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Time and event-specific deep learning for personalized risk
assessment after cardiac perfusion imaging
Konrad Pieszko 1,2, Aakash D. Shanbhag1, Ananya Singh1, M. Timothy Hauser3, Robert J. H. Miller1,4, Joanna X. Liang1,
Manish Motwani 5,6, Jacek Kwieciński1,7, Tali Sharir8, Andrew J. Einstein9, Mathews B. Fish10, Terrence D. Ruddy 11,
Philipp A. Kaufmann 12, Albert J. Sinusas 13, Edward J. Miller13, Timothy M. Bateman14, Sharmila Dorbala15, Marcelo Di Carli15,
Daniel S. Berman 1, Damini Dey1 and Piotr J. Slomka 1✉

Standard clinical interpretation of myocardial perfusion imaging (MPI) has proven prognostic value for predicting major adverse
cardiovascular events (MACE). However, personalizing predictions to a specific event type and time interval is more challenging. We
demonstrate an explainable deep learning model that predicts the time-specific risk separately for all-cause death, acute coronary
syndrome (ACS), and revascularization directly from MPI and 15 clinical features. We train and test the model internally using 10-
fold hold-out cross-validation (n= 20,418) and externally validate it in three separate sites (n= 13,988) with MACE follow-ups for a
median of 3.1 years (interquartile range [IQR]: 1.6, 3.6). We evaluate the model using the cumulative dynamic area under receiver
operating curve (cAUC). The best model performance in the external cohort is observed for short-term prediction – in the first six
months after the scan, mean cAUC for ACS and all-cause death reaches 0.76 (95% confidence interval [CI]: 0.75, 0.77) and 0.78 (95%
CI: 0.78, 0.79), respectively. The model outperforms conventional perfusion abnormality measures at all time points for the
prediction of death in both internal and external validations, with improvement increasing gradually over time. Individualized
patient explanations are visualized using waterfall plots, which highlight the contribution degree and direction for each feature.
This approach allows the derivation of individual event probability as a function of time as well as patient- and event-specific risk
explanations that may help draw attention to modifiable risk factors. Such a method could help present post-scan risk assessments
to the patient and foster shared decision-making.
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INTRODUCTION
Through recent advances, artificial intelligence (AI) has established
an important new paradigm in medical image analysis, potentially
enhancing prognostic applications from all cardiovascular imaging
modalities. However, there are challenges in how risks are
conveyed to both physicians and patients to facilitate the best
and most appropriate preventative strategies. A single metric of all
risks combined is perhaps less useful than a diverse map of
individual risks, their timeline, and influencing factors1.
Myocardial perfusion imaging (MPI) is a well-established

technique for diagnosing coronary artery disease. Although the
primary purpose of MPI is the assessment of the flow-limiting
coronary artery disease, it is often used for risk stratification2.
Prognostic risk assessment has been based on the distribution and
burden of ischemia detected, usually combined with a composite
score of clinical risk factors or inferred from an expert clinical
impression—while this has proven to be a generally successful
model from a statistical viewpoint, it is arguably relatively crude at
the individual patient level. In the status quo, although a patient
may be informed that they are at high risk for an adverse event,

they are left with less information about what type of event, or
within what timeframe can be anticipated, and this can be more
unnerving than productive. While researchers have successfully
used AI to facilitate, quantify, and automate several aspects of the
conventional imaging workflow for diagnosing of disease3, the
efforts applied to prognostic interpretation lack time-specific or
event-specific prediction4. To date, proposed predictive AI models
for cardiovascular image interpretation do not differentiate
between the possible adverse events and oversimplify the
predicted risk to a single numeric value despite the richness and
depth of the source data5. Compounding this issue is the
significant heterogeneity of the definitions of composite end-
points, such as major adverse cardiovascular events (MACE) in
prior clinical studies6.
To date, no methods are established to predict time-dependent

risks of specific event types (such as death or myocardial
infarction) from a single model after cardiovascular imaging. In
this study, we aimed to create a deep learning model capable of
predicting patient and event-specific risk over time directly from
combined cardiac perfusion image and clinical data. We also
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describe methods for visual explanation of these predicted risks
over time which can be presented to physicians and patients. This
could be applied to patient care by presenting patient-
individualized survival curves for specific events and explaining
the contribution of risk factors to event risk, potentially leading to
patient engagement and tailoring therapy for the prevention of
adverse events. The overview of the study is presented in Fig. 1.

RESULTS
Population characteristics
The training and internal testing cohort included 20,401 patients
followed up for MACE for a median of 4.4 years (interquartile
range [IQR]: 3.4, 5.7). All-cause death was observed in 1,396
patients (6.8%) and the median time to death was 2.3 years (IQR:
1.1, 3.7). ACS was observed in 657 patients (3.2%) and the median
time to that event was 1.6 years (IQR: 0.6, 3.0). Revascularization
was observed in 1,485 cases (7.3%) and the median time to
revascularization was 0.6 years (0.1, 2.3). Summary of the clinical
characteristics of the derivation cohort is shown in Table 1.
The external testing set included 13,988 patients followed up

for MACE for a median of 3.1 years (IQR: 1.6, 3.6). All-cause death

was observed in 683 patients (5%) and occurred after a median of
1.5 (IQR: 0.6, 2.5) years from the scan. Acute coronary syndrome
(ACS) was observed in 361 (2.5%) of patients after a median of 1.3
years from scan (IQR: 0.5, 2.3) and 918 patients (6.6%) underwent
revascularization after a median of 0.1 years from baseline
imaging (IQR: 0.03, 1.3). Summary of the clinical characteristics
of the external cohort is shown in Table 2.

