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Predicting progression to Alzheimer’s 
disease with human hippocampal 
progenitors exposed to serum
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Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer’s 
disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy 
of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for 
Alzheimer’s disease progression. Here, we used an in vitro assay to model the impact of systemic environment 
on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum 
samples from individuals with mild cognitive impairment, who either progressed to Alzheimer’s disease or 
remained cognitively stable. Mild cognitive impairment to Alzheimer’s disease progression was characterized 
most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of 
‘baseline’ cellular readouts together with education level were able to predict Alzheimer’s disease progression. 
The assay could provide a powerful platform for early prognosis, monitoring disease progression and further 
mechanistic studies.
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Introduction
Alzheimer’s disease is a progressive neurodegenerative condition 
without effective treatment options. Individuals diagnosed with 
mild cognitive impairment (MCI) are known to progress to 
Alzheimer’s disease at a significantly higher rate (10–15% in clinical 
studies, 5–10% in population studies) compared to cognitively 
healthy elderly people (1–2%).1 However, not all individuals with 
MCI develop Alzheimer’s disease, which calls for the need to de
velop an accurate estimation of how likely an individual with MCI 
is to progress to Alzheimer’s disease. Given the current consensus 
that putative Alzheimer’s disease-modifying therapies work best 
when administered during the preclinical stage, the estimation 
should be done preferably at the earliest stages of disease progres
sion to maximize the success of intervention. Recently, several 
studies have suggested blood-based biomarkers as promising tar
gets to monitor early disease progression and predict cognitive de
cline, and most of them are associated with well-established 
Alzheimer’s disease hallmarks.2,3 However, they provide limited 
information on how the systemic environment impact the brain 
at the cellular level, and this calls for a need to develop a biomarker 
that allows us to gain a better understanding of what occurs at the 
‘cellular phase’ of early Alzheimer’s disease.4

Hippocampal neurogenesis (HN) occurs throughout life in the 
subgranular zone of the mammalian dentate gyrus. The hippocam
pal neurogenic niche is composed of hippocampal progenitor cells 
(HPCs), their progeny (i.e. neurons and glia), endothelial cells and a 
highly vascularized extracellular matrix.5 While the existence of 
neurogenesis in adult humans has been questioned,6,7 an over
whelming majority of the existing literature8 shows unequivocally 
that HN is a lifelong process that occurs in many mammalian spe
cies, including human and is important for hippocampus- 
dependent learning and memory.9,10

Interestingly, HN is highly sensitive to the circulatory systemic 
environment which is well-demonstrated by parabiosis experi
ments where the circulatory systems of two animals are surgically 
conjoined.11,12 Blood from young mice can exert a rejuvenating ef
fect on the old animals’ cognition by improving HN,13,14 and vice 
versa.11,15 Moreover, interventions that target the systemic envir
onment (i.e. drugs, exercise, diet) have been shown to modulate 
HN.16–18 Importantly, interventions like exercise19,20 and diet that 
‘increase HN’ have been associated with ‘decreased Alzheimer’s 
disease risk’.21,22

Several post-mortem studies on human Alzheimer’s disease 
brains have recently demonstrated that significant changes in HN 
can be observed from as early as Braak stage II of Alzheimer’s dis
ease,23,24 which is in line with rodent model studies where altered 
HN was indeed an early indication of Alzheimer’s disease progres
sion.25,26 It is also worth noting that the hippocampus is one of the 
brain regions affected early on in Alzheimer’s disease, and its atro
phy is significantly associated with memory loss and learning 

impairment.27,28 While this evidence collectively suggest that 
changes in HN can serve as a potential biomarker for early disease 
progression,29–31 neither rodent nor human studies have been in 
full agreement with regards to the directionality and magnitude 
of these changes. While most studies report a reduction of 
HN,23,24,26 some report an increase.32–34 Such discrepancy amongst 
existing studies suggests a gap in our knowledge which could be 
bridged by understanding how HN changes ‘over time’ in 
Alzheimer’s disease (i.e. longitudinal study). Indeed, evidence 
from the Dominantly Inherited Alzheimer Network study35–37 indi
cates that longitudinal analysis can provide a more accurate picture 
of disease progression. However, the lack of adequate techniques to 
study HN in the ‘living’ human brain limits the number of ap
proaches that can be taken in research to address this gap 
effectively.

In the present study, we propose an in vitro parabiosis assay that 
models the impact of systemic environment on HN, which we have 
used as a proxy to investigate the changes in HN that occur with 
time. Using human HPCs and longitudinal serum samples from 
participants with MCI who either progressed to Alzheimer’s disease 
(MCI converters) or remained cognitively stable (MCI non- 
converters), we aimed to establish the role of the human systemic 
environment in disease progression in vitro. We also sought to de
termine whether our assay could be used as a prognostic 
biomarker to predict the likelihood of MCI to Alzheimer’s disease 
progression.

Materials and methods
Serum samples

Up to 161 serum samples were collected from 56 individuals initial
ly diagnosed with MCI. Thirty-six individuals later developed de
mentia due to Alzheimer’s disease (denoted ‘MCI converters’, 2–5 
yearly follow-up visits with cognitive assessment and blood collec
tion). Eighteen did not progress either to Alzheimer’s disease or 
other disease, and they had transient memory problems while re
maining cognitively stable over the period of at least 3 years from 
MCI diagnosis (denoted ‘MCI non-converters’, with up to six yearly 
follow-up visits with cognitive assessment and blood collection).

For serum preparation, blood was collected into Rapid Serum 
Tubes and allowed to stand for at least 30 min at room temperature 
(RT), then centrifuged at 2000g for 10 min at 4°C. The resulting ser
um was aliquoted into 2-ml flat-bottom screw-cap microcentrifuge 
tubes (0.5-ml serum/centrifuge tube) and stored at −80°C.

