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Significance

Cell-free DNA (cfDNA) 
fragmentation patterns carry a 
wealth of information related to 
DNA nuclease activities and 
tissues of origin. However, there 
is a lack of tools for obtaining a 
bird’s eye view of the involvement 
of nucleases and other 
fragmentation mechanisms in the 
process of cfDNA generation. 
Using mathematical analysis of 
short terminal nucleotide 
sequences of cfDNA, called end 
motifs, six distinct types of cfDNA 
fragmentation patterns were 
observed. Several patterns were 
associated with nucleases such as 
DFFB, DNASE1, and DNASE1L3. 
These patterns shed light on the 
spectrum of processes in cfDNA 
fragmentation. Aberrations in 
these patterns could be used as 
markers for cancer and immune 
diseases. One aberrant pattern 
appeared to be associated with 
increased oxidative stress during 
cancer.

Reviewers: M.M., University of Wisconsin-Madison; and 
X.J.Z., University of California Los Angeles.

Competing interest statement: The authors have 
organizational affiliations to disclose, K.C.A.C. and 
Y.M.D.L. hold leadership positions in Centre for 
Novostics. R.W.K.C., K.C.A.C., and Y.M.D.L. hold equities 
in Take2. Z.Z., M.-J.L.M., K.C.A.C., Y.M.D.L., and P.J. have 
filed a patent application on the described technology.

Copyright © 2023 the Author(s). Published by PNAS.  
This open access article is distributed under Creative 
Commons Attribution-NonCommercial-NoDerivatives 
License 4.0 (CC BY-NC-ND).
1Z.Z. and M.-J.L.M. contributed equally to this work.
2To whom correspondence should be addressed. Email: 
loym@cuhk.edu.hk or jiangpeiyong@cuhk.edu.hk.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 
2220982120/-/DCSupplemental.

Published April 19, 2023.

MEDICAL SCIENCES

Fragmentation landscape of cell-free DNA revealed 
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Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by 
various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a 
paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns 
related to underlying fragmentation factors. In this study, through non-negative matrix 
factorization algorithm, we used 256 5′ 4-mer end motifs to identify distinct types 
of cfDNA cleavage patterns, referred to as “founder” end-motif profiles (F-profiles). 
F-profiles were associated with different DNA nucleases based on whether such pat-
terns were disrupted in nuclease-knockout mouse models. Contributions of individual 
F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We 
analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified 
six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 
3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor 
subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules 
were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary 
cfDNA molecules involved DNASE1-mediated fragmentation. We further demon-
strated that the relative contributions of F-profiles were useful to inform pathological 
states, such as autoimmune disorders and cancer. Among the six F-profiles, the use 
of F-profile I could inform the human patients with systemic lupus erythematosus. 
F-profile VI could be used to detect individuals with hepatocellular carcinoma, with 
an area under the receiver operating characteristic curve of 0.97. F-profile VI was more 
prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. 
We proposed that this profile might be related to oxidative stress.

non-negative matrix factorization | oxidative stress | fragmentomics | cancer detection |  
liquid biopsy

Cell-free DNA (cfDNA) is a mixture of DNA fragments released from different tissues 
(1, 2). cfDNA fragmentation is nonrandom (3, 4), at least in part mediated by various 
DNA nucleases, such as deoxyribonuclease 1 (DNASE1), deoxyribonuclease 1 like 3 
(DNASE1L3), and DNA fragmentation factor subunit beta (DFFB) (5, 6). Han et al. 
revealed that the generation of cfDNA molecules might intracellularly and extracellularly 
involve a series of nuclease-directed fragmentation processes in a stepwise manner (7). 
Such a stepwise fragmentation model suggests that cfDNA might be initially cleaved 
intracellularly by DFFB and DNASE1L3, preferentially forming A-end and C-end frag-
ments, respectively, followed by the extracellular cleavages mediated by DNASE1L3 and 
T-end preferred DNASE1 (7). Thus, the compositions of nucleotides at the end of cfDNA 
molecules (i.e., k-mer end motifs; k indicates the length of nucleotides) are believed to be 
associated with the DNA nuclease activities. Based on murine models with the knockout 
of different nuclease genes, Serpas et al. reported that DNASE1L3 might be associated 
with the generation of “CCCA” end motif (8), which was subsequently confirmed in 
human data (9). On the other hand, DNASE1 might be associated with the generation 
of the motif “TGTG” (10). These studies suggest that DNA nuclease activities are involved 
in cfDNA fragmentation.