Internal testing
We present the cumulative dynamic area under receiver operating
curve (cAUC) for the prediction of any event as well as each of the
separate events in Fig. 2. The best performance for the prediction
of ACS and all-cause death was observed for short-term prediction
– in the first six months after scan, mean cAUC for ACS and all-
cause death reached 0.78 (95% confidence interval [CI]: 0.77, 0.79)
and 0.86 (95% CI: 0.85, 0.87), respectively. For revascularization,
the initially high cAUC declined after the first year but achieved its
peak values in long-term observation – mean cAUC in the fifth
year of follow-up was 0.84 (95% CI: 0.82, 0.85). While the perfusion
abnormality measure maintains high cAUC over a short-term
observation for the prediction of ACS, revascularization or any
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Fig. 1 Deep learning enabled time-to-event outcome prediction after cardiac imaging - study overview. a A time-to-event deep learning
model was trained (left) using data from the 5 sites of the REFINE SPECT registry (n= 20,401), then tested internally in a 10-fold cross-
validation regimen (middle) and tested in 3 external sites (n= 13,988) (right); b The time-to-event model uses 5 SPECT polar maps and 15
clinical features as inputs (left) and predicts time-dependent probability of death (orange line), ACS (green line), and revascularization (blue
line); c The performance of the model (left) is analyzed using cumulative dynamic area under the receiver-operating curves (cAUC). Red line
represents the time-to-event model and blue line represents perfusion abnormality. The explanation of the prediction is visualized as a
waterfall plot with blue arrows representing features that decrease the risk and red arrows representing the features that increase the risk
(right); ACS acute coronary syndrome, AUC area under the receiver operating characteristics curve, TPD total perfusion deficit, PCI
percutaneous coronary intervention, CI confidence intervals.
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event, the cAUC decreases over time faster than of our model. The
model has superior performance to the perfusion abnormality for
death prediction at all time points for cAUC as shown in Table 3 (in
the internal testing set) and in Table 4 (in the external testing set).

Time-dependent concordances for the prediction of each
separate event are shown in Supplementary Table 1. The
concordances were higher for all-cause death than for ACS, or
revascularization.

Table 1. Characteristics of the REFINE SPECT set (training and internal testing).

Overall, N= 20,401 No events,
N= 16,863

Acute Coronary
Syndrome, N= 657

Death, N= 1396 Revasc., N= 1485 p value

Age 64 (56, 73) 63 (55, 72) 67 (59, 76) 72 (64, 81) 66 (59, 74) <0.001a

Male 11,630 (57%) 9,152 (54%) 451 (69%) 853 (61%) 1,174 (79%) <0.001b

BMI 27.3 (24.6, 30.9) 27.3 (24.6, 30.9) 27.3 (24.5, 30.6) 26.6 (23.6, 31.0) 27.6 (25.2, 30.9) <0.001a

Post PCI 3,963 (19%) 2,769 (16%) 271 (41%) 284 (20%) 639 (43%) <0.001b

Post TAVR 46 (0.2%) 25 (0.1%) 5 (0.8%) 15 (1.1%) 1 (<0.1%) <0.001b

Post CABG 1,693 (8.3%) 1,156 (6.9%) 114 (17%) 199 (14%) 224 (15%) <0.001b

Hypertension 12,903 (63%) 10,271 (61%) 517 (79%) 1,039 (74%) 1,076 (72%) <0.001b

Diabetes Mellitus 5,204 (26%) 3,877 (23%) 249 (38%) 529 (38%) 549 (37%) <0.001b

Dyslipidemia 12,890 (63%) 10,341 (61%) 493 (75%) 899 (64%) 1,157 (78%) <0.001b

Family History 5,635 (28%) 4,816 (29%) 181 (28%) 273 (20%) 365 (25%) <0.001b

Stress test type: Exercise 9,721 (48%) 8,576 (51%) 225 (34%) 300 (21%) 620 (42%) <0.001b

Stress test type:
Pharmacologic

10,676 (52%) 8,283 (49%) 432 (66%) 1,096 (79%) 865 (58%) <0.001b

Resting Heart Rate 69 (60, 78) 68 (60, 78) 67 (60, 75) 71 (62, 81) 70 (61, 79) <0.001a

Stress heart rate-peak 122 (91, 146) 127 (94, 148) 100 (82, 133) 93 (77, 121) 114 (90, 139) <0.001a

Stress Systolic BP-peak 150 (130, 170) 150 (130, 170) 145 (126, 170) 135 (120, 156) 150 (130, 170) <0.001a

Extent of perfusion
abnormality (%)

2 (1, 5) 2 (1, 5) 5 (2, 12) 4 (1, 9) 8 (3, 16) <0.001a

Statistics presented: median (inter quartile range), n (%); Statistical tests used:
aKruskal-Wallis rank sum test.
bFisher’s exact test; Abbreviations: Revasc. revascularization, BMI body mass index, BP blood pressure, CABG coronary artery bypass grafting, CABG coronary
artery bypass grafting, TAVR transcutaneous aortic valve replacement.