The serum samples were sourced from two independent co
horts. The first cohort is the EU AddNeuroMed Consortium, a multi
centre European study38 with six participating medical centres: 
University of Kuopio (Finland), University of Perugia (Italy), 
Aristotle University of Thessaloniki (Greece), King’s College 
London (UK), Medical University of Lodz (Poland) and University 
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of Toulouse (France). Consensus diagnosis was made according to 
previously published criteria.39,40 Clinical diagnosis was confirmed 
during consecutive follow-up visits. Sixteen MCI non-converters 
and 34 MCI converters were recruited from this cohort (n = 50). 
The second cohort is the King’s Health Partners-Dementia Case 
Register, a UK clinic and population-based study.38 Diagnosis of 
probable Alzheimer’s disease was made according to the 
Diagnostic and Statistical Manual of Mental Disorders IV40 and 
NINCDS-ADRDA Alzheimer’s criteria.41 MCI was diagnosed accord
ing to the criteria used by Petersen et al.39 Clinical diagnosis was 
confirmed during consecutive follow-up visits. Two MCI non- 
converter and four MCI converter participants were recruited 
from this cohort (n = 6). Informed written consent was obtained 
from all serum donors or their carers according to the Declaration 
of Helsinki (1991) and protocols and procedures were approved by 
the relevant Institutional Review Board at each collection site.

Longitudinal serum samples from the study participants were 
used to obtain the eight cellular readouts reported in this study, 
corresponding to each follow-up visit [proliferation phase average 
cell number, % Ki67+ cells, % cleaved Caspase 3 (CC3)+ cells; differ
entiation phase average cell number, % Ki67+ cells, % CC3+ cells, % 
doublecortin (DCX)+ cells, % microtubule-associated protein 2 
(MAP2)+ cells]. A minimum of three serum samples, collected at an
nual assessment, was required for MCI non-converters; and a min
imum of two samples, one before progression and one after 
progression, was required for MCI converters. Serum was collected 
at the time of cognitive assessments and the samples were stored 
at −80°C. The samples underwent one freeze–thaw cycle before 
performing experiments.

Baseline characteristics of serum donors are presented in 
Table 1, and changes in Mini-Mental State Examination (MMSE) 
scores over time are presented in Supplementary Fig. 1. All partici
pants were age- (P = 0.320) and sex-matched (P = 0.129). MCI conver
ters completed significantly fewer years of education compared to 
MCI non-converters (P = 0.002). They also scored significantly lower 
in MMSE (P = 0.031). There was no difference in the number of the 
apolipoprotein E (APOE) ϵ4 allele carriers between MCI converters 
and MCI non-converters (P = 0.625).

Cell culture and serum treatment

All experiments were performed using the multipotent human hip
pocampal progenitor/stem cell line HPC0A07/03C (ReNeuron) de
rived from the first trimester female foetal hippocampal tissue 
following medical termination (in accordance with the UK and 
USA ethical and legal guidelines, and obtained from Advanced 
Bioscience Resources). HPC0A07/03C cells were conditionally im
mortalized by introducing c-mycERTAM transgene that enables 
them to proliferate indefinitely in the presence of epidermal growth 
factor (EGF), basic fibroblast growth factor (bFGF) and 4-hydroxy- 
tamoxifen (4-OHT).42 Removal of these three factors induces 
spontaneous differentiation into neurons, astrocytes or oligoden
drocytes.16,43,44 Cell passage number used in this study ranged 
from 15 to 24.

Cells were treated with 1% serum 24 h post-seeding for the prolif
eration assay; and for the differentiation assay cells were treated with 
serum 24 h post-seeding in proliferation medium, and one more time 
3 days post-seeding in differentiation medium (Fig. 1). See Anacker 
et al.16 and Supplementary Table 1 for cell culture medium compos
ition and de Lucia et al.45 for information on how the optimal serum 
concentration was determined. Control conditions consisted of either 
proliferation or differentiation medium supplemented with 1% 

Gibco™ PenStrep (ThermoFisher, #15140122). For each experiment, 
three biological replicates (i.e. cells of three different passage num
bers) were used; and for each biological replicate, there were technical 
triplicates. The coefficient of variation for each marker was below 20%, 
apart from CC3 (below 30%), calculated across different plates and 
batches of experiment. Further details on the methods can be found 
in the Supplemental Material.

Immunocytochemistry

All experiments were performed in NUNC™ 96-well plates 
(ThermoFisher, #167008). Cells were fixed in 4% paraformaldehyde 
(VWR, #43368.9 M) after 48 h of serum treatment for the prolifer
ation and 7 days of treatment for the differentiation phase of the as
say, respectively.

Briefly, cells were washed once with 37°C PBS and fixed in 4% 
paraformaldehyde at RT for 20 min (50 µl/well), then they were 
washed twice with PBS for storage at 4°C prior to immunocytochem
istry (ICC). On the day of ICC, cells were first blocked in ‘5% normal 
donkey serum + 0.3% Triton X-100’ in PBS (i.e. blocking solution) at 
RT for 1 h (50 µl/well). On removal of blocking solution, cells were 
incubated with primary antibodies diluted, overnight at 4°C 
(30 µl/well). Cells were then washed with PBS (100 µl/well) twice 
and incubated with secondary antibodies (1:500) at RT for 2 h 
(30 µl/well) covered from light. On removal of secondary antibodies, 
cells were washed with PBS (100 µl/well) twice and incubated with 
4′,6-diamidino-2-phenylindole (DAPI) nuclear stain (Sigma Aldrich, 
#D9542) at RT for 5 min (50 µl/well). Finally, cells were washed with 
PBS (100 µl/well) twice and stored at 4°C with 0.05% sodium azide 
in PBS (200 µl/well) before imaging.

All primary and secondary antibody solutions were made in 
blocking solution (as described before). Mouse monoclonal 
anti-Ki67 (Cell Signaling, #9449, 1:800) was used to assess prolifer
ation (i.e. HPCs in active phases of the cell cycle such as G1, S, G2 
and mitosis); rabbit monoclonal anti-CC3 (Cell Signaling, #9664, 
1:500) to assess apoptotic cell death; mouse monoclonal 
anti-Nestin clone 10C2 (Sigma Aldrich, #MAB5326, 1:1000) and rab
bit polyclonal anti-Sox2 (SRY-Box Transcription Factor 2) (Sigma 
Aldrich, #AB5603, 1:1000) to assess neural stemcellness; rabbit poly
clonal anti-DCX (Abcam, #ab18723, 1:500) for neuroblasts and 
mouse monoclonal anti-MAP2 (Abcam, #ab11267, 1:500) for mature 
neurons. Secondary antibodies were conjugated with either Alexa 
488 (Thermo Fisher Scientific, #A21202) or Alexa 555 (Thermo 
Fisher Scientific, #A31572) fluorophores. Nuclei were counter
stained with DAPI (Sigma Aldrich, #D9542).

