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Abstract
Background: Neurogenic differentiation factor 1 (NEUROD1) is frequently overex-
pressed in small‐cell lung cancer (SCLC). NEUROD1 plays an important role in pro-
moting malignant behavior and survival.
Methods: In this study, we evaluated the association between putative functional poly-
morphisms in 45 NEUROD1 target genes and chemotherapy response and survival
outcomes in 261 patients with SCLC. Among the 100 single nucleotide polymor-
phisms (SNPs) studied, two were significantly associated with both chemotherapy
response and overall survival (OS) of patients with SCLC.
Results: The SNP rs3806915C>A in semaphorin 6A (SEMA6A) gene was significantly
associated with better chemotherapy response and OS (p = 0.04 and p = 0.04, respectively).
The SNP rs11265375C>T in nescient helix–loop helix 1 (NHLH1) gene was also associated
with better chemotherapy response and OS (p = 0.04 and p = 0.02, respectively). Luciferase
assay showed a significantly higher promoter activity of SEMA6A with the rs3806915 A
allele than C allele in H446 lung cancer cells (p = 4 × 10−6). The promoter activity ofNHLH1
showed a significantly higher with the rs11265375 T allele than C allele (p = 0.001).
Conclusion: These results suggest that SEMA6A rs3806915C>A and NHLH1
rs11265375C>T polymorphisms affect the promoter activity and expression of the
genes, which may affect the survival outcome of patients with SCLC.
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INTRODUCTION

Lung cancer remains the leading cause of cancer-related
deaths worldwide. In 2020, more than 2.2 million new
cases and 1.8 million deaths because of lung cancer wereSunwoong Lee and Seung Soo Yoo contributed equally to this paper.
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recorded.1 Lung cancer is largely divided into non–small-
cell lung cancer (NSCLC) and small-cell lung cancer
(SCLC), which account for �85% and 15% of all cases,
respectively. In the past 10 years, the 5-year survival rate
of lung cancer has increased from 16% to 21% owing to
innovations in cancer treatment such as immunotherapy
and targeted anticancer drugs.1,2 However, these novel
therapeutics have shown significant beneficial effects in
NSCLC, but not in SCLC. The 2-year survival rate for
extensive disease (ED) SCLC, which accounts for approxi-
mately 70% of SCLC cases, is only 8%.1 Although the
recent addition of immune checkpoint inhibitors (ICIs) to
cytotoxic chemotherapy has improved the overall survival
(OS) in ED-SCLC,3,4 this is still marginal compared to the
significant breakthroughs in the treatment of NSCLC.
Therefore, there is a need to identify predictive bio-
markers or develop new therapeutics to improve the sur-
vival outcomes of SCLC.

SCLC is a highly aggressive pulmonary neuroendocrine
tumor characterized by rapid tumor growth, high vascularity,
genomic instability, and early metastasis compared with
NSCLC.5 Our understanding of the biology and genomic alter-
ations in SCLC has broadened over the past decade. The
majority of SCLCs are characterized by inactivation of TP53
and RB1 tumor suppressor genes.6 It was also known that
MYC amplification, commonly found in SCLC, is related to
short survival time.7 With the advancements in cancer genet-
ics, efforts are being made to further classify SCLCs from two
subtypes (variant and classical) based on gene expression pro-
files. Many researchers have classified SCLC based on gene
expression of achaete-scute homologue 1 (ASCL1) and neuro-
genic differentiation factor 1 (NEUROD1)8–11 into three types
as: ASCL1-high, NEUROD1-high, and double negative, or
into four types by further dividing the double negatives.8–11

The basic helix–loop–helix transcription factors
ASCL1 and NEUROD1 play important roles in promoting
malignant behavior and survival of SCLC.8 ASCL1 is
essential for neuroendocrine differentiation in the lungs
and plays a crucial role in SCLC carcinogenesis.12,13

ASCL1 is expressed in �75% of SCLCs and functions as a
lineage-specific oncogene.6,14 NEUROD1 is also critical
for promoting neuronal differentiation and matura-
tion.15,16 NEUROD1 is expressed in �15% of SCLCs and
is associated with the variant subtype.6,10 NEUROD1 is
thought to promote tumor cell migration and therefore,
contribute to metastasis in SCLC.17 Its role as a regulatory
hub in SCLC, through signaling molecules such as tyro-
sine kinase tropomyosin-related kinase B and neural cell
adhesion molecule, has been reported.18 Therefore,
ASCL1, NEUROD1, and their target genes are potential
therapeutic targets for SCLC.5,14,18

In a previous study, we found that a polymorphism
in dopa decarboxylase, an ASCL1 target gene, was asso-
ciated with survival outcomes in patients with SCLC.19

We hypothesized that functional polymorphisms in
NEUROD1 target genes may also affect the clinical out-
comes of patients with SCLC, as NEUROD1 plays a

crucial role in SCLC carcinogenesis. To test this hypoth-
esis, we evaluated the association between putative func-
tional polymorphisms in 45 NEUROD1 target genes
and the chemotherapy response and survival outcomes
of patients with SCLC.