Table 2. Characteristics of the external testing set.

Overall, N= 13,988 No events,
N= 12,026

Acute Coronary Syndrome,
N= 361

Death, N= 683 Revasc., N= 918 p value

Age 67 (59, 75) 66 (58, 74) 69 (61, 77) 73 (65, 80) 69 (61, 75) <0.001a

Male 7621 (54%) 6309 (52%) 237 (66%) 414 (61%) 661 (72%) <0.001b

BMI 29 (26, 34) 29 (26, 34) 29 (25, 33) 28 (24, 32) 29 (26, 33) <0.001a

Post PCI 1387 (9.9%) 1030 (8.6%) 101 (28%) 84 (12%) 172 (19%) <0.001b

Post TAVR 9 (<0.1%) 5 (<0.1%) 0 (0%) 0 (0%) 4 (0.4%) 0.009b

Past CABG 843 (6.0%) 602 (5.0%) 59 (16%) 64 (9.4%) 118 (13%) <0.001b

Hypertension 8921 (64%) 7477 (62%) 264 (73%) 482 (71%) 698 (76%) <0.001b

Diabetes Mellitus 4023 (29%) 3240 (27%) 151 (42%) 235 (34%) 397 (43%) <0.001b

Dyslipidemia 4635 (33%) 3982 (33%) 161 (45%) 270 (40%) 222 (24%) <0.001b

Family History 2496 (18%) 2228 (19%) 88 (24%) 120 (18%) 60 (6.5%) <0.001b

Stress test type: Exercise 7069 (51%) 6395 (53%) 112 (31%) 146 (21%) 416 (45%) <0.001b

Stress test type: Pharmacologic 6919 (49%) 5631 (47%) 249 (69%) 537 (79%) 502 (55%) <0.001b

Resting Heart Rate 73 (64, 83) 73 (64, 83) 71 (63, 80) 75 (66, 85) 72 (64, 82) <0.001a

Stress heart rate-peak 126 (97, 146) 129 (100, 148) 100 (83, 131) 98 (83, 120) 121 (96, 137) <0.001a

Stress Systolic BP-peak 157 (134, 178) 159 (136, 180) 146 (125, 165) 132 (113, 152) 158 (134, 178) <0.001a

Extent of perfusion
abnormality (%)

2.9 (1.1, 6.2) 2.6 (1.0, 5.5) 5.8 (2.2, 12.2) 4.8 (1.8, 10.8) 6.8 (3.3, 13.7) <0.001a

Statistics presented: median (interquartile range), n (%); Statistical tests used:
aKruskal-Wallis rank sum test.
bFisher’s exact test; Abbreviations: Revasc. revascularization, BMI body mass index, BP blood pressure, CABG coronary artery bypass grafting, CABG coronary
artery bypass grafting, TAVR transcutaneous aortic valve replacement.
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Fig. 2 Cumulative dynamic areas under the receiver operating characteristic curve (cAUC) in the internal testing set. The cAUCs are
presented for the prediction of any adverse event (a) as well as specific events: all-cause death (b), acute coronary syndrome (c), and
revascularization (d) in the internal testing dataset. Results were generated separately for each of the 10 testing folds of the cross-validation
(N= 2041) and then averaged. The red, blue, and orange lines represent cAUC for the time-to-event model, perfusion abnormality, and
clinical-only model, respectively. The red, blue, and orange dashed lines represent mean cAUC for the time-to-event model, perfusion
abnormality, and clinical-only model, respectively. Shaded areas represent 95% confidence intervals (CI). The red arrows show the cAUC values
of time-to-event deep learning averaged over the first six months after the scan (vertical dashed line).

Table 3. Comparison of performance in the internal set (n= 20,401).

Event and
time point

AUC Full
model (1)

AUC Perfusion
abnormality (2)

AUC Clinical-only
model (3)

p value (1)
versus (2)

p value (1)
versus (3)

p value (2)
versus (3)

MACE at 1 year 0.78 (0.77, 0.79) 0.76 (0.75, 0.77) 0.69 (0.68, 0.71) 0.089 <0.001 <0.001

MACE at 3 years 0.76 (0.75, 0.77) 0.72 (0.71, 0.73) 0.72 (0.71, 0.73) <0.001 <0.001 0.788

MACE at 5 years 0.76 (0.75, 0.77) 0.70 (0.69, 0.71) 0.73 (0.72, 0.74) <0.001 <0.001 <0.001

Death at 1 year 0.80 (0.77, 0.82) 0.61 (0.58, 0.64) 0.76 (0.74, 0.79) <0.001 0.002 <0.001