High-content imaging

Semi-automated quantification of cellular phenotypes was per
formed using the CellInsight™ CX5 High-Content Screening 
Platform (ThermoFisher). The ‘Cell Health Profiling’ application 
was used to detect the nucleus (DAPI) and to quantify neurogenic 
markers expressed in the nucleus (Ki67), and the cell body/den
drites (CC3, DCX and MAP2) (High-Content Screening Studio™ 
Cell Analysis Software, ThermoFisher). Based on the values from 
positive and negative staining controls, thresholds were set for 
average intensity within the target regions of interest (e.g. nuclear 
or cell body). Any cell with an average intensity bigger than the 
threshold was deemed positive for a given neurogenic marker. 
Fifteen fields were scanned per well of a 96-well plate. A represen
tative protocol used for cellular phenotyping is shown in 
Supplementary Fig. 2.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
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Statistics

All statistical analyses were performed using Prism v.5.0 (GraphPad), 
STATA 13 or R. For univariate analyses, two-tailed paired t-test, one- 
and two-way ANOVA, with post hoc comparisons test (Bonferroni 
method) were used. The chi-square test was carried out to test for 
differences in categorical outcomes such as sex and APOE ϵ4 status. 
Complete case analyses were performed in this study. Source data 
are provided in Supplementary Table 2.

Linear mixed-effects regression

Owing to the longitudinal aspect of our dataset, we used linear 
mixed-effects regression models for repeated measures as they en
able inclusion of varying numbers of assessment information avail
able for each individual and do not require equal time intervals 
between the follow-up visits. Random intercept and random slope 
models were fitted with restricted maximum likelihood as the 
method of estimation. Each serum donor was assigned an ID to spe
cify random effects in the models. Classification to MCI converters 
or non-converters was dichotomous (MCI converters were assigned 
1, non-converters 0). The age of the individuals was centred at the 
cohort median (77 years) to aid interpretation of the models. For 
MCI converters, time to conversion was measured in years, which 
indicated the time it took to Alzheimer’s disease progression. For 

non-converters, time to last visit was measured in years. Time be
fore conversion (or last visit) was assigned negative values and time 
after conversion positive values. APOE ϵ4 status was dichotomized, 
i.e. carriers with at least one APOE ϵ4 allele were assigned 1, carriers 
of other APOE alleles were assigned 0. Education was entered in the 
models either as years of education or as a dichotomized value 
(high ≥ 10.5 years assigned 1, low <10.5 years assigned 0). The 95% 
confidence intervals (CIs) and P-values for the explanatory vari
ables in each model were calculated using the Wald t-distribution.

Given that many individual characteristics or comorbidities 
might affect HN and/or Alzheimer’s disease risk, among the poten
tial explanatory variables considered in the models were: 
Alzheimer’s disease risk factors [gender, APOE ϵ4 status, age 
centred around median and time to conversion (or time from last 
visit for MCI non-converters)], education level, solitary living and 
MMSE score (baseline MMSE, MMSE score change/year); comorbid
ities (diabetes, arthritis, hypertension, hypothyroidism, depres
sion, cancer, stroke, angina, infections and allergies); drug intake 
(antidepressants, statins, nonsteroidal anti-inflammatory drugs); 
dietary supplements (vitamins, omega-3 fatty acids) and lifestyle 
related factors (alcoholism, smoking). In addition, we also tested 
some biologically plausible interactions of different explanatory 
variables.

Our approach to building the linear mixed-effects model was to 
systematically compare the full model to other models that were 

Table 1 Baseline characteristics of the study participants (n= 56)

Baseline characteristics MCI converters MCI non-converters

Gender, %, female 60.52 38.89
APOE ϵ4 status, % 50 44.44
Age at baseline, mean ± SD 76.02 ± 7.81 78.06 ± 5.08
MMSE at baseline, mean ± SD 26.78 ± 1.97 27.94 ± 1.43
Education in years, mean ± SD 8.95 ± 4.53 12.83 ± 3.09
Years from baseline until conversion or last assessment [range] 1.30 ± 0.69 [1–3.42] 3.36 ± 1.66 [0.92–5.83]
Comorbidities (objective and self-reported)

Hypertension 12 (31.58%) 10 (55.56%)
Heart attack ever 1 (2.63%) 4 (22.22%)
Angina 5 (13.16%) 4 (22.22%)
Depression 19 (50%) 9 (50%)
Arthritis 1 (2.63%) 3 (16.67%)
Asthma 2 (5.26%) 1 (5.56%)
Cancer 5 (13.16%) 8 (44.44%)
Glaucoma 2 (5.26%) 1 (5.55%)
Hypothyroidism 6 (15.79%) 8 (44.44%)
Infections, allergies 5 (13.16%) 2 (11.11%)
Stroke/transient ischaemic attack 2 (5.26%) 2 (11.11%)
Diabetes 7 (18.42%) 2 (11.11%)

Drug intake
Antidepressants 12 (31.58%) 3 (16.67%)
NSAIDs (with aspirins for platelet control) 11 (28.95%) 8 (44.44%)
Analgesics 5 (13.16%) 5 (27.78%)
Alzheimer’s disease drugs 11 (28.95%) 0 (0%)
Metformin 4 (10.53%) 1 (5.55%)
Sleeping pills 3 (7.89%) 2 (11.11%)
Statins 13 (34.21%) 8 (44.44%)

Lifestyle factors
Excessive alcohol intake 1 (2.63%) 3 (16.67%)
Smoking (ever) 9 (23.68%) 5 (27.78%)
Solitary living 16 (42.10%) 9 (50%)
Supplement intakea 7 (18.42%) 5 (27.78%)

Comorbidities represent either history of disease or being presently affected. Drug intake means either having a history of medications or current intake. 
aVitamins (including folic acid) and omega-3 fatty acids.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
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the same except for one term missing. The comparison was done 
using a likelihood-ratio test, and the test statistic χ2, degrees of free
dom and P-value were reported for the missing term. A P-value of 
<0.05 was considered to indicate that the missing term contributed 
significantly to the model fit. We only included variables that were 
significant when included in the model. All mixed-effects regres
sion models were assessed using Akaike information criterion, 
likelihood-ratio test and deviance.