RESULTS

Patient characteristics

The baseline characteristics of the 261 patients are presented
in Table 1. The response rate to first line chemotherapy was
72.8% (95% confidence interval [CI], 67.4–78.2) and was
higher with irinotecan-cisplatin (IP) regimen than with
etoposide-cisplatin (EP) regimen (78.7% vs. 67.2%,
p = 0.04). However, the OS did not differ between the regi-
mens. The median survival time was 10.5 months (95%
CI, 9.3–11.4). Younger age, limited-stage disease, good per-
formance status, low neuron-specific enolase level, no
weight loss, receiving second line chemotherapy, and radia-
tion to the tumor were associated with better OS (Table 1).
These variables were adjusted in subsequent studies to deter-
mine their association with the polymorphisms.

Association between single nucleotide
polymorphisms and treatment outcomes

Among the 100 single nucleotide polymorphisms (SNPs) eval-
uated, two showed significant association with both chemo-
therapy response and OS. SEMA6A rs3806915C>A was
significantly associated with better chemotherapy response
and OS (under a codominant model, adjusted odds ratio
[aOR], 1.74; 95% CI, 1.02–2.95; p = 0.04, and aHR, 0.78; 95%
CI, 0.62–0.99; p = 0.04, respectively) (Table 2 and Figure 1).
NHLH1 rs11265375C>T was also significantly associated with
better chemotherapy response and OS (under a dominant
model, aOR, 1.95; 95% CI, 1.04–3.65; p = 0.04, and
aHR, 0.70; 95% CI, 0.52–0.95; p = 0.02, respectively) (Table 2
and Figure 1).

Effect of SNPs on the promoter activity of
SEMA6A and NHLH1

The SNP rs3806915C>A is located in the SEMA6A pro-
moter region (�1621 base pairs [bp] from the transcription
start site). We performed a luciferase assay to assess the
effect of rs3806915C>A on SEMA6A promoter activity.
Promoter activity was significantly higher for the rs3806915
A allele than for the rs3806915 C allele in H446 lung cancer
cells (p = 4 � 10�6) (Figure 2).

SNP rs11265375C>A is located in the first intron of the
NHLH1 gene. However, based on the high chromatin accessi-
bility (as measured by DNase I hypersensitivity)20 and strong
signal for active histone markers (H3K4Me3 and H3K27Ac)21
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T A B L E 2 The association between SEMA6A rs3806915C>A and NHLH1 rs11265375C>T and the response to chemotherapy and overall survival.

