, and vasculopathy.

Biliary atresia (BA), alpha-1 antitrypsin deficiency (A1AT) and Alagille syndrome (ALGS) 

represent an important group of congenital cholestatic disorders. BA is a fibro-obliterative 

disease of the biliary system that presents in the early neonatal period with aggressive 

progression to cirrhosis within the first year of life (5–9) and continues to be the leading 

indication for liver transplantation (LT) in children. Inherited liver disorders such as A1AT 

and ALGS, have a different natural history and distinct pathophysiology from BA and 

one another. Children with A1AT who are homozygous for the classic mutant Z allele 

have misfolding and defective secretion of the A1AT protein, with potential to progress 

to early cirrhosis with or without lung disease (10). However, it is unknown what factors 

influence the highly variable disease progression and risk of fibrosis seen in A1AT (11). 

ALGS, a developmental disorder manifest by bile duct paucity and cholestasis often 

with severe pruritus and extrahepatic involvement, including cardiac, vascular, and renal 

abnormalities (12) also has unpredictable progression of fibrosis, although the majority of 

patients are transplanted by 18 years of age for persistent cholestasis or complications of 

portal hypertension (13).

Single center studies in children with a variety of fibrotic liver diseases have identified 

specific markers reflecting matrix deposition, hepatic stellate cell activation, collagen 

turnover, and chemoattractant expression (2–4, 14) that correlate with histologic measures of 

fibrosis. Meanwhile, imaging modalities have advanced and may further augment our ability 

to monitor the progression and regression of liver fibrosis. Vibration-controlled transient 

elastography (TE, FibroScan®) is a non-invasive, painless alternative to liver biopsy that 

utilizes shear wave velocity to measure liver stiffness, an indirect measure of fibrosis. 

Use of TE to detect significant fibrosis in children has been validated by liver biopsy in 

single center studies of both hepatocellular and hepatobiliary diseases (15–21), however the 

availability of TE as a clinical tool in the pediatric setting is relatively expensive and as such 

currently limited. Identification of relevant commercially available serum biomarkers of 

fibrosis and their correlation with transient elastography may inform progression or severity 

of fibrosis where TE is unavailable and translate into novel markers/endpoints for clinical 

trials of evolving anti-fibrogenic therapies.
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The FibroScan in Pediatric Cholestatic Liver Disease (FORCE) study is an ongoing, 

prospective, multi-center study (NCT02922751) of the National Institute of Diabetes and 

Digestive and Kidney Diseases (NIDDK)/National Institutes of Health (NIH)-supported 

Childhood Liver Disease Research Network (ChiLDReN). This rich resource positioned 

the network to conduct investigations with the primary objective of identifying serum 

biomarkers associated with FibroScan™-based liver stiffness measurement (LSM) in 

children with BA, A1AT, and ALGS. The scientific rationale for the selection of the targeted 

nine biomarker panel is described in detail (Supplemental Document 1). These biomarkers 

potentially assess a diverse array of pathways and physiologic mechanisms that may interact, 

leading to fibrosis. Secondary objectives include investigating the association of these 

biomarkers with clinical characteristics, biomarker indices, and laboratory determinants of 

liver disease and ability to enhance prediction of LSM beyond standard clinical tests.

Methods

FORCE includes the collection of serum at the time of FibroScan™ in participants whose 

clinical status has been well characterized in three distinct prospective longitudinal databases 

(Prospective Database of Infants with Cholestasis [PROBE, NCT00061828], Biliary Atresia 

Study in Infants and Children [BASIC, NCT00345553], and Longitudinal Observational 

Study of Genetic Causes of Intrahepatic Cholestasis [LOGIC, NCT00571272]). This study 

focused on baseline evaluation of FORCE participants less than 21 years of age with BA, 

A1AT, or ALGS with their native liver who had a valid LSM and serum available for 

biomarker investigation.

Clinical data including medical history, physical examination, interval events, and laboratory 

values, along with biosamples and LSM were collected in FORCE and the parent 

longitudinal database. Serum samples were collected on the same day as LSM and 

immediately processed and stored at −80 C. Inclusion and exclusion criteria in FORCE 

as well as LSM requirements have been described previously in detail (22).

Briefly, BA participants all had a confirmed diagnosis of BA determined by chart review 

including review of pertinent diagnostic biopsy reports, or radiologic reports and were all 

post Kasai hepatoportoenterostomy with native liver. ALGS participants in this study met 

strict diagnostic criteria in which there was a combination of a family history of ALGS, 

the presence of paucity of interlobular bile ducts on liver biopsy, the identification of a 

JAGGED1 or NOTCH2 mutation, and clinical criteria (cardiac, ocular, vertebral, renal, 

facial, cholestasis) with evidence of clinical, biochemical or histological liver disease. 