Stepwise logistic regression and internal validation

Stepwise logistic regression analysis was carried out to assess the 
effect of selected predictors on probability of progression to 
Alzheimer’s disease by 3.5-year follow-up from baseline. It was pre
ceded by analysis of multicollinearity. Area under the curve (AUC) 
under the receiver operating characteristic (ROC) curve was calcu
lated to determine the classification accuracy of selected variables 
in predicting progression to Alzheimer’s disease.

The ‘e1071’ package in R was used to train and test the machine 
learning classifiers based upon support-vector machines (SVM) 
classifier using the radial basis function kernel. ROC curves were 
drawn using the ‘ROCR’ package in R. Performance of the classifier 
was assessed using 1000 repeats of 5-fold cross-validation.

Proteomic quantification

Here, 3620 unique proteins or 4006 different protein epitopes were 
quantified using the SomaScan assay (SomaLogic Inc.) from 150 µl 
of baseline serum samples from 38 MCI converters and 18 MCI non- 
converters. The SomaScan assay is an aptamer-based technology 
that uses protein-capture SOMAmers (Slow Off-rate Modified 
Aptamer) to quantify proteins in a biofluid. SOMAmers are chem
ically modified oligonucleotides with specific affinity to their pro
tein targets, developed by SELEX (described in detail at www. 
somalogic.com). The identities of all proteins quantified are listed 
in Supplementary Table 3. The normalized and calibrated signal 
for each SOMAmer reflects the relative amount of each cognate 

Figure 1 Outline of the experimental design and sample collection. (A) HN is regulated by a complex microenvironment, composed of blood vessels and 
various cell types such as hippocampal neural stem cells (NSCs), neural progenitor cells (NPCs), neuroblasts, immature/mature granule cells (i.e. neu
rons), microglia and astrocytes (i.e. neurogenic niche). Blood-derived factors, delivered to the niche by its rich vasculature, play a fundamental role in 
modulating HN. We aimed to model the role of systemic environment on the hippocampal neurogenic process during Alzheimer’s disease progression, 
by treating a human HPC line with 1% longitudinal serum at different stages of HN (i.e. proliferation and differentiation of HPCs). (B) Longitudinal serum 
samples were collected during annual follow-up visits from 56 participants diagnosed with MCI at baseline (n = 38 converted to Alzheimer’s disease, 
n = 18 remained cognitively stable). A total of 338 samples were analysed. For each sample, three biological replicates (cells of three different passage 
numbers) were used and for each biological replicate, there were technical triplicates. (C) Neurogenic markers measured in the proliferation and 
differentiation phases of the assay are outlined (top) and representative images of cells positive for Ki67, CC3, Nestin, Sox2, MAP2 and DCX are shown 
(bottom). Scale bar = 100 μm. (D) An overview of the proliferation and differentiation phases in the assay. HPC0A07/03C cell line was treated with 1% 
serum samples from MCI converters and non-converters collected at sequential follow-up visits. Proliferation medium included EGF, bFGF and 
4-OHT. Differentiation medium lacked these factors. To analyse serum effects on proliferation, 24 h after seeding, medium was replaced with prolif
eration medium supplemented with 1% serum. Cells were fixed 48 h later and subjected to ICC. To analyse the effects of serum on differentiation, at the 
end of proliferation phase, medium was replaced with differentiation medium supplemented with 1% serum. Cells were fixed 7 days later and sub
jected to ICC. c = converters; nc = non-converters. Panel A was created with BioRender.com.

https://www.somalogic.com
https://www.somalogic.com
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
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protein present in the original sample. Quantifications are reported 
in relative fluorescence units and all data were first log10 trans
formed before analysis.

Analysis of SomaScan data

A Wilcox test with false discovery rate multiple correction was used 
to identify proteins that were differentially expressed. Machine 
learning using least absolute shrinkage and selection operator fea
ture selection and SVM for prediction was performed to identify the 
optimal number of multivariate proteins to differentiate MCI con
verters from non-converters. Samples were divided into non- 
intersecting subsets. Training and testing were performed on these 
following standard 10-times cross-validation. Briefly, the data is 
randomly partitioned into 10 parts; each model is built using nine 
of the parts as a training set and one part as the test set. The 10 
models are averaged to create a single model balanced for 
randomness.

Ingenuity pathway analysis

IPA (ingenuity pathway analysis, IPA®, Qiagen) generated a list of 
canonical pathways and networks for proteins within detection 
limit of the SomaScan. Only proteins differentially expressed with 
P < 0.05 were considered for analysis.

Data availability

Further information on resources and reagents should be directed 
to and will be fulfilled by the lead contact, S.T. This study did not 
generate new unique reagents and codes for data analysis. The 
HPC0A07/03C cell line (ReNeuron) and further information on re
agents needed for culturing this cell line are available from 
the lead contact on request. Source data for all figures and tables 
are provided within this study as supplemental information (avail
able online). Any additional information required to reanalyse the 
data reported in this paper is available from the lead contact upon re
quest. The transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis guidelines were used.46 All sup
porting data and associated links can be found in the Supplementary 
material.

Results
Longitudinal changes in neurogenic readouts 
characterizing serum from MCI converters

First, using the longitudinal serum samples from MCI converters 
only, we modelled the relationship between time to conversion in 
years, as an explanatory variable, and each readout readout from 
our assay, as a response variable, using linear mixed-effects regres
sion. We used time to conversion in years as the explanatory vari
able because the effect of age itself in years on HN level was not 
significant (P > 0.05). The value 0 was assigned to the time of 
Alzheimer’s disease diagnosis, which equals the time point when 
the last serum sample was collected for each MCI converter. Other 
samples collected before that time were assigned negative values 
in years (i.e. serum taken 1 year before conversion was assigned −1).