Gene
polymorphism Genotype

Responders
(%)a

Non-responders
(%)a OR (95% CI)b pb

No. of
cases (%)c L-R-P HR (95% CI)d pd

SEMA6A
rs3806915C>A

CC 116 (70.3) 49 (29.7) 1.00 165 (64.0) 0.11 1.00

CA 58 (74.4) 20 (25.6) 1.34 (0.70–2.57) 0.38 78 (30.2) 0.87 (0.63–1.19) 0.37

AA 14 (93.3) 2 (6.7) 7.77 (0.97–62.55) 0.05 15 (5.8) 0.50 (0.25–0.97) 0.04

Dominant 1.63 (0.87–3.07) 0.13 0.10 0.78 (0.58–1.05) 0.11

Recessive 7.03 (0.88–55.88) 0.07 0.07 0.52 (0.27–1.00) 0.05

Codominant 1.74 (1.02–2.95) 0.04 0.78 (0.62–0.99) 0.04

NHLH1
rs11265375C>T

CC 98 (66.2) 50 (33.8) 1.00 148 (58.1) 0.22 1.00

CT 70 (82.4) 15 (17.6) 2.16 (1.08–4.32) 0.03 85 (33.3) 0.62 (0.45–0.87) 0.005

TT 17 (77.3) 5 (22.73) 1.34 (0.44–4.12) 0.61 22 (8.6) 1.11 (0.66–1.87) 0.70

Dominant 1.95 (1.04–3.65) 0.04 0.09 0.70 (0.52–0.95) 0.02

Recessive 1.06 (0.35–3.20) 0.92 0.90 1.28 (0.76–2.15) 0.35

Codominant 1.51 (0.92–2.48) 0.10 0.84 (0.66–1.07) 0.16

Abbreviations: CI, confidence interval; HR, hazard ratio; L-R-P, log-rank P; OR, odds ratio.
aRow percentage.
bORs, 95% CI, and their corresponding p values were calculated using multivariate regression analysis, adjusted for age, sex, smoking status, stage, Eastern Cooperative Oncology
Group performance status, weight loss, chemotherapy regimen, and neuron-specific enolase.
cColumn percentage.
dHRs, 95% CI and their corresponding p values were calculated using multivariate Cox proportional hazard models, adjusted for age, sex, smoking status, stage, Eastern
Cooperative Oncology Group performance status, weight loss, chemotherapy regimen, 2nd line chemotherapy, radiotherapy, and neuron-specific enolase.

F I G U R E 1 Kaplan–Meier curves for overall survival according to polymorphisms (a) SEMA6A rs3806915C>A and (b) NHLH1 rs11265375C>T. p values were
calculated using multivariate Cox proportional hazard models (rs3806915C>A under a codominant model and rs11265375C>T under a dominant model).

F I G U R E 2 Relative luciferase activity according to polymorphisms. The effect of (a) SEMA6A rs3806915C>A and (b) NHLH1 rs11265375C>T genotypes on the
promoter activity of the respective gene in H446 lung cancer cells. Data are presented as mean ± standard error of mean. p values are based on a t-test.
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at the chromosomal position of rs11265375C>A in the Univer-
sity of California Santa Cruz (UCSC) genome browser,
rs11265375C>A was predicted to affect promoter activity
(Figure 3). The luciferase assay also showed a significantly
higher promoter activity for the rs11265375 T allele than for
the rs11265375 C allele in H446 lung cancer cells (p = 0.001)
(Figure 2).

DISCUSSION

In this study, we investigated the association between
genetic variants of NEUROD1 target genes and the clinical
outcomes of patients with SCLC. We found that two SNPs,
SEMA6A rs3806915C>A and NHLH1 rs11265375C>T, were
significantly associated with both chemotherapy response
and OS in patients with SCLC. Additionally, we found that
the promoter activity of each gene was significantly higher
in the variant allele than in the wild-type allele in in vitro
functional studies.

SEMA6A is a member of the semaphorin family, which
is known to regulate cell motility and attachment during
axon guidance, vascular growth, immune cell regulation,

and tumor progression.22 SEMA6A has been proposed
to be a prognostic biomarker that reduces cancer cell
proliferation, migration, and invasion in glioblastoma.23

Recently, a few studies have analyzed the role of SEMA6A
in lung cancer.24,25 Chen et al.24 reported that overexpres-
sion of SEMA6A decreases lung cancer cell migration and
suggested the role of SEMA6A in inhibition of cancer cell
migration. Shen et al.25 showed that overexpression of
SEMA6A reduces the proliferation of lung cancer cells and
increases the rate of apoptosis. As rs3806915C>A is
located in the SEMA6A promoter region (�1621 bp from
the transcription start site), it may alter the promoter
activity of SEMA6A. Results of the luciferase assay
revealed that the promoter activity of SEMA6A was higher
for the rs3806915 A allele than for the C allele. Further-
more, we found that SEMA6A rs3806915C>A was signifi-
cantly associated with better chemotherapy response and
OS. This is consistent with the results of the aforemen-
tioned studies. SEMA6A rs3806915C>A increases the pro-
moter activity of SEMA6A, thereby increasing the
expression of SEMA6A, which in turn reduces lung cancer
cell migration and proliferation and increases apoptosis,
leading to better OS. Dhanabal et al.26 reported that

F I G U R E 3 Bioinformatics annotation of NHLH1 promoter region using the University of California Santa Cruz (UCSC) genome browser. (a) UCSC
genome browser view of chromosome 1q23.2 with data from the transcription factor ChIP-seq, DNase 1 hypersensitivity, histone modifications from the
ENCODE project. The histone modification tracks show the level of enrichment of the histone marks across the genome as determined by a ChIP-seq assay
using the seven cell lines of the ENCODE project. The next track shows DNase I hypersensitivity clusters. The last track represents transcription factor ChIP-
seq clusters (338 factors from 130 cell types) from ENCODE 3. The gray box encloses each peak cluster of transcription factor occupancy: the darkness of the
box is proportional to the maximum signal strength observed in any cell type contributing to the cluster. (b) Definitions of track colors are listed.
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recombinant SEMA6A-1 soluble extracellular domain
inhibits growth factor and tumor-induced angiogenesis
in vivo, suggesting the potential therapeutic role of
SEMA6A. Therefore, SEMA6A represents an attractive
therapeutic target for treating lung cancer.