Death at 3 years 0.78 (0.76, 0.80) 0.62 (0.60, 0.64) 0.76 (0.74, 0.77) <0.001 <0.001 <0.001

Death at 5 years 0.77 (0.76, 0.79) 0.61 (0.60, 0.63) 0.75 (0.74, 0.76) <0.001 <0.001 <0.001

ACS at 1 year 0.73 (0.70, 0.76) 0.73 (0.69, 0.76) 0.70 (0.67, 0.73) 0.972 0.025 0.188

ACS at 3 years 0.70 (0.68, 0.72) 0.68 (0.66, 0.71) 0.68 (0.66, 0.70) 0.253 0.054 0.970

ACS at 5 years 0.70 (0.68, 0.71) 0.67 (0.65, 0.69) 0.68 (0.66, 0.69) 0.054 0.025 0.621

Revasc. at 1 year 0.79 (0.77, 0.80) 0.81 (0.80, 0.83) 0.70 (0.68, 0.71) 0.018 <0.001 <0.001

Revasc. at 3 years 0.78 (0.76, 0.79) 0.77 (0.75, 0.78) 0.71 (0.70, 0.73) 0.489 <0.001 <0.001

Revasc. at 5 years 0.77 (0.76, 0.78) 0.75 (0.73, 0.76) 0.71 (0.70, 0.73) 0.011 <0.001 <0.001

All p values were obtained using DeLong’s test. The bold values represent statistically significant (p < 0.05) comparisons. Abbreviations: ACS acute coronary
syndrome, AUC area under the receiver-operating curve, MACE major adverse cardiovascular event, Revasc. revascularization.
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External testing
Similar to internal testing, the model preserved relatively constant
cAUC within 3 years from the baseline scan, while for perfusion
abnormality, the cAUC declined gradually over time (Fig. 3). For
each of the events, the best performance was observed for short-
time prediction – in the first six months after scan mean cAUC for
ACS and all-cause death reached 0.76 (95% confidence interval
[CI]: 0.75, 0.76) and 0.78 (95% CI: 0.78, 0.79), respectively. Our
model outperforms perfusion abnormality at all time points for the
prediction of death. Time-dependent concordance for the
prediction of each event in the external set is presented in
Supplementary Table 1.
The time-to-event model outperformed both perfusion abnorm-

ality and the clinical-only model in the external testing set at 1 and
3 years from scan. The area under the receiver operating curve
(AUC) for any MACE at 1 year from the scan was 0.74 (95% CI:
0.73,0.76) for the time-to-event model, 0.71 (95% CI: 0.70,0.73) for
perfusion abnormality, and 0.68 (95% CI: 0.66,0.69) for the clinical-
only model. At 3 years from scan, the AUC for any MACE was 0.73
(95% CI: 0.72,0.74) for the time-to-event model, 0.69 (95% CI:
0.67,0.70) for perfusion abnormality, and 0.69 (95% CI: 0.68,0.71)
for the clinical-only model. The time-to-event model performed
better than perfusion abnormality at 1 and 3 years from scan in
the prediction of death or ACS and better than the clinical-only
model in the prediction of revascularization. Detailed comparison
of AUC values for all events for the time-to-event model compared
with perfusion abnormality and the clinical-only model is shown in
Table 3. Receiver-operating curve (ROC) plots for the prediction of
death, ACS, and revascularization at 1, 3 and 5 years in the external
testing sets using time-to-event model are shown on Supplemen-
tary Fig. 1. Sensitivity analysis showed no significant effect on the
prediction of other events or composite MACE outcome, but it
decreased performance for prediction of revascularization when
revascularization events within 180 days from the scan are
removed (Supplementary Table 2). The time-to-event model also
outperformed the multivariable Cox regression model in the
prediction of all types of events (Supplementary Table 3).

Individual prediction and explanation
Examples of individualized predictions for four patients who
experienced different types of outcomes in the follow-up period
are shown in Fig. 4. The prediction of our model is presented as
three cumulative incidence functions – separately for each type of
event. The individual prediction plot is accompanied by a waterfall
plot (Fig. 5) – providing an explanation of the highest predicted
risk that highlights how the polar maps and clinical features
contribute to the overall risk. The waterfall plot allows for
visualization of both the extent of influence (length of the arrow)

and direction (increasing risk of the event – red arrow pointing to
the right, decreasing risk – blue arrow pointing to the left). In the
presented case, a 41-year-old female with heart failure with
moderately reduced ejection fraction and moderate perfusion
deficits is identified as having a high risk of death. Explanation of
the prediction shows the elevated resting heart rate as one of the
factors having the greatest contribution to the elevated risk.
Simulating the reduction of the resting heart rate to 70/min shows
that optimal guideline-guided management could lower average
predicted risk of death by 36%. Inference using our model took
below 12 milliseconds per patient case on an Apple MacBook Pro
laptop computer.