Patients with A1AT were defined as having low serum A1AT concentrations (< lower 

limit of normal for laboratory) with PIZZ or PISZ phenotype or genotype for participants 

prior to liver transplantation with liver disease associated with A1AT. Children with known 

polysplenia or asplenia, situs inversus, clinically significant ascites, an implantable active 

medical device (such as a pacemaker or defibrillator), an open wound near the testing site, 

current pregnancy, or who had undergone liver transplantation were not eligible.

Liver stiffness (reported in kPa) was measured by vibration-controlled TE in nonfasted 

and nonsedated participants, using FibroScan according to the manufacturer’s instructions 
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(Echosens, Waltham, MA). All operators were trained and certified at each site by a 

designated trainer from Echosens to perform FibroScan™ measurements to ensure consistent 

and standardized acquisition of complete data. A valid LSM required at least ten valid 

measurements using the appropriate probe (S or M) and exam type (S1 or S2) based on 

thoracic perimeter and skin capsule distance with interquartile kPa range/median kPa value 

<30% (23).

LSM was categorized using previously described liver biopsy supported thresholds derived 

from children with cholestatic or chronic liver diseases and a meta-analysis derived 

reference range for normal liver stiffness in healthy children (20, 24–29). For analyses, 

the following categories were applied: <6 (no or mild fibrosis, F0/F1), 6 to <10 (significant 

fibrosis, ≥F2) 10 to <15 (bridging fibrosis, F3/4), and 15–75 (cirrhosis, F4) kPa. To address 

the potential impact of cardiac and venous congestion on LSM, for participants with ALGS 

only, severe cardiac disease was defined as having ≥1 of the following: pulmonary valve 

stenosis, tetralogy of Fallot, ventricular/atrial septal defect, pulmonary atresia, and/or aortic 

coarctation. All other cardiac defects were considered mild.

A PubMed search using the following terms: hepatic[All Fields] AND (“liver 

cirrhosis”[MeSH Terms] OR (“liver”[All Fields] AND “cirrhosis”[All Fields]) OR “liver 

cirrhosis”[All Fields] OR (“liver”[All Fields] AND “fibrosis”[All Fields]) OR “liver 

fibrosis”[All Fields]) AND (“biomarkers”[MeSH Terms] OR “biomarkers”[All Fields]) 

AND (“child”[MeSH Terms] OR “child”[All Fields] OR “children”[All Fields])) on 

November 1, 2018 yielded 30 peer reviewed articles providing the biological basis, scientific 

and clinical rationale for the targeted nine biomarker panel. Supplemental Document 1 

summarizes what is known about each biomarker and its relationship to fibrosis or liver 

stiffness, in the context of pediatric liver disease when available.

ELISA-based measurement of these nine targeted biomarkers (lysyl oxidase (LOX, 

Mybiosource, Cat #MBS039099, San Diego, CA), tissue inhibitor matrix metalloproteinase 

1 (TIMP1, R&D, Cat #DTM100, Minneapolis, MN), connective tissue growth factor 

(CTGF, Mybiosource, Cat # MBS266000, San Diego, CA), interleukin-8 (IL-8, 

Millipore, Cat # HCYTOMAG-60K-01, Burlington, MA), endoglin (Sigma-Aldrich, Cat 

# RAB0171, Burlington, MA), periostin (Abcam, Cat # AB213816, Cambridge, UK), 

mac-2-binding protein (mac2-BP, Mybiosource, Cat # MBS108990, San Diego, CA), 

matrix metalloproteinase-3 (MMP-3, R&D, Cat# DMP300, Minneapolis, MN) and matrix 

metalloproteinase-7 (MMP-7, R&D, Cat# DMP700, Minneapolis, MN) were performed 

according to the manufacturer’s instructions. Serum samples were run in duplicate and 

randomly aliquoted onto 96-well plates with six internal controls (frozen sera from healthy 

controls with normal liver biochemistries stored at −80 C). Measurements of each analyte 

were in the linear portion of the response curve for each biomarker.

Concentrations for selected biomarkers were displayed visually using boxplots. Scatter plots 

with LOESS (locally estimated scatterplot smoothing) lines were used to visually inspect 

associations between biomarker concentrations and clinical characteristics. Differences 

among disease groups were compared using Kruskal-Wallis tests for continuous variables 

and Chi-Square test for categorical variables. Biomarker differences in participants with 
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clinically evident portal hypertension status (CEPH, absent, possible, definite) using a 

previously described research definition (30) were also analyzed and tested with Kruskal-

Wallis tests. Correlations with LSM were estimated using Spearman’s rank correlation 

for biomarkers and other clinical parameters; multivariable linear regression was used to 

examine these associations controlling for age, total bilirubin (TB), albumin, GGT and AST. 