Recently, many studies demonstrated that the use of plasma end motifs was able to 
inform the presence of various diseases ranging from autoimmune diseases (9) to multiple 
cancer types (11–13). Dnase1l3-deficient mice rapidly developed autoantibodies to DNA 
and chromatin, followed by the development of systemic lupus erythematosus (SLE) like 
diseases (14). DNASE1L3 deficiency could be restored by adeno-associated virus (AAV) 
based transduction of Dnase1l3 into Dnase1l3-deficient mice (14). Interestingly, the 
AAV-based transduction of Dnase1l3 could restore the aberrant end-motif profiles to 
those normally present in the plasma cfDNA of wild-type (WT) mice, suggesting that 
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end motifs might be a biomarker for monitoring therapeutic 
response following restoration of nuclease activities (9).

We reasoned that it would be clinically meaningful to holisti-
cally determine the distinct types of cfDNA cleavage patterns. 
Such an approach might allow us to identify previously unknown 
mechanisms for cfDNA fragmentation. To this end, we attempted 
to use 256 4-mer end motifs of cfDNA molecules to deconvolute 
distinct types of cfDNA cleavages using non-negative matrix fac-
torization (NMF) (Fig. 1). The 4-mer end-motif profiles, which 
were obtained from 93 murine cfDNA samples from WT mice 
and knockout mice with the deletion of different DNA nuclease 
genes, were subjected to NMF analysis. Such factorization analysis 
yielded six major types of end-motif components representing the 
distinct types of cfDNA cleavages, referred to as “founder” 
end-motif profiles (F-profiles). An observed motif profile could 
be deconvoluted into different F-profiles by iteratively adjusting 
the proportional contribution of each F-profile. With the use of 
the F-profiles generated from cfDNA of mice, the proportional 
contributions of F-profiles could be determined for human 
cfDNA samples. Such an approach could potentially be used for 
developing biomarkers for assessing physiological and pathological 
conditions.

Results

cfDNA End-Motif Landscape Profiles. To determine the distinct 
types of cfDNA cleavages, we first calculated the frequencies for 
each 4-mer end motif in cfDNA samples. The 4-mer end motif 
was defined as the terminal 4 nucleotides at each 5′ fragment 
end of cfDNA molecules, totaling 256 categories of 4-mer 
end motifs (i.e., 44). To make the profiles of motif patterns 
comparable between human and mouse, the frequencies of 
4-mer end motifs related to the human and murine cfDNA were 
normalized by the genomic contexts of the human and mouse 
genomes, respectively (see details in Materials and Methods). As 
shown in Fig. 2, the frequencies of 256 end motifs in both plasma 
and urinary cfDNA of mice with different nuclease-knockout 
genotypes were organized in alphabetical order, forming the 
end-motif profile. Motifs starting with adenine (A), cytosine 
(C), guanine (G), and thymine (T) were highlighted in blue, 
red, green, and yellow, respectively. We observed certain distinct 
patterns in end-motif profiles across different mice. For instance, 
compared with WT mice, the plasma cfDNA of the Dnase1l3−/− 
mice showed periodic spikes in frequencies of the end motifs, 
typically at those end motifs with A ends, C ends, and G ends. 
For urinary cfDNA of the Dnase1−/− mice, the abundance of 
motifs with T ends was reduced significantly (P < 0.0001, Mann–
Whitney U test) compared with the WT mice. Although it was 
visually hard to discern the difference when comparing plasma 
cfDNA of WT mice vs. Dnase1−/− mice, or urinary cfDNA of 
WT mice vs. Dnase1l3−/− mice, we hypothesized that the subtle 
differences in these end-motif profiles could be discerned when 
an appropriate analytical algorithm was adopted. Hence, in the 
following sections, we used an algorithm called NMF (15–19) to 
holistically analyze the 256 motifs as a whole instead of focusing 
on one or a few specific motif species. NMF is commonly used 
in processing audio spectrograms, e.g., deconvoluting acoustical 
signals into different acoustic events (20).