NHLH1, also known as HEN1 and NSCL1, encodes helix–
loop–helix protein 1, which plays a role in the growth and
development of a wide variety of tissues, particularly in regu-
lating neurogenesis.27,28 Misexpression of NSCL1 leads to
abnormal brain development in chicks.29 NHLH1 has been
reported to be associated with neuroblastoma and medullo-
blastoma.30,31 However, its association with other cancers is
unknown. In this study, NHLH1 rs11265375C>T was found
to be significantly associated with chemotherapy and OS in
patients with SCLC. NHLH1 rs11265375C>T is located in an
intron of NHLH1. As technological advances in sequencing
have expanded our understanding of the genome, it has
become clear that introns are not merely junk DNA and that
variants in introns can also affect gene expression.32,33 The
SNP rs11265375C>T was predicted to affect NHLH1 pro-
moter activity in the UCSC genome browser. A luciferase
assay confirmed that the variant allele had higher NHLH1
promoter activity than the wild-type allele. Although the role
of NEUROD1 in SCLC and as an upstream regulator of
NHLH1 (aliases of NSCL1) is known, the direct relationship
between NHLH1 and SCLC remains unknown.6,17,18,34 Fur-
ther research is required to clarify this in the future.

ICIs are therapeutic agents that are revolutionizing the
treatment of lung cancer, especially NSCLC. ICIs have also
brought about a paradigm shift in the treatment methods
for SCLC. In recent studies, the combined use of ICI with
conventional platinum doublet chemotherapy was shown to
extend the median OS in patients with ED-SCLC from
�10 months to 12 to 13 months.3,4 As our study included
patients from before ICIs were introduced as a standard
treatment for SCLC, it is not known how these polymor-
phisms affect the clinical outcomes of patients with SCLC
treated with ICI-combination therapy. Therefore, it would
be interesting to study the effects of these two polymor-
phisms in patients who receive ICI-combination therapy.

This study has some limitations. First, all the patients
enrolled in this study were of Korean descent; therefore,
caution should be exercised in generalizing the results of this
study to other ethnic groups. The frequency of SNPs varies
between races and may have different effects; therefore, vali-
dation in different ethnic groups is necessary. In addition,
although the variant alleles affected the promoter activity of
the respective genes in the lung cancer cells, the effect of the
variants on gene expression could not be confirmed in
actual SCLC tissues. Unlike NSCLC, SCLC tissues are diffi-
cult to obtain because they are rarely resectable. Therefore,
previous studies on SEMA6A25,26 were also performed on
NSCLC tissues or lung cancer cell lines.

In summary, we investigated the effect of genetic vari-
ants of NEUROD1 target genes on clinical outcomes in
patients with SCLC. SEMA6A rs3806915C>A and NHLH1
rs11265375C>T were significantly associated with better

chemotherapy response and OS. Functional studies suggested
that these SNPs may influence clinical outcomes in patients
with SCLC by affecting promoter activity and gene expression.

METHODS

Study population

The study population has been described in our previous
study.19 Briefly, 261 patients diagnosed with SCLC
between 1997 and 2017 at the Kyungpook National Uni-
versity Hospital (KNUH) who received at least two cycles
of the EP regimen or the IP regimen chemotherapy as first
line treatment were enrolled. Patients treated with con-
current chemoradiotherapy were excluded because radio-
therapy may affect the evaluation of chemotherapy
response. Patients who received radiation therapy after
chemotherapy were included. Treatment was discontin-
ued in case of disease progression or major toxicity, or as
determined by the patient or physician. Chemotherapy
response was assessed after every two cycles of treatment
by computed tomography using the Response Evaluation
Criteria in Solid Tumors. Patients displaying complete or
partial response to first-line chemotherapy were classified
as responders, and those with stable or progressive disease
were classified as non-responders.

This study was approved by the Institutional Review
Board of the KNUH. Blood samples for genotyping were
provided by the National Biobank of Korea-KNUH, which
is supported by the Ministry of Health, Welfare, and Family
Affairs (approval no. KNUCH 2020-03-040). All blood sam-
ples were obtained before the first chemotherapy session.
Informed consent was obtained from all subjects or their
legal guardians. All methods were performed in accordance
with relevant guidelines and regulations.