Residuals were used to evaluate regression model assumptions. Log transformations were 

applied to all biomarkers except TIMP-1 and MMP-7 to account for skewed distributions 

prior to regression modeling.

To evaluate whether the targeted biomarkers improve the ability to predict LSM in each 

diagnosis group beyond clinical characteristics and laboratory measures, a linear regression 

with forward step-wise selection (inclusion criteria; p≤0.10) was performed first to develop 

a parsimonious model including all clinical labs and features as candidate predictors for 

predicting LSM; the targeted biomarkers were then added one at a time to this model to 

evaluate which biomarker(s) further explain remaining variance in LSM and significantly 

improve the model fit. For all three disease groups, 50 multiply imputed data sets were 

utilized to complete any missing values. Rubin’s rule was used to provide pooled results 

based on parameters obtained from each of the 50 data sets.

Serum samples from 100 children with similar distributions of age- and sex-matched 

children with normal liver biochemistries and without known liver disease served as case 

controls (Discovery Life Sciences, Los Osas, CA) for biomarker comparisons only. TE 

data was not available for case controls. Regression models adjusted for age, sex and race 

were performed to compare biomarkers levels in controls vs liver disease groups. Statistical 

analyses were performed using SAS version 9.4 (SAS Institute Inc, Cary, NC, USA).

Written informed consent was obtained from caregivers or the participant, and assent was 

obtained from the child when appropriate according to local Institutional Review Board 

(IRB) rules. This study was approved by local IRBs and complied with the Declaration of 

Helsinki and Good Clinical Practice Guidelines.

Results

Participants

The FORCE study obtained valid baseline LSM exams on 458 participants enrolled from 

November 2016 to August 2019 (22). The current study included a subset of 330 (72%) 

FORCE participants (n=187 with BA, n=78 with A1AT, n=65 with ALGS) that had baseline 

serum samples available for biomarker ELISA analysis. Age was significantly greater in 

FORCE participants with available serum compared to those without (median 9.2 vs 6.1 

years, p<0.001); sex, race, and ethnicity were not significantly different (Supplemental Table 

1). Demographic characteristics of the study participants are shown in Supplemental Table 

2. Ethnicity was not available for controls. BA participants had a higher percentage of 

females; ALGS participants were older; A1AT had the lowest percentage of Hispanic/Latino 

participants and highest percentage of White participants. Mean age at Kasai for 182 BA 

participants was 57 days (± 24).
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Clinical and laboratory characteristics

Overall, median age was nine years, LSM 9.5 kPa, platelet count 216X103/ uL, TB 0.6 

mg/dL, albumin 4.3 g/d, AST 57 U/L and GGT 78 U/L. Significant differences in all 

clinical variables except albumin were observed amongst the three disease groups (Table 1). 

Median LSM was highest (12.8 kPa) and platelet count was lowest (145 ×103/uL) in BA 

participants. A higher percentage of BA had splenomegaly (40%) compared to A1AT (4%) 

or ALGS (17%). A1AT had the lowest median LSM (6.3 kPa). Among ALGS, mean LSM 

between those with a severe cardiac disease (n=22) vs. mild cardiac disease (n=43) were not 

different (10.7 kPa vs. 11.5; median 9.2 vs. 9.0, data not shown). TB, GGTP, AST and ALT 

were highest in ALGS. Only ALGS demonstrated growth impairment, with median z-scores 

below zero in height, weight, and BMI.

Biomarker profiles

MMP-7 and endoglin levels were significantly higher in BA (both p<0.001) than controls 

(Table 2). Compared to controls, TIMP-1 concentrations were similar in ALGS but lower 

in both BA and A1AT (p<0.001). Among the disease groups, MMP-7 and endoglin levels 

were higher in BA than A1AT and ALGS (Figure 1). Among the nine biomarkers studied, 

the concentrations of all except TIMP-1, MMP-7 and endoglin were higher in age and 

sex-matched healthy controls with no known liver disease than in one or more of the three 

disease groups, BA, A1AT, or ALGS. (Table 2).

Biomarker correlations with participant age varied by liver disease group (Supplemental 

Document 2). In BA, MMP-7 had the strongest negative correlation with age (r=−0.38, 

p<0.001); in A1AT, TIMP-1 (r=−0.34, p=0.003) and CTGF (r=−0.37, p=0.001) most 

strongly correlated with age.

Biomarker and LSM correlations in BA

In BA, LSM correlated with MMP-3 (r =0.19, p=0.02), endoglin (r =0.27, p<0.001), 

periostin (r=0.22, p=0.01), IL-8 (r=0.47, p<0.001) and MMP-7 (r=0.45, p<0.001) (Figure 2). 

