Skip to main content
. Author manuscript; available in PMC: 2023 May 1.
Published in final edited form as: Hepatology. 2022 Nov 3;77(2):530–545. doi: 10.1002/hep.32777

Table 3.

Linear regression models predicting LSM in BA (n=187) with biomarkers added individually to conventional laboratory measurements and clinical features

Best parsimonious model using conventional labs and clinical factors
R2= 0.473 (95% CI: 0.361, 0.574); Adj-R2=0.461(0.349, 0.564)
Term Estimate p-value
Spleen Size 0.0108 0.06
PELD 0.0165 <0.001
Platelets −0.00079 <0.001
AST 0.0014 <0.001
Separate linear regression models predicting LSM with best parsimonious model based on conventional labs + target biomarker one at a time
Term R2 (95% CI) Adj-R2 (95% CI) p-value
Log10(LOX) 0.478 (0.367, 0.579) 0.463 (0.351, 0.566) 0.19
Log10(MMP3) 0.474 (0.363, 0.575) 0.459 (0.347, 0.562) 0.55
Log10(Endoglin) 0.474 (0.363, 0.576) 0.460 (0.348, 0.563) 0.48
TIMP1 0.505 (0.397, 0.602) 0.491 (0.383, 0.590) <0.001
Log10(Mac2) 0.477 (0.366, 0.578) 0.462 (0.351, 0.565) 0.25
Log10(Periostin) 0.480 (0.369, 0.581) 0.465 (0.353, 0.568) 0.15
Log10(IL8) 0.523 (0.416, 0.617) 0.509 (0.402, 0.606) <0.001
Log10(CTGF) 0.475 (0.364, 0.577) 0.461 (0.349, 0.564) 0.35
MMP7 0.526 (0.419, 0.621) 0.513 (0.404, 0.610) <0.001