Selection of SNPs and genotyping

We selected 45 NEUROD1 target genes by searching public
databases and related articles. We collected 33 917 SNPs
using a public database (http://www.ncbi.nlm.nih.gov/SNP).
To identify potentially functional polymorphisms, we used
FuncPred utility for functional SNP prediction in the
SNPinfo web server (https://snpinfo.niehs.nih.gov/). After
excluding SNPs with low minor allele frequencies (≤0.1 by
HapMap-JPT data), 180 potentially functional SNPs were
collected. Using the TagSNP utility for linkage disequilib-
rium (LD)-tagged SNP selection, 59 LD polymorphisms
(r2 ≥ 0.8) were excluded, and the remaining 121 SNPs were
prepared for genotyping. We designed primers of 28plex at
the multiplex level and excluded 10 SNPs during the primer
combination. A three-step polymerase chain reaction (PCR)
was performed for the remaining 111 SNPs. Genotyping was
performed using Sequenom MassARRAY iPLEX assay
(Sequenom) following the manufacturer’s instructions. Of
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the 111 SNPs, 100 SNPs (excluding 11 with call rates <95%
or p value for Hardy–Weinberg equilibrium [HWE] <0.05)
in the NEUROD1 target genes were processed for statistical
analysis (Table S1).

Promoter-luciferase constructs and luciferase
assay

To verify the functional relevance of the two genetic vari-
ants, we investigated whether rs3806915C>A and
rs11265375C>T regulate the promoter activity of SEMA6A
and NHLH1, respectively.

A 1754 bp fragment (from �1403 to +351 bp based on
the transcription start site) that included rs3806915C>A
was synthesized by PCR using genomic DNA from a
donor carrying a heterozygote. The SEMA6A genomic
sequence was used as the PCR template, and the pGL3-basic
genomic sequence was used as the PCR template primers.
The sequences of the primers used were as follows:
Insert_fwd: 50-ttctctatcgataCGAGGCTGGCTCTTGAAGCC-
30, Insert_rev: 50-agagctcggtaccTCTGCGCCGATTAA
CAAGTCATTTC-30, pGL3-basic_fwd: 50-aatcggcgca
gaGGTACCGAGCTCTTACGCGTG-30 and pGL3-basi-
c_rev: 50-gagccagcctcgTATCGATAGAGAAATGTT
CTGGCACC-30 (the overlapping sequences of vectors
and inserts are indicated by lowercase letters). PCR prod-
ucts were assembled into the pGL3-basic-SEMA6A con-
struct containing the rs3806915 C or A allele using the
NEBuilder™ HiFi DNA Assembly Master Mix Kit (New
England Biolabs), according to the manufacturer’s
instructions. A 398 bp fragment (from +173 to +571 bp
based on the transcription start site) that included
rs11265375C>T was synthesized by PCR using genomic
DNA from a donor carrying a heterozygote. The forward
primer with the Kpn I restriction site (50-CGGGGTACCCTA-
GAAAGCTGGTCACTAAC-30) and reverse primer with the
Xho I restriction site (50-CCGCTCGAGGCAGCAGCTTC-
TATTTACCC-30) were used. The PCR products were cloned
into the Kpn I/Xho I site of the pGL3-basic vector (Promega),
resulting in pGL3-basic-NHLH1 constructs containing either
rs11265375 C or T alleles. All constructs were verified by
genome sequencing before use.

H446 lung cancer cells were transfected with the pRL-
SV40 vector (Promega) and the pGL3-basic vector using
Lipofectamine™ (Qiagen). The cells were harvested 48 hours
following transfection, and lysates were prepared using the
Dual-Luciferase Reporter Assay System (Promega). Luciferase
activity was measured using a Synergy HTX Multi-Mode
Microplate Reader (BioTek Instruments), and the activity was
normalized to that of pRL-SV40 Renilla luciferase activity.

Statistical analysis

The Statistical Analysis System version 9.2 for Windows
(SAS Institute) software was used for statistical analysis.

Response to chemotherapy was analyzed as the proportion
of responders and non-responders based on clinical vari-
ables and genotypes. OS was defined as the period from the
day of the first chemotherapy to the date of patient death or
last follow-up. The estimated OS based on the clinical vari-
ables and genotypes was analyzed using the log-rank test
and Kaplan–Meier method. Adjusted hazard ratios (aHR)
and 95% CIs were calculated for the multivariate statistical
models (Cox proportional hazards models). Adjustment var-
iables were as follows: age, sex, smoking status, clinical stage,
Eastern Cooperative Oncology Group performance status,
weight loss, chemotherapy regimen, second line chemother-
apy, neuron-specific enolase, and radiation to the tumor.
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