After adjusting for covariates (age, TB, albumin, GGTP, and AST), the positive association 

between LSM and IL-8 (p<0.001), MMP-7 (p<0.001), and endoglin (p=0.02) remained 

significant. Periostin (p=0.051) and MMP-3 (p=0.21) were not significant after adjusting 

for other covariates. The best parsimonious prediction model for LSM in BA based on 

clinical characteristics and laboratory measurements (spleen size, PELD, platelets, AST) 

had an R2=0.437. Adding IL8 and MMP7 further improved the R2 to 0.523 (<0.0001) and 

0.526 (p<0.0001), respectively (Table 3). IL-8 and MMP-7 concentrations were higher in 

BA participants with higher LSM (Figure 3). Endoglin concentrations were also higher in in 

BA with higher LSM. CTGF had no clear relationship with LSM in BA.

BA had the largest sample size and highest number of significant biomarker/biomarker 

correlations (10 pairs) and significant biomarker correlations with LSM (Figure 2). 

Specifically, in BA, lysyl oxidase (LOX) and Mac-2BP were correlated with each other 

(r=0.55, p<0.001), and IL-8 was strongly correlated with MMP-7 (r=0.46, p<0.001), 

endoglin (r=0.48, p<0.001) and MMP-3 (r=0.41, p<0.001).
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Biomarker and LSM correlations in A1AT

Only CTGF was correlated with LSM in A1AT (R = −0.38, p=0.01) (Supplemental Figure 

1); CTGF was lower in A1AT participants with higher LSM (Figure 3). The negative 

association between LSM and CTGF remained significant (p=0.004) after adjusting for 

covariates. The best parsimonious prediction model for LSM based on clinical and lab 

measurements (APRI, total bilirubin, spleen size) had an R2=0.524. Adding CTGF (log 

transformed) improved R2 to 0.577 (p=0.0033) (Supplemental Table 3).

While correlations were not significant, MMP-7 and endoglin concentrations trended higher 

in A1AT participants with higher categories of LSM (Figure 3). Among A1AT, LOX was 

correlated with Mac-2BP (r=0.51, p=0.001, Supplemental Figure 1).

Biomarker and LSM correlations in ALGS

No biomarkers were significantly correlated with LSM in ALGS (Figure 3 and 

Supplemental Figure 2). However, among ALGS, LOX and Mac-2BP were correlated 

(r=0.48, p<0.05) with one another; similarly, IL-8 and endoglin were strongly correlated 

with each other (r=0.45, p<0.01), as were MMP-7 and TIMP1 (r=0.52, p<0.001) 

(Supplemental Figure 2).

Biomarker correlations with clinical features and laboratory measurements in BA

BA had the most significant biomarker/laboratory (40 pairs) correlations. Among BA, 

endoglin, TIMP-1, periostin, IL-8, and MMP-7 were associated with almost all clinical 

and laboratory markers of liver disease progression (Figure 4). Endoglin, TIMP1, IL-8 

and MMP-7 were all significantly and negatively correlated with age (r= −0.22 to −0.38, 

p<0.01 for all) and albumin (r= −0.18 to −0.29, p<0.05 or less for all). GGTP correlated 

with TIMP-1, IL-8, and MMP-7 (r=0.38–0.41, p<0.001), as did AST (r= 0.28–0.53, 

p<0.001 for all). In BA, platelets had the strongest correlation with TIMP-1, while AST 

to platelet ratio index (APRI) had the strongest correlation with IL-8. Among BA, endoglin 

(p=0.003) and IL-8 (p=0.02) were highest in participants with definite clinically evident 

portal hypertension (CEPH) vs absent or possible CEPH (Supplemental Table 4). TIMP-1 

was lowest in BA participants with definite CEPH (p<0.001) vs absent or possible CEPH; 

LOX and Mac-2BPGi were also lowest in BA with definite CEPH (p=0.04, p=0.008, 

respectively). MMP-7 was highest (7.8 ng/mL) in BA with definite CEPH vs possible (6.0 

ng/mL) and absent (5.2 ng/mL) CEPH but not significant (p=0.19)

Biomarker correlations with clinical features and laboratory measurements in A1AT

A1AT had the least statistically significant biomarker/laboratory (7 pairs) correlations 

(Supplemental Figure 3). Periostin was not associated with any laboratory associated with 

liver injury. Among A1AT, TIMP-1 and CTGF were negatively associated with age. Platelet 

count was correlated with TIMP-1 and CTGF. AST correlated the highest with IL-8 (r=0.36) 

and MMP-7 (r=0.32, both p<0.05). APRI had the strongest correlation with IL-8 (r=0.42, 

p<0.05). Among A1AT, CTGF was the lowest in participants with definite CEPH (288.6 

pg/mL) vs absent CEPH (572.5 ng/mL, p=0.05), consistent with its correlation with LSM 

(Supplemental Table 4). Only 5 patients with A1AT had definite CEPH. Similar to BA, 
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TIMP-1 was lowest among A1AT with definite CEPH (108.7 ng/mL, p=0.04) vs possible 

(114 ng/mL) and absent (136.6 ng/mL).