DISCUSSION
Leveraging a large cardiac imaging registry, we developed a deep
learning approach for individual risk computation that allows
time-dependent and event-specific predictions jointly from clinical
and cardiac imaging data. We obtain time- and event-specific risk
estimation and provide visually intuitive graphs for individual risk
explanations. The model provides risk estimates over-time, for all-
cause death, ACS, and late revascularization separately, with easy-
to-understand patient-level explanations. We evaluated our model
in a large, multi-site external dataset as well as with internal 10-
fold cross-validation. Good performance in the external testing set
points to the ability of our model to generalize to unseen real-life
data from new centers. The model relies on the combined
predictive potential of the clinical features, stress test data, and
direct image analysis, similarly to the way clinicians try to integrate
all available information to provide the most accurate study
interpretation. Moreover, this approach also leverages time-to-
event data to provide more robust risk estimation over time,
which could potentially be applied to a broad range of AI tasks.
Previous prognostic studies estimated risk jointly using

composite adverse events and without the use of time-to-event
data5. A high-risk of death in the next year is a very different
scenario than a risk of hospital admission or revascularization over
10 years – but our current presentation and assessment of data
lack this granularity. Recently, non-linear AI survival models have
demonstrated practical implementations in healthcare7–9 with
state-of-the-art performances that are comparable to or improve
the performance of traditional Cox proportional hazard models10.
Examples of such models include precision genomic prognostica-
tion in patients receiving cancer treatment11, prediction of oral
cancer survival12 as well as of progression of potentially malignant
disorders to cancer13. A large scale, multisite study investigated
the use of deep neural networks trained using full electronic
health records data in prediction multiple medical events14. This is
however, to our knowledge, the first study to evaluate prediction

Table 4. Comparison of performance in the external testing set (n= 13,988).

Event and
time point

AUC Full
model (1)

AUC Perfusion
abnormality (2)

AUC Clinical-only
model (3)

p value (1)
versus (2)

p value (1)
versus (3)

p value (2)
versus (3)

MACE at 1 year 0.74 (0.73, 0.76) 0.71 (0.70, 0.73) 0.68 (0.66, 0.69) <0.001 <0.001 0.001

MACE at 3 years 0.73 (0.72, 0.74) 0.69 (0.67, 0.70) 0.69 (0.68, 0.71) <0.001 <0.001 0.341

Death at 1 year 0.77 (0.74, 0.80) 0.61 (0.58, 0.65) 0.75 (0.72, 0.78) <0.001 0.320 <0.001

Death at 3 years 0.76 (0.73, 0.78) 0.61 (0.58, 0.64) 0.72 (0.70, 0.74) <0.001 0.026 <0.001

ACS at 1 year 0.74 (0.70, 0.78) 0.69 (0.64, 0.74) 0.72 (0.68, 0.76) 0.021 0.426 0.343

ACS at 3 years 0.72 (0.69, 0.74) 0.65 (0.62, 0.68) 0.70 (0.68, 0.73) <0.001 0.469 0.012

Revasc. at 1 year 0.74 (0.73, 0.76) 0.74 (0.72, 0.76) 0.66 (0.64, 0.68) 0.763 <0.001 <0.001

Revasc. at 3 years 0.72 (0.70, 0.74) 0.72 (0.70, 0.74) 0.67 (0.65, 0.69) 0.737 <0.001 <0.001

All p values were obtained using DeLong’s test. The bold values represent statistically significant (p < 0.05) comparisons. Abbreviations: ACS acute coronary
syndrome, AUC area under the receiver-operating curve, MACE major adverse cardiovascular event, Revasc. revascularization.
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at multiple time points of multiple events in a large multi-site
registry of cardiovascular imaging data that also explicitly takes
advantage of time-to-event data during model training.
Patient level-explanation may be crucial for the clinical adoption

of AI in medical imaging15,16, but this approach was not previously
applied as a joint explanation of direct imaging data and clinical
variables for individualized risks of specific events. Such explana-
tions may point to abnormalities in the imaging data as well as to
some clinical features that drive the increased risk for a given
adverse event, potentially allowing for a more comprehensive
assessment of patient’s condition. Event-specific predictions
within a single model can be presented at the time of review of
imaging and may enable physicians to practice precision
medicine, with individually tailored treatments and preventive
measures. For instance, a prediction of high risk of all-cause death
could encourage more frequent follow-up visits and additional
diagnostic tests, while a high risk of ACS and revascularization
could indicate that the patient is a candidate for revascularization
or needs intensification of medical therapy.
In addition to informing the physician about the rationale

behind model predictions, the visualization of factors contributing
to increased risk of adverse events might serve as a powerful tool
in shared decision-making after the exam, utilizing all available

information17. When discussed with the patient, a special focus
might be given to modifiable risk factors such as high BMI18,
hypertension19, diabetes, and dyslipidemia20, leading to optimal,
goal-directed medical therapy of these risk factors. That could be a
starting point for a discussion on how these factors can be
targeted through lifestyle modifications and medications. Such an
approach could be an important step towards patient empower-
ment and could improve adherence to physicians’ recommenda-
tions. However, it is important to acknowledge the limitations of
SHapley Additive exPlanations (SHAP) - derived feature impor-
tance21, especially that they do not imply casual relations between
the input features and the outcome. For this reason, the waterfall
plots (Fig. 5) that were generated based on SHAP values should be
considered an illustrative tool and should be interpreted with
caution.
Interestingly, in the external testing set, we found that the

perfusion abnormality variable had lower performance than the
clinical-only time-to-event model in predicting all-cause mortality
at any time point. This confirms that clinical features, such as age
and medical comorbidities, are important determinants of all-
cause mortality and have previously been shown to influence the
“warranty period” of normal perfusion on MPI22. Additionally,
myocardial perfusion may change in response to anti-anginal