When random intercept models were fitted to the proliferation 
phase data (Fig. 2A–D, Supplementary Fig. 3 and Supplementary 
Table 4), the effects of time to conversion on average cell number 
were significantly positive [beta = 17.37, 95% CI: 6.87 to 27.87, t(81) 
= 3.29, P = 0.001]. This was not related to an increase in proliferation 

itself (% Ki67 + cells) because the effects of time of conversion were 
significantly negative over the same period [beta = −1.44, 95% 
CI: −2.03 to −0.86, t(81) = −4.94, P < 0.001]. In addition, the effects 
of time to conversion on apoptotic cell death (% CC3+ cells) were sig
nificantly positive [beta = 0.12, 95% CI: 0.01 to 0.23, t(80) = 2.19, 
P = 0.031], while the effect of education level (dichotomized at 10.5 
years) was significantly negative on apoptotic cell death [beta = 
−0.60, 95% CI: −1.20 to −0.01, t(80) = −2.03, P = 0.046].

When the models were fitted to the differentiation phase data 
(Fig. 2E–H, Supplementary Fig. 2 and Supplementary Table 5), an 
increase with time to conversion was observed for average cell 
number [beta = 12.17, 95% CI: 2.24 to 22.11, t(81) = 2.44, P = 0.017], 
number of neuroblasts [% DCX+ cells, beta = 1.20, 95% CI: 0.27 to 
2.12, t(79) = 2.58, P = 0.012] and number of mature neurons [% 
MAP2+ cells, beta = 0.95, 95% CI: 0.10 to 1.79, t(80) = 2.22, P = 
0.029]. For the number of neuroblasts, baseline MMSE scores (di
chotomized at 27) were also found to be a significant explanatory 
variable, where higher MMSE scores at baseline had a significant
ly negative effect on DCX+ cells overall [beta = −3.91, 95% 
CI: −6.75 to −1.08, t(79) = −2.75, P = 0.007]. Similarly, sex (female 
assigned 1) was a significantly negative explanatory variable for 
the number of mature neurons [beta = −3.39, 95% CI: −5.90 to 
−0.89, t(80) = −2.70, P = 0.009].

We did not detect any significant effects of time to conversion 
on apoptotic cell death in the differentiation phase data [beta = 
0.16, 95% CI: −0.09 to 0.40, t(81) = 1.28, P = 0.203], and variables 
such as APOE ϵ4 status and comorbidities (as listed in Table 1) 
did not have significant explanatory values when included in 
the mixed-effects models for both proliferation and differenti
ation phase datasets. No significant interactions between predic
tors were determined in the models we tested (Supplementary 
Fig. 5).

Serum from MCI converters differentially impacts 
neurogenic readouts compared to non-converters

Next, we asked whether serum from MCI converters and non- 
converters can differentially impact the trajectories of HN. We 
used the variable ‘MCI to Alzheimer’s disease progression’ to de
note whether the participant progressed to Alzheimer’s disease 
or not (converters assigned the value 1).

Fitting the linear mixed-effects models on the proliferation 
phase data (Fig. 3A and B, Supplementary Fig. 3 and 
Supplementary Table 6), we observed significantly positive effects 
of both time to last visit or conversion [beta = 18.23, 95% 
CI: 10.81 to 25.65, t(154) = 4.85, P < 0.001] and MCI to Alzheimer’s dis
ease progression [beta = 74.71, 95% CI: 36.96 to 112.46, t(154) = 3.91, 
P < 0.001] on average cell number. On the other hand, their effects 
were significantly negative on proliferation (% Ki67+ cells) [time 
to last visit or conversion: beta = −1.24, 95% CI: −1.59 to −0.89, 
t(155) = −7.03, P < 0.001; MCI to Alzheimer’s disease progression: 
beta = 5.58, 95% CI: 2.53 to 8.63, t(155) = 3.61, P < 0.001].

During the differentiation stage of the assay (Fig. 3C and D, 
Supplementary Fig. 4 and Supplementary Table 7), we observed sig
nificantly positive effects of time to last visit or conversion [beta = 
11.48, 95% CI: 5.65 to 17.32, t(156) = 3.89, P < 0.001] and significantly 
negative effects of MCI to Alzheimer’s disease progression [beta = 
−47.64, 95% CI: −85.13 to −10.15, t(156) = −2.51, P = 0.013] on average 
cell number. On the other hand, their effects were significantly 
positive on the number of mature neurons (% MAP2+ cells) [time 
to last visit or conversion: beta = 0.56, 95% CI: 0.11 to 1.02, t(153) = 
2.47, P = 0.015; MCI to Alzheimer’s disease progression: beta = 2.96, 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac472#supplementary-data


Alzheimer’s disease prediction via serum                                                                             BRAIN 2023: 146; 2045–2058 | 2051

Figure 2 Exposure to 1% serum from MCI converters leads to decreased proliferation, increased cell death and increased neurogenesis. 
(A) Representative images of proliferation phase cells treated with serum from the same individual. Left (MCI panel): serum sample from 1 year before 
conversion. Right (AD panel): serum sample taken at the time of conversion to Alzheimer’s disease (AD). Nuclei are stained with DAPI. Ki67 and CC3 
were used to label proliferating and apoptotic cells, respectively. (B–D) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models 
fitted to the proliferation phase data. Time of conversion to Alzheimer’s disease was assigned 0, and the number of years before conversion were as
signed negative values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters increased average cell number (B), 
decreased proliferation (% Ki67+) (C) and increased apoptotic cell death (% CC3+) (D). Slopes (β coefficient estimates) are indicated within the plots. 
(E) Representative images of differentiation phase cells treated with serum from the same individual. Left (MCI panel): serum sample from 1 year before 
conversion. Right (AD panel): serum sample taken at the time of conversion to AD. Nuclei are stained with DAPI. DCX and MAP2 were used to label neu
roblasts and mature neurons, respectively. (F–H) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models fitted to the differen
tiation phase data. Time of conversion to Alzheimer’s disease was assigned 0, and the number of years before conversion were assigned negative 
values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters increased average cell number (F), neuroblasts (% 
DCX+) (G) and mature neurons (% MAP2+) (H). Slopes (β coefficient estimates) are indicated within the plots. Scale bar = 100 μm.