Biomarker correlations with clinical features and laboratory measurements in ALGS

ALGS also had few statistically significant biomarker/laboratory (9 pairs) correlations 

(Supplemental Figure 4). Among ALGS, TIMP-1 was correlated with bilirubin, AST, APRI, 

and PELD (r=0.41–0.54, all p<0.01). IL-8 also correlated with these same factors (r=0.44–

0.50, all p<0.01).

Discussion

Discovery and validation of disease-specific serum and imaging biomarkers of liver fibrosis 

may inform the unique etiopathogenesis of BA, A1AT, and ALGS and identify distinct 

targets as well as clinical endpoints for future anti-fibrotic therapies. The mechanisms of 

liver disease are numerous and include genetic etiologies impacting development or protein 

trafficking, inflammation, biliary obstruction, vascular abnormalities and congestion, cell 

death, and fibrogenesis; all could impact liver stiffness. Overall, the study cohort was 

quite young (median <10 years); yet median LSM was 9.5 kPa, consistent with significant 

fibrosis, despite preserved liver function with only mildly elevated biochemistries. TE 

capability is not ubiquitous among most pediatric hospitals, however commercially available 

serum biomarkers validated by TE may offer additional non-invasive alternatives to assess or 

predict worsening liver stiffness or disease progression.

Biomarker correlation with LSM and clinical parameters of liver disease varied widely 

among BA, A1AT, and ALGS highlighting potential disease-specificity of serum and 

imaging biomarkers of liver injury. BA is biologically distinct and characterized by 

extrahepatic biliary obstruction with progression to cirrhosis much earlier and more 

frequently than A1AT and ALGS. As such, it was not surprising that BA participants post 

Kasai had the highest median LSM (12.8 kPa), lowest platelet count, and highest incidence 

of splenomegaly despite not having the highest TB, GGT, AST, or ALT (ALGS had the 

highest levels). In a prior study of 30 infants at the time of Kasai, a LSM of 15.1 kPa or 

higher predicted cirrhosis (Metavir ≥ F4 by liver biopsy), however this cohort was much 

younger (mean 76 days) than our study cohort (27). Interestingly, mean MMP-7 levels were 

also two-fold higher in BA compared to controls, A1AT, or ALGS. This is consistent with 

other studies showing that serum MMP-7 is significantly higher in BA while also offering 

high diagnostic accuracy in distinguishing BA from other cholestatic liver disorders (31–33) 

and correlation with liver fibrosis (34). Notably, in our study, BA had highest MMP-7 

concentrations in the first year of life and decreased to control concentration levels by early 

adulthood. Among BA, MMP-7 was also highly correlated with GGT, AST, and LSM. The 

addition of MMP-7 improved clinical and lab-based model prediction of LSM in BA by 

explaining an additional 9% of the variation in LSM. Based on these important biomarker 

and liver stiffness associations, MMP-7 appears to be a reliable biomarker of worsening 

fibrosis in BA. Matrix metalloproteinases (MMP) have been found to be involved in the 

activation of hepatic stellate cells and increased extracellular matrix, both of which are 

associated with the fibrogenic mechanisms of BA (35, 36). Notably, in a large public domain 
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single cell human RNA data set (37), MMP-7 was highly expressed in cholangiocytes and 

enriched in individuals with cirrhosis. MMP-7 also appears to be the most consistently 

expressed marker in animal models of BA (38–40).

In BA, endoglin and IL-8 were positively correlated with LSM; in addition to MMP-7, these 

biomarkers correlated with at least seven of the 10 clinical parameters of interest. These 

three biomarkers are involved in hepatic stellate cell differentiation (36), biliary epithelial 

tissue remodeling (41), and chemoattraction in cholangiocytes (42, 43), respectively, 

and represent pathways leading to increased liver stiffness and potential targets for anti-

fibrotic therapies. Interestingly, endoglin, a glycoprotein co-receptor for TGF-β involved in 

cytoskeletal organization was the only biomarker that was universally higher in all liver 

disease groups vs controls, though only significantly higher in BA, likely due to its larger 

sample size. Our reported mean endoglin level of 11.1 ng/mL in BA post-Kasai is higher 

than previously reported in a younger post-Kasai cohort (7.8 ng/mL) (44).