Fig. 3 Cumulative dynamic areas under the receiver operating characteristic curve (cAUC) in the external testing set. The cAUCs are
presented for the prediction of any adverse event (a) as well as specific events: all-cause death (b), acute coronary syndrome (c), and
revascularization (d) in the external dataset (N= 13,988). The red, blue, and orange lines represent cAUC for the time-to-event model,
perfusion abnormality, and clinical-only model, respectively. The red, blue, and orange dashed lines represent mean cAUC for the time-to-
event model, perfusion abnormality, and clinical-only model, respectively. Shaded areas represent 95% confidence intervals (CI). The red
arrows show the cAUC values of time-to-event deep learning averaged over the first six months after the scan (vertical dashed line).
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therapies and thus would not be expected to be an accurate
predictor of long-term hard outcomes23. However, unsurprisingly
the revascularization prediction performance was similar for the
perfusion abnormality and the full time-to-event model and
higher than for the clinical-only time-to-event model. This is
expected because physicians may rely on perfusion information
when making revascularization decisions24,25, which could lead to
overestimation of its prediction performance for the
revascularization.
Our study has several limitations. First, we have only assessed

all-cause mortality and could, therefore, not differentiate between
cardiac and non-cardiac deaths. We separately considered the
major cardiovascular events of ACS and revascularization. How-
ever, other possible events like atrial fibrillation, worsening of
heart failure, or sub-classification of ACS (presence of ST-elevation)
were not available for analysis due to the multi-site, retrospective
nature of the imaging registry. In our model, the risk for death and
ACS is estimated independently from the risk of revascularization,
thus allowing for the event-specific assessment of patient’s
prognosis, but it should be noted that an increased risk of ACS
and revascularization would lead physicians to consider the same
preventive strategies. Furthermore, while the dynamic cAUC of the
standard quantitative perfusion analysis decreases over time for
the revascularization prediction, our model maintains higher cAUC
for the revascularization prediction in the long term. The
performance of our model could be further improved by utilizing
data from other imaging modalities26. For instance, computed
tomography attenuation correction scans could be used to
automatically calculate calcium score, which could be included
in the time-to event model27. Finally, the usefulness of the time-
to-event predictions has not been evaluated in prospective
studies. This is understandable given the novelty of the proposed
methods. Further investigation is needed to assess if the
additional temporal dimension of the model’s prediction and its

ability to differentiate the risk of specific events can improve
physicians’ workflows and lead to better clinical decisions.
The proposed deep learning model, using cardiac perfusion

images and clinical data with time-to-event specific outcomes,
provides a robust prediction of the risk of all-cause death, ACS,
and revascularization. The model significantly improved the
prediction of all-cause death and the composite MACE outcome,
while also improving the prediction of ACS in the external testing
population. By presenting the individualized patient-specific post-
scan risk assessment over time in an intuitive manner for the
clinicians and patients, our approach can potentially help better
address patient risk and guide management that is tailored to the
patient’s individual risk profile.

METHODS
Patient populations
For the training and internal validation, we included 20,418 scans
from five international centers participating in the prospective,
multi-site Registry of Fast Myocardial Perfusion Imaging with Next
generation SPECT (REFINE SPECT)28. We included all consecutive
patients who underwent clinically indicated SPECT MPI from 2009
to 2014. We excluded 17 patients without gated studies, leaving a
total of 20,401 patients.

Definition of events
Patients were followed for MACE, which was defined as all-
cause death, myocardial infarction, unstable angina, and
revascularization (surgical or percutaneous). Non-fatal myocar-
dial infarction was defined as hospitalization for cardiac chest
pain or anginal equivalent with positive cardiac biomarkers29.
Unstable angina was defined as recent onset or escalating
cardiac chest pain with negative cardiac biomarkers. All

Fig. 4 Patient-level prediction of time-dependent risk of major adverse cardiovascular events. Individual prediction of event probability in
4 different patients: (a) A 58-year-old male with no history of CAD, stress TPD of 2%, and diabetes; (b) A 76-year-old male with history of PCI
and CABG, stress TPD of 3%, and family history of CAD and dyslipidemia; (c) A 63-year-old male with no history of CAD, stress TPD of 20%, and
no other risk factors; (d) A 60-year-old male with no history of CAD, stress TPD of 1% and no risk factors. Curves represent predicted
cumulative event probability of death (orange lines), acute coronary syndrome (green lines), and revascularization (blue lines) as a function of
time. The vertical dashed lines mark the time of the true event. CABG – coronary artery bypass grafting, CAD coronary artery disease, PCI
percutaneous coronary intervention, TPD total perfusion deficit (measure of perfusion abnormality).
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outcomes were adjudicated by experienced cardiologists after
considering all available clinical data. We chose three outcomes
as events of interest: death, acute coronary syndrome (ACS) -
defined as either non-fatal myocardial infarction or admission
for unstable angina, and revascularization (with percutaneous
coronary intervention or coronary artery bypass grafting). For
each patient, only the first occurring event was considered and