2052 | BRAIN 2023: 146; 2045–2058                                                                                                                       A. Maruszak et al.

95% CI: 0.62 to 5.31, t(153) = 2.50, P = 0.014]. We did not detect any 
significant effects time to last visit or conversion on apoptotic cell 
death in the differentiation phase data [beta = 0.02, 95% 
CI: −0.09 to 0.14, t(153) = 0.41, P = 0.680], but effects of MCI to 
Alzheimer’s disease progression were significantly positive [beta 
= 1.62, 95% CI: 0.89 to 2.36, t(153) = 4.36, P < 0.001] (Supplementary 
Fig. 6). Taken together, our data show that, compared to non- 
converters, converters can be characterized with higher average 
cell number and proliferation during the proliferation phase of 
the assay, and then with lower average cell number and more ma
ture neurons during the differentiation phase of the assay.

Baseline neurogenic readouts and education can 
predict MCI to Alzheimer’s disease progression

We next examined whether the baseline neurogenic readouts from 
the assay combined with some of the baseline participant charac
teristics could predict progression from MCI to Alzheimer’s disease. 
Using stepwise logistic regression, the best predictors of progres
sion from MCI to clinical Alzheimer’s disease were: education in 
years, average cell number during proliferation phase, % Ki67+ cells 
during proliferation phase and % CC3+ cells during differentiation 
phase of the assay (Table 2). The fit of the logistic regression model 
was confirmed using Hosmer–Lemeshow goodness of fit (P = 0.324) 

and Stata linktest, demonstrating no specification errors (_hat = 
0.001, _hatsq = 0.110). We observed no significant effects of educa
tion (both in years and dichotomized at 10.5 years) on average cell 
number during proliferation phase, percentage Ki67+ cells during 
proliferation phase, and percentage CC3+ cells during differenti
ation phase of the assay (Supplementary Fig. 7).

To assess the predictors’ ability to accurately classify converters 
and non-converters, area under the ROC curve was calculated 
(Fig. 4A). The value of the full logistic regression model, 0.967, was 
higher than that of other models built on each predictor alone 
(Fig. 4B and Table 2). We also found that the odds of converting to 
Alzheimer’s disease decreased by factor 0.72 with each additional 
year of education, whereas it increased by a factor of 3.49 with 
each additional percentage point of apoptotic cell death during 
the differentiation phase of the assay (Fig. 4C).

Since our sample size was limited (n = 56) and we did not have 
access to a separate longitudinal validation cohort in this study, a 
machine learning-based internal validation of the model was per
formed. Repeated k-fold cross-validation (k = 5, 1000 repeats) was 
carried out using a SVM classifier (radial basis function kernel), in 
which 20% of the data were used for each round of repeated testing. 
We found that the classifier using the three chosen neurogenic 
readouts as predictors achieved an AUC of 0.93, with 90.3% sensitiv
ity and 79.0% specificity (Fig. 4D).

Figure 3 Exposure to 1% serum from MCI converters leads to differential changes in average cell number, proliferation and neuronal differentiation com
pared to non-converters. (A and B) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models fitted to the proliferation phase data. 
Time to last visit (for non-converters) and time of conversion to Alzheimer’s disease (for converters) was assigned 0, and the number of years before 
that were assigned negative values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters (turquoise) predicted overall 
higher average cell number (A) and proliferation (% Ki67+) (B) compared to non-converters (red). Slopes (β coefficient estimates) are indicated within 
the plots. (C and D) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models fitted to the differentiation phase data. Time to last visit 
(for non-converters) and time of conversion to Alzheimer’s disease (for converters) was assigned 0, and the number of years before that were assigned 
negative values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters (turquoise) predicted overall lower average cell num
ber (C) and higher neuronal differentiation (% MAP2+) (D) compared to non-converters (red). Slopes (β coefficient estimates) are indicated within the plots.
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Proteomic analysis of baseline serum from MCI 
converters and non-converters

To explore whether we can achieve a similar prognostic accuracy 
using a different modality, we performed a proteomic analysis on 
all baseline serum samples using SomaScan® (SomaLogic). The 
serum levels of 205 proteins (Fig. 5A and Supplementary Table 8) 
were found to be significantly differentially expressed between 
MCI converters and non-converters. However, none of these passed 
the false discovery rate correction. Among the differentially ex
pressed proteins, there were proteins involved either in the neuro
genic process (e.g. GDF11) or in Alzheimer’s disease (e.g. LRRK2, 
RCAN1, NTRK2), or in both neurogenesis and Alzheimer’s disease 
(e.g. CREBBP, SFRP1, IL1RAP). We then performed machine 
learning-based repeated k-fold cross-validation (k = 10) to find the 
minimal signal that differentiated between MCI converters and 
non-converters. The AUC in training and testing sets for different 
number of input features is shown in Fig. 5B. A panel of 15 proteins 
achieved the highest predictive value AUC of 0.77 to distinguish be
tween serum samples from MCI converters and non-converters 
(Fig. 5C and Supplementary Table 9).

We then aimed to gain further insights into molecular pathways 
and networks by which proteins in the serum might regulate hippo
campal stem cell fate and progression to Alzheimer’s disease. 
Canonical pathway analysis and Network analysis on IPA software 
(Qiagen) was used to determine any pathways that the differentially 
expressed proteins might constitute. Some of the canonical path
ways identified in the analysis include: ‘Coagulation system’ (P = 
0.000192, ratio 7/26), ‘Acute phase response signalling’ (P = 0.00345, 
ratio 12/100), ‘Extrinsic prothrombin activation pathway’ (P = 
0.0111, ratio 3/10), ‘FXR/RXR activation’ (P = 0.0146, ratio 7/53), 
‘Notch signaling’ (P = 0.0237, ratio 3/13), ‘Superpathway of methio
nine degradation’ (P = 0.0321, ratio 2/6) and ‘Wnt/β-catenin 
Signaling’ (P = 0.0353, ratio 6/50) (Supplementary Table 10). The three 
top networks identified in the analysis were: ‘Hematological System 
Development and Function, Organismal Functions, Organismal 
Injury and Abnormalities’ (Fig. 5D and Supplementary Table 11), 
‘Cell Death and Survival, Embryonic Development, Organismal 
Development’ (Fig. 5E and Supplementary Table 11) and 
‘Cell-to-Cell Signaling and Interaction, Cellular Function and 
Maintenance, Inflammatory Response’ (Fig. 5F and Supplementary 
Table 11).