The negative correlation between LSM and CTGF among A1AT is intriguing and 

paradoxical in the context of anticipated liver fibrosis in A1AT. Interestingly, CTGF also 

had a significant negative correlation with age and portal hypertension severity. CTGF is 

tightly regulated by HNF4alpha and YAP. HNF4alpha is a transcription factor known for 

its roles in maintaining balance between hepatocyte differentiation versus quiescence and 

organization of the sinusoidal endothelium during development (45, 46). YAP, a downstream 

effector of the Hippo pathway, is known to promote liver regeneration (47, 48) in response 

to injury or parenchymal loss. It is possible that serum CTGF levels may reflect the real-time 

state of the hepatocyte, in this case, quiescence, in A1AT. Low CTGF may reflect a defective 

compensatory hepatocyte proliferation in response to hepatocyte injury in A1AT despite 

increased fibrosis or liver stiffness. Of note, CTGF is also positively correlated with platelet 

count in A1AT and seems to be a consistent biomarker of worsening liver disease or 

emerging portal hypertension in A1AT. The addition of CTGF also improved clinical and 

lab-based prediction model of LSM in A1AT.

With the exception of endoglin (highest in BA), TIMP-1 (highest in ALGS), and MMP-7 

(highest in BA), biomarker concentrations of our targeted panel were surprisingly higher in 

age-matched healthy controls compared to those with liver disease. Given what is known 

about the putative role of these biomarkers in liver fibrosis, this was an unexpected but 

important finding not previously described. This suggests that levels of some collagen/

matrix markers may be confounded by factors inherent to liver disease such as cholestasis or 

suboptimal nutrition. For example, periostin levels were nearly two-fold higher in controls 

than any of the liver disease groups. Children with cholestatic liver disease commonly 

have growth stunting, manifest vitamin D deficiency due to poor absorption of fat soluble 

vitamins, and have osteopenia or fractures (49, 50). Hence, it is critical to acknowledge 

that some collagen based biomarkers may be more challenging to interpret in the context 

of specific pediatric liver disorders and age groups. Alternatively, it is possible that some of 

these collagen/matrix markers may have less biological relevance in pediatric liver disease 

than previously thought.
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This study has some limitations. Although the panel was selected based on a rigorous review 

of peer-reviewed literature supporting their putative value as liver fibrosis biomarkers, only 

nine targeted biomarkers were studied. Changes in biomarker serum levels may reflect 

altered clearance rather than decreased or increased production; they may also not directly 

reflect changes within the liver. LSMs were not validated by liver biopsy in this study. 

Ideally, immunostaining of liver tissues to assess the intensity and distribution of biomarker 

expression can inform hypotheses about reasons for changes in biomarker levels in serum; 

however, liver biopsy was not considered feasible in the FORCE study. Our cross-sectional 

study design also does not indicate causation or allow us to measure the biomarkers at 

multiple time points to correlate with fibrosis progression as measured by Fibroscan and lab 

parameters. Mean serum concentration of MMP-7 levels among our much older BA cohort 

in this study (median age of 8.8 years) are lower than other studies reporting median MMP-7 

levels at the time of BA diagnosis (median age 54–59 days) (33, 34). Post-Kasai status, age, 

duration of liver disease, and brand of ELISA kit are likely important factors. Lastly, there 

were fewer ALGS and A1AT participants than BA, resulting in a limited number of ALGS 

and A1AT participants with high LSM. This likely increased the risk of a Type II error for 

detecting significant associations between biomarkers and disease severity.

The correlations between biomarkers may shed light on mechanistic pathways that 

contribute to increased liver stiffness in specific pediatric liver disorders. Correlation of 

IL-8 and endoglin was demonstrated in both BA and ALGS participants. In BA, IL-8 

also independently correlated with LSM and improved model prediction of LSM among 

BA. IL-8 is a chemokine involved in angiogenesis and liver inflammation while endoglin 

is overexpressed after liver or arterial injury. It is plausible that vascular abnormalities, 

common in BA (e.g., aberrant portal vein or obliterative venopathy) (51) and ALGS (e.g., 

cerebrovascular and renovascular malformations) (52, 53), may play a role in liver fibrosis 

or liver stiffness. While the correlation of IL-8 with LSM among ALGS was not significant 

(p=0.09) in a multivariable model, a larger disease population may have better elucidated 

this correlation.

Conclusion

Biomarker correlation with LSM and other clinical parameters of liver disease varied by 

type of pediatric cholestatic liver disease. This study provides evidence that endoglin, 

IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, while 

CTGF inversely correlates with LSM in A1AT; these biomarkers also appear to enhance 

clinical characteristic and laboratory- based prediction of LSM and represent distinct but 

related mechanistic pathways of liver fibrosis and potential targets for antifibrotic therapies. 