therefore, each patient had either one of the three events or no
events. If a patient presented with ACS and had revasculariza-
tion on the same day, that event was considered as an ACS. If a
patient had either ACS or revascularization and died on the
same day, that event was considered as a death. For area under
receiver-operating curve (AUC) analysis, events that occurred
up to a given time-point were considered as positive events,
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averaged contributions from polar maps) on prediction of average risk of death. The plot starts at the top at the mean population probability
(expected value, dotted vertical line) and ends at the bottom with the final individual probability. Red arrows pointing to the right indicate
that the feature increases the risk of death, while blue arrows pointing to the left indicate that the feature decreases the risk. Patient features
that point to potential actionable interventions through medication or lifestyle modification are highlighted using bold font. c Simulated
modification of risk factors through reduction of resting heart rate to 70/min reduces the average risk of death by 36%. The predicted
probabilities of death, ACS and revascularization before the intervention is shown as orange, green and blue lines, respectively. The predicted
probabilities of death, ACS and revascularization after heart rate reduction are shown as orange, green and blue dashed lines, respectively.
ACS acute coronary syndrome, CAD coronary artery disease, LVEF left ventricular ejection fraction, BMI body mass index, PCI percutaneous
coronary intervention, CABG coronary artery bypass grafting.

K. Pieszko et al.

8

npj Digital Medicine (2023)    78 Published in partnership with Seoul National University Bundang Hospital



and if the event occurred after the specified time point, the
patient was considered event-free.

External cohort
The external testing population included an additional 13,988
patients who underwent clinically indicated SPECT MPI with MACE
follow–up at a separate three external centers: Oklahoma Heart
Hospital (n= 6034), University of Calgary Hospital (n= 2985) and
Yale New Haven Hospital (n= 4969). All outcomes were adjudi-
cated using the same criteria as in the training cohort.

Image collection
Patients were imaged with either a DSPECT (Spectrum-Dynamics,
Caesarea, Israel), GE Discovery NM 530c, or NM/CT570c (GE
Healthcare, Haifa, Israel) camera system. Patients underwent either
symptom-limited exercise testing or pharmacologic stress. Addi-
tional details regarding imaging protocols and acquisition have
been previously described28.
After anonymization, all images were transferred to Cedars-Sinai

Medical Center, where quality control was performed by
experienced core laboratory technologists without knowledge of
the clinical data. Left ventricular (LV) myocardial contours were
computed and verified by an experienced nuclear medicine
technologist using standard clinical software30. Polar maps of the
LV, representing compressed form of images, were automatically
generated from the images. Five polar maps were derived for each
patient including perfusion, motion, thickening, cardiac phase,
and amplitude. Clinical data and images from the external centers
were de-identified and transferred to Cedars-Sinai. This study
complies with the Declaration of Helsinki.

Ethical approvals
The institutional review boards at Cedars-Sinai and the participat-
ing sites approved the collection of data for the registry: Cedars-
Sinai Institutional Review Board, PeaceHealth System Institutional
Review Board (Oregon Heart and Vascular Institute), Ottawa
Health Science Network Research Ethics Board, Partners Human
Research Committee (Brigham and Women’s Hospital), Assuta
Medical Centers Ethics Committee, Western Institutional Review
Board (Oklahoma Heart Hospital Research Foundation), Conjoint
Health Research Ethics Board of the University of Calgary, and Yale
University Institutional Review Board. Informed, written consent
was obtained from the subjects (or their legally authorized
representative) in Cedars Sinai Medical Center and Brigham and
Women’s Hospital. In the remaining sites, waiver of consent was
granted by the respective local institutional review boards.

Clinical features
Clinical and stress test results were collected according to the
protocol of the REFINE SPECT registry. All the clinical features used
in the model are listed in Supplementary Table 4.

Design and training of the event-specific deep learning
network
We employed a deep-learning-based approach capable of
learning the distribution of event ‘hitting times’ directly from
data. We extended the DeepHit architecture and associated loss
function31 and implemented with the PyTorch framework32. To
allow the network to process images, we added convolutional
layers capable of directly interrogating perfusion, motion, wall
thickening, and phase polar maps and combining the imaging
data with 15 clinical features that were chosen based on our
previous work on the minimum set of variables for machine
learning cardiovascular event prediction33. The network consists
of two main parts:

1. convolutional part that processes the 28 x 36 x 5 input of 5
normalized polar maps consisting of 2 convolution blocks,
each with 3×3 convolution kernels, batch normalization,
dropout, and Leaky Rectified Linear Unit (ReLU) layers,
which were added to prevent overfitting.