Discussion
This study used an in vitro parabiosis assay where a human HPC line 
was exposed to longitudinal samples of human serum. Our ap
proach to modelling the effects of systemic milieu on HN can serve 
as a proxy of in vivo HN, as HPCs are allowed to react to a given sys
temic environment (such as serum) sampled at different 
time points. We demonstrate that the baseline data generated 
from the assay were able to predict progression from MCI to 
Alzheimer’s disease up to 3.5 years before clinical diagnosis, pro
viding an opportunity to understand the temporal changes of HN 
at the early stages of Alzheimer’s disease progression.

We report an increase in neurogenesis induced by serum ob
tained closer to the time of MCI to Alzheimer’s disease progression. 
While previous human autopsy studies showed dysregulation 
of HN in Alzheimer’s disease, it has been debated whether HN is in
creased,32 decreased23,24,47 or unchanged.48 As most of these 
studies describe HN at the ‘later’ stages of Alzheimer’s disease, it 
is difficult to extrapolate their results to ‘early’ stages of 
Alzheimer’s disease. We note that our in vitro measures are only po
tential proxy of in vivo HN, and the systemic effect on the neurogen
ic process in vivo is more likely to be visible later than what we 
observe in vitro. Nevertheless, our data showing increased prolifer
ation in MCI converters during the differentiation stage of the assay 
are in line with a recent rodent study that investigated HN in ‘pro
dromal’ Alzheimer’s disease, where proliferation of DCX+ neuro
blasts in the hippocampus was significantly and specifically 
‘elevated’ during the pre-plaque stage in the APP-PS1 mouse mod
el.25 Intriguingly, we observed an increased average cell number 
and a decreased percentage of proliferating cells with each con
secutive visit. This may be due to increased proliferation at an earl
ier time point, followed by contact inhibition of proliferation at 48 h 
after serum treatment,49 suggesting that it might be informative to 
include an earlier time point in the assay. In addition, we observed 
an increased apoptosis that could be related to the depletion of nu
trients and increase in metabolites such as lactate as cells become 
overconfluent.50–52

It is not clear whether increased HN plays a compensatory role 
by providing cognitive resilience or contributes to ongoing path
ology in Alzheimer’s disease. For example, increased neurogenesis 
was associated with behavioural recovery in a mouse model of se
lective neuronal loss in the hippocampus (CaM/Tet-DTA), although 

Table 2 Predictors of progression to Alzheimer’s disease from stepwise logistic regression analysis

Predictors Odds ratios 95% CI P

Model with all four predictors
(Intercept) 0 0.00–0.00 0.012
Education (years) 0.72 0.49–0.94 0.039
Average cell number (prol.) 1.03 1.01–1.05 0.001
% Ki67+ cells (prol.) 1.35 1.07–1.92 0.037
% CC3+ cells (diff.) 3.49 1.42–11.85 0.016

Predictors Odds ratios 95% CI P AUC

Four models with one predictor each
Education (years) 0.79 0.66–0.92 0.004 0.756
Average cell number (prol.) 1.02 1.01–1.02 <0.001 0.802
% Ki67+ cells (prol.) 1.04 0.94–1.16 0.399 0.573
% CC3+ cells (diff.) 2.67 1.48–5.72 0.004 0.782

Top: The full logistic regression model including all four predictors: years of education, average cell number during proliferation, proliferation marker (Ki67) during proliferation 
and apoptosis marker (CC3) during differentiation stages of the assay. Bottom: Four logistic regression models with each predictor being the sole predictor of progression to 

Alzheimer’s disease. Odds ratios, 95% CI and P-values are shown. prol = proliferation assay; diff = differentiation assay.
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this effect was only pronounced in young mice (6 months old)53 and 
not in old mice (14 months old).54 This suggests that increased HN 
at the later stages of Alzheimer’s disease might be insufficient for 
cognitive recovery. In contrast to the rescuing effects of HN, several 
functional studies have shown that increased HN can interfere with 
the retrieval of old memories,55–57 while ablation of neurogenesis 
can improve hippocampus-dependent working memory by redu
cing interference.58,59 While the exact role of ‘increased’ HN in 
Alzheimer’s disease still remains to be determined, we attempt to 
make a cautious summary of the findings from our study, in which 
increased neurogenesis could be a compensatory mechanism in re
sponse to the ageing/neurodegenerative systemic milieu, but it 
may not be a functionally restorative one that could halt cognitive 
decline altogether.

The prediction model in this study was able to differentiate MCI 
converters from non-converters using a subset of the baseline data 
from the assay and years of education. We believe that education 
attainment serves as a proxy of ‘lifestyle’, where it may affect the 
choice of occupation, socioeconomic status and the degree of ex
posure to Alzheimer’s disease risk factors throughout life. While 
our study supports previous findings on the association between 
lower education and higher Alzheimer’s disease risk,60 we note 
that various lifestyle factors that may provide even better predic
tion of HN were not directly examined in this study. This includes 
(but not limited to) social/cognitive engagement, physical activity 
and diet. For those that were available for this study, we report no 

significant effects on the trajectories of HN modelled in our assay, 
except for a few demographic characteristics such as education le
vel dichotomized at 10.5 years, baseline MMSE scores and sex. In 
addition, we report no significant effect of APOE ϵ4 status, adding 
to the existing literature on the ‘debatable’ role of ϵ4 in the hippo
campus.61–63

The baseline neurogenic readouts from our assay were able to 
predict progression into clinical Alzheimer’s disease with higher 
accuracy than a panel of 15 serum proteins that were identified 
from proteomic analysis. This could be because neurogenic read
outs represent the effect of ‘all components’ in the serum (i.e. sys
temic milieu) rather than that of few proteins.64 We recommend 
validating these proteins in an independent cohort of MCI and 
Alzheimer’s disease participants and a follow-up hypothesis- 
driven study focusing on specific molecular pathways and/or 
networks that are regulated by the serum analytes, which could 
provide better insights into how these proteins affect hippocampal 
cell fate and Alzheimer’s disease progression. One candidate is the 
p38 MAPK pathway, as its activation has been shown to trigger 
inhibition of proliferation, induce apoptosis and stimulate differen
tiation of progenitor cells.65