As LSM via transient elastography is not yet clinically available or a standard of care 

in most pediatric hospitals, these commercially available biomarkers may offer additional 

non-invasive tools to guide decision making. However, disease type and age appear to be 

important factors in biomarker and LSM interpretation. Future investigations of imaging and 

serum biomarkers in pediatric cholestasis should use disease specific thresholds and would 

benefit from evaluation of change in biomarker levels over time as predictors of clinical 

outcomes.
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Abbreviations

A1AT alpha-1 antitrypsin deficiency

ALGS Alagille syndrome

APRI AST to platelet ratio index

AST aspartate aminotransferase

BA biliary atresia

BASIC Biliary Atresia Study in Infants and Children

CEPH clinically evident portal hypertension

ChiLDReN Childhood Liver Disease Research Network

CI confidence intervals

CTGF connective tissue growth factor

FORCE FibroScan− in Pediatric Cholestatic Liver Disease

GPR gamma glutamyl transpeptidase to platelet ratio

GGT gamma glutamyl transpeptidase

INR International Normalized Ratio

IQR Interquartile Range

IRB Institutional Review Board

LOESS locally estimated scatterplot smoothing
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LOGIC Longitudinal Observational Study of Genetic Causes of Intrahepatic 

Cholestasis

LOX Lysyl Oxidase

LSM liver stiffness measurement

LT liver transplant

Mac2-BP mac-2-binding protein

MMP Matrix metalloproteinases

NIH National Institutes of Health

PELD Pediatric End-Stage Liver Disease

PROBE Prospective Database of Infants with Cholestasis

TB total bilirubin

TE transient elastography

TIMP1 tissue inhibitor matrix metalloproteinase 1
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Figure 1. 
Boxplots of selected biomarker concentrations (IL-8, MMP-7, CTGF, Endoglin) by 

diagnosis (control, BA, A1AT, ALGS).

Leung et al. Page 18

Hepatology. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Spearman correlations and scatter plots among biomarker concentrations and liver stiffness 

measurements for participants with BA. The numbers in the upper triangle of the grid 

display the Spearman correlation coefficients for pairs of variables. The size of the font 

corresponds to the magnitude of the correlation and the symbols below the numbers indicate 

significance levels after using multiple comparisons correction for false discovery rate: * 

p<0.05; **p<0.01;***p<0.001

The lower triangle of the grid displays scatter plots with LOESS lines.
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Figure 3. 
Boxplots for selected biomarkers (IL-8, MMP-7, CTGF, Endoglin) by diagnosis (control, 

BA, A1AT, ALGS) and liver stiffness measurement category.
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Figure 4. 
Spearman correlations between biomarker concentrations and laboratory measurements for 

BA participants. The size of the font corresponds to the magnitude of the correlation and 

the symbols below the numbers indicate significance levels after using multiple comparisons 

correction for false discovery rate: * p<0.05;**p<0.01; ***p<0.001
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Table 1.

Clinical characteristics of study participants by diagnosis

Characteristic
BA

(n=187)
A1AT
(n=78)

ALGS
(n=65)

p-value*

FibroScan LSM (kPa)

 n 187 78 65

 Median (Q1, Q3) 12.8 (7.3, 20.0) 6.3 (5.1, 8.5) 9.0 (6.9, 12.5) <0.001

Height Z-score

 n 186 76 65

 Median (Q1, Q3) 0.3 (−0.6, 0.7) 0.3 (−0.3, 1.0) −1.2 (−2.0, −0.6) <0.001

Weight Z-score

 n 186 76 65

 Median (Q1, Q3) 0.4 (−0.3, 1.0) 0.5 (−0.1, 0.9) −1.1 (−2.1, −0.5) <0.001

BMI Z-score

 n 186 76 65

 Median (Q1, Q3) 0.5 (−0.1, 1.1) 0.3 (−0.3, 0.9) −0.5 (−1.3, 0.2) <0.001

Total bilirubin (mg/dl)

 n 177 78 64

 Median (Q1, Q3) 0.6 (0.4, 1.1) 0.4 (0.2, 0.6) 1.1 (0.6, 2.9) <0.001

GGTP

 n 164 72 56

 Median (Q1, Q3) 79.5 (29.5, 175.5) 26.0 (17.0, 50.0) 352.5 (185.0, 797.0) <0.001

AST

 n 177 78 64

 Median (Q1, Q3) 54 (34, 94) 46 (31, 60) 110 (74, 178) <0.001

ALT

 n 178 78 64

 Median (Q1, Q3) 54 (35, 94) 53 (35, 77) 140 (88, 243) <0.001

Albumin (g/dl)