2. clinical features are added in the fully connected layer, with
512 nodes and 15 clinical features passed to a separate fully
connected layer with 32 nodes. The output of these layers is
concatenated and passed to the DeepHit network described
by Lee et al.31, with 256 nodes in a single shared layer and
256 nodes in each of the three event-specific layers.

The output of the model is a 2-D 3 × 131 array of shape,
representing probabilities of each of the events occurring at time
0 and every 30 days up to the maximum follow up time. We used
loss functions proposed by Lee et al31. with modification by
Kvamme et al32.
Missing values (Supplementary Table 5) were imputed using

mean or mode (in case of categorical features) values in the
training set. This method was previously shown to perform similar
to other data imputation techniques34.
The important aspect of the architecture is the ability to handle

multiple competing events35 and generate predictions separately
for each of them. The resulting architecture is shown in
Supplementary Fig. 2. The model generated predictions in the
form of a 2-D array of monthly event probabilities for multiple
events.

Additional analyses
To evaluate the usefulness of combining clinical and imaging data
in a model, we trained and tested a separate model that used
clinical features only. This model utilizes the same architecture as
the time-to-event model, but without image input. Additionally,
we performed a sensitivity analysis in the external testing
population to investigate the effect of removing cases with
revascularization events within 180 days from the MPI. We
compared the AUC for the prediction of revascularization, death,
ACS, and MACE in the external dataset at 1 year and 3 years from
scan with and without removing the early revascularization cases.

Comparison with Cox regression model
For comparison, we created a multivariable Cox regression model
that used all clinical features utilized by the time-to-event model
and stress total perfusion deficit (perfusion abnormality). This
model was trained in the internal set and evaluated in the external
testing set. We compared AUC for the prediction of death, ACS,
revascularization, and MACE at 1 and 3 years from scan.

Internal Training and testing routine
The model was trained and tested in a 10-fold repeated hold-out
regimen. The development set was randomly divided into
10 samples (folds) with the same fraction of each MACE event
(stratified split). Then, 10 separate models were trained, each using
9 of 10 folds for training and the remaining one for testing. Within
the 90% of training data, the model randomly selected 20% of
cases that were used for model hyperparameter optimization in
this fold. There was no overlap of training data with the testing
data at any point. Testing results from each of the 10 folds and 10
models were concatenated for robust assessment of the overall
performance in unseen data.

External testing
The generalizability of the approach to data from new medical
centers was evaluated in external testing regimen. For the robust
estimation of external performance, each of the 10 models
generated in 10-fold cross-validation of REFINE SPECT cohort was
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evaluated in a separate external cohort from new three new
centers. Performance was then evaluated separately for the 10 sets
of predictions and presented as mean with 95% confidence
intervals after bootstrapping.

Patient-specific explanations
We provide explanations of individualized predictions made by
the algorithm. This approach allows for the identification of
important patient-specific features driving the prediction and
provides a feature importance ranking for each patient, separately
for each of the three separate outcomes. The individual
explanation of the predicted probability of each of the target
events was achieved through the generation of SHapley Additive
exPlanations (SHAP values)36. To provide a meaningful explana-
tion, we summed the SHAP values for all pixels in each image
input and presented them alongside the importance of clinical
features in the form of waterfall plots. For each of the top
contributing features, the water fall plot visualizes how strongly
the given feature increases or decreases the risk for the specific
events in a specific patient.

Statistical analysis
Continuous variables were expressed as median and (interquartile
ranges [IQR]). Two-sided Kruskal-Wallis test were used to compare
differences in median values. Categorical variables were compared
using Fisher’s exact test. A p value <0.05 was considered
statistically significant. Univariable comparisons and summary
statistics were computed using R 4.1.2 and R Studio. Details on
used software packages and versions are given in the Supple-
mentary Table 6.
The predictive performance of the model was evaluated using

time-dependent concordance index37 that extends the concor-
dance index for time-dependent predictions, and cumulative
dynamic area under the receiver-operating characteristic (ROC)
curve (cAUC)38 as implemented in the scikit-survival python
package. This measure reflects the probability that, given two
randomly chosen patients, one having failed before time <T > and
the other having failed after <T > , the prognostic marker will be
correctly ranked. We used plots of the cAUC values as a function of
time from scan to visualize the ability to capture temporal changes
in the risk of adverse events. The 95% confidence limits for the
cAUC curves were established using bootstrapping (100 samples
with replacement). We compared the cAUC of our model’s output
with the clinical-only model and with the extent of perfusion
abnormality (stress total perfusion deficit)30, which is an estab-
lished, clinically used quantitative MPI variable. In previous studies,
total perfusion deficit measure demonstrated efficient risk
stratification39 and identification of patients who may benefit
from early revascularization24.
Additionally, we evaluated the model using area under the ROC

curves (AUC) at 3-time points in the internal testing set (1, 3, and 5
years from scan), separately for all-cause death, ACS, and
revascularization at each time point and for each event using
DeLong’s test.

Compliance with recommendations for machine-learning-
related research
This study was designed and conducted following the transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD)40 checklist that is included as
Supplementary Table 7.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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