We recognize several limitations of our study. First, Alzheimer’s 
disease diagnosis was clinical only and none of the study partici
pants had a post-mortem Alzheimer’s disease diagnosis. Second, 
there was no neuroimaging or CSF biomarker data available 
in the longitudinal cohort for us to ascertain the relationship 

Figure 4 Average cell number and Ki67 during proliferation, and CC3 during differentiation, combined with education in years can predict progression 
from MCI to Alzheimer’s disease. (A) ROC curve for the logistic regression model predicting progression from MCI to Alzheimer’s disease. AUC for the 
model, an indicator of the discriminative performance, is 0.967. Sensitivity = 92.1%, specificity = 94.1%, positive predictive value = 97.2% and negative 
predictive value = 84.2%. (B) ROC curves for each four individual predictors included in the full logistic regression model. (C) Odds ratios for the four 
predictors. Blue and red indicate >1 and <1, respectively. *P < 0.05. ***P < 0.001. (D) ROC curve for the cross-validated logistic regression model predicting 
progression to Alzheimer’s disease. Internal validation of the model was done with repeated k-fold cross-validation (k = 5, 1000 repeats) using SMVs 
(radial basis function kernel). AUC = 0.93, sensitivity 90.3% and specificity 79.0%.
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Figure 5 Analysis of serum proteins differentially expressed in MCI converters compared to non-converters. (A) Volcano plot of proteins significantly 
increased in MCI converters compared to non-converters. Turquoise dots represent proteins whose P-value was below the significance threshold of 
P < 0.05 (n = 205). (B) The optimal number of multivariate proteins to differentiate MCI converters from non-converters was calculated by machines 
learning. The plot shows AUCs of the training set as features are added to the model, and AUCs of the testing set during cross-validation. The least 
absolute shrinkage and selection operator feature selection with SVM for prediction were used. The number of proteins identified with this procedure 
was 15. (C) ROC curve of the test model. The maximum AUC (0.77) was achieved using the following 15 identified proteins: Q9UHD0, Q9UK55, Q9NPH3, 
Q96PU8, Q8N474, Q8TBE7, Q9NTK1, Q6UWD8, O14548, P43251, P19876.P19875, Q8NBP7, P52907, P00797 and Q9Y5Q6 (UniProt ID). (D–F) The three top 
scoring networks analysed by IPA using the 205 differentially expressed proteins in MCI converters. Proteins are represented by nodes: upregulated 
in red and downregulated in turquoise. Additional interacting molecules not included in the SomaScan are marked in white. Each network is 
displayed as a series of nodes (proteins) and edges (i.e. lines corresponding to biological relationships between nodes). Solid and dotted lines indicate 
direct and indirect interactions, respectively. (D) ‘Hematological System Development and Function, Organismal Functions, Organismal Injury and 
Abnormalities’ (score 48; includes 27 focus molecules from the SomaScan panel). (E) ‘Cell Death and Survival, Embryonic Development, Organismal 
Development’ (score 43; includes 25 focus molecules from the SomaScan panel). (F) ‘Cell-to-Cell Signaling and Interaction, Cellular Function and 
Maintenance, Inflammatory Response’ (score 21; includes 15 focus molecules from the SomaScan panel).
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between the altered neurogenic process and other Alzheimer’s 
disease-associated pathogenic processes. Third, our sample size 
and follow-up period were limited, despite the samples being 
drawn from two independent multicentre cohorts, and we lack 
data regarding potentially confounding lifestyle factors of the par
ticipants, such as physical activity levels. While the model has been 
cross-validated in our study, ideally, we and others will want to test 
our model in larger cohorts that include relevant lifestyle informa
tion. It will also be interesting to explore whether our results can be 
generalized to familial Alzheimer’s disease. Moreover, our cohort 
contained individuals with MCI with a high number of comorbid
ities, so having a larger cohort would enable us to study their influ
ence on the neurogenic readouts, giving us more confidence that 
the readouts are reliable predictors of progression from MCI to 
Alzheimer’s disease. Fourth, we recognize that the assay we used 
in this study does not reconstitute the neurogenic niche in its entir
ety, and future experiments should see the expansion of this in vitro 
model to include other key players in Alzheimer’s disease, such as 
microglia or extend the duration of the assay to monitor synaptic 
formation and plasticity. Including other markers and characteriz
ing at what point apoptosis increases in the differentiation phase 
may improve the prognostic accuracy of the assay. Fifth, we have 
previously shown that the cell line used in this assay contains sin
gle nucleotide polymorphisms that may reduce neurogenesis un
der inflammation,66 therefore, future studies should compare 
HPC lines with different genomic backgrounds or Alzheimer’s 
disease-specific induced pluripotent stem cell-derived neural pro
genitors. Sixth, the effects observed in vitro might not mirror those 
in vivo (i.e. foetal cells cultured with recombinant growth factors 
may not behave the same way as native adult neural precursors). 
Finally, although the strength of a serum assay is that serum is 
that blood collection is inexpensive and minimally invasive, it 
may not fully reflect the conditions of the brain milieu since the 
blood–brain barrier prevents free passage of molecules from the 
CNS to the blood.67 Therefore, a CSF assay may result in a higher 
prognostic accuracy.

In summary, the in vitro parabiosis assay presented in this 
study can model the effects of human systemic environment 
(i.e. serum) on HN. This assay can predict progression to 
Alzheimer’s disease up to 3.5 years before clinical diagnosis 
using a subset of baseline cellular readouts and years of educa
tion. Despite the limitations of this study, we believe that the pro
posed assay has the potential to facilitate early prognosis of 
Alzheimer’s disease and aid with effective stratification of study 
participants in clinical trials. The assay also presents a unique 
opportunity for us to facilitate our understanding of the potential 
mechanisms underlying alterations in human HN both in the 
context of health and disease.
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