 n 176 76 63

 Median (Q1, Q3) 4.3 (3.9, 4.5) 4.4 (4.2, 4.6) 4.4 (3.9, 4.5) 0.08

 n (%) <3.0 3 (2%) 1 (1%) 2 (3%) 0.70

INR

 n 148 60 56

 Median (Q1, Q3) 1.1 (1.0, 1.2) 1.1 (1.0, 1.1) 1.0 (1.0, 1.1) <0.001

Spleen size (cm below costal margin)

 n 187 78 65

 Median (Q1, Q3) 1 (0, 5) 0 (0, 0) 0 (0, 0) <0.001

 n (%) >2 cm 75 (40%) 3 (4%) 11 (17%) <0.001

Platelet count
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Characteristic
BA

(n=187)
A1AT
(n=78)

ALGS
(n=65)

p-value*

 n 183 75 62

 Median (Q1, Q3) 145 (84, 242) 269 (220, 332) 251 (198, 325) <0.001

 n (%) <150 92 (50%) 7 (9%) 9 (15%) <0.001

APRI

 n 176 75 62

 Median (Q1, Q3) 0.9 (0.4, 2.4) 0.4 (0.3, 0.6) 1.2 (0.6, 2.1) <0.001

 n (%) <1.5 106 (60%) 66 (88%) 39 (63%) <0.001

PELD

 n 141 58 55

 Median (Q1, Q3) −10.3 (−12.7, −5.6) −13.2 (−16.0, −10.7) −6.3 (−10.1, 0.8) <0.001

*
Kruskal-Wallis test for continuous variables. Chi-Square tests for binary variables.
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Table 2.

Biomarker Comparisons* between disease groups and controls

Control BA A1AT ALGS

LOX
(ng/mL)

Mean 5.0 3.9 3.8 3.1

p-value Ref. 0.045 0.22 0.004

MMP-3
(ng/mL)

Mean 12.1 9.9 7.2 9.3

p-value Ref. 0.003 <0.001 0.4

Endoglin
(pg/mL)

Mean 7,958 11,117 9,295 10,118

p-value Ref. <0.001 0.2 0.23

TIMP-1
(ng/mL)

Mean 171 134 135 176

p-value Ref. <0.001 <0.001 0.29

Mac-2BPGi
(ng/mL)

Mean 5.5 3.9 4.0 3.5

p-value Ref. 0.002 0.003 <0.001

Periostin
(pg/mL)

Mean 6,968 3,002 2,785 3,895

p-value Ref. <0.001 <0.001 <0.001

IL-8
(pg/ML)

Mean 99 44 39 45

p-value Ref. <0.001 <0.001 0.006

CTGF
(Pg/mL)

Mean 695 518 601 434

p-value Ref. 0.01 0.6 0.001

MMP-7
(ng/mL)

Mean 3.4 6.8 3.5 3.4

p-value Ref. <0.001 0.26 0.41

*
p-values based on Kruskal-Wallis tests
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Table 3.

Linear regression models predicting LSM in BA (n=187) with biomarkers added individually to conventional 

laboratory measurements and clinical features

Best parsimonious model using conventional labs and clinical factors
R2= 0.473 (95% CI: 0.361, 0.574); Adj-R2=0.461(0.349, 0.564)

Term Estimate p-value

Spleen Size 0.0108 0.06

PELD 0.0165 <0.001

Platelets −0.00079 <0.001

AST 0.0014 <0.001

Separate linear regression models predicting LSM with best parsimonious model based on conventional labs + target biomarker one at 
a time

Term R2 (95% CI) Adj-R2 (95% CI) p-value

Log10(LOX) 0.478 (0.367, 0.579) 0.463 (0.351, 0.566) 0.19

Log10(MMP3) 0.474 (0.363, 0.575) 0.459 (0.347, 0.562) 0.55

Log10(Endoglin) 0.474 (0.363, 0.576) 0.460 (0.348, 0.563) 0.48

TIMP1 0.505 (0.397, 0.602) 0.491 (0.383, 0.590) <0.001

Log10(Mac2) 0.477 (0.366, 0.578) 0.462 (0.351, 0.565) 0.25

Log10(Periostin) 0.480 (0.369, 0.581) 0.465 (0.353, 0.568) 0.15

Log10(IL8) 0.523 (0.416, 0.617) 0.509 (0.402, 0.606) <0.001

Log10(CTGF) 0.475 (0.364, 0.577) 0.461 (0.349, 0.564) 0.35

MMP7 0.526 (0.419, 0.621) 0.513 (0.404, 0.610) <0.001
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