Deconvolutional Analysis of End-Motif Profiles. We applied NMF 
analysis to decompose end-motif profiles into several F-profiles. 
A total of 93 murine cfDNA samples with different genotypes 
of DNA nuclease knockouts were used for such NMF analysis, 
including plasma and urinary cfDNA (see details in Materials and 

Methods). The optimal number of F-profiles was determined to 
be 6, with a high reproducibility and a low error (SI Appendix, 
Fig. S1 and Table S1). These profiles were named F-profiles I, II, 
III, IV, V, and VI.

We could determine the proportional contribution of each 
F-profile, which was deduced by NMF, in an individual cfDNA 
sample, when the minimal error was achieved between an observed 
end-motif profile and the sum of F-profiles weighted by their 
proportional contributions (Fig. 3A). Such a mathematical process 
was referred to as F-profile-based deconvolutional analysis of end 
motifs in this study. To biologically link the F-profiles to possible 
DNA nuclease cleavages, we investigated the typical end motifs 
in an F-profile and measured its alteration in proportional con-
tribution when depleting or enhancing a particular nuclease 
activity.

F-profile I displayed a predominance of C-end motifs (55%) 
and was characterized by the “CC” motifs (Fig. 3B), which was 
in line with DNASE1L3-cutting properties demonstrated in our 
previous studies (8, 9). We observed that the contributions of 
F-profile I in the plasma cfDNA of Dnase1l3−/− mice were signif-
icantly lower compared with that in WT mice (median: 2.7% vs. 
35.4%; range: 0.0 to 4.6% vs. 19.5 to 47.9%) (P < 0.0001, 
Mann–Whitney U test). Hence, F-profile I was deemed to be a 
DNASE1L3-associated F-profile, which could be used to reflect 
the nuclease usage level of DNASE1L3.

F-profile II exhibited a major preference for T-end motifs (51%), 
with a significant enrichment observed for “TG” motifs (Fig. 3C). 
Such a preference was coincided with the DNASE1-cutting motifs 
(10). In WT mice, F-profile II contributions were significantly 
higher in urinary cfDNA in comparison with plasma cfDNA 
(median: 43.4% vs. 11.6%; range: 31.8 to 50.1% vs. 0.0 to 22.1%) 
(P < 0.0001, Mann–Whitney U test). Of note, the DNASE1 activ-
ity was known to be much higher in urine than in plasma for WT 
mice (10). Furthermore, a median of approximately eightfold 
reduction for F-profile II contributions was observed in both 
plasma and urinary cfDNA of Dnase1−/− mice when compared with 
the WT counterparts. Thus, F-profile II was deduced to be related 
to the DNASE1 activity. It was worth noting that 3 out of 10 
Dnase1−/− mice still showed considerable contributions of F-profile 
II (DNASE1) in plasma cfDNA (Fig. 3A), perhaps implying that 
some other enzymes might play a complementary role to the 
DNASE1 and might yield a degree of compensation when cells 
lacked DNASE1. This hypothesis would need further experimental 
validation in future studies.

F-profile III comprised a substantial proportion of A-end motifs 
(40%) and was characterized by the preference for C and T nucle-
otides at the third and fourth positions in the 4-mer motifs, respec-
tively, in the 5′ to 3′ direction (Fig. 3D). Notably, F-profile III 
showed concordant pattern with DFFB-cutting signatures (7). 
The contributions of F-profile III diminished significantly in the 
plasma cfDNA of Dffb−/− mice (median: 0.0%; range: 0.0 to 
0.5%), compared with WT mice (median: 10.1%; range: 0.0 to 
26.9%) (P < 0.001, Mann–Whitney U test). We noticed that the 
contributions of F-profiles IV (median: 0.0% vs. 2.3%) and V 
(median: 0.0% vs. 15.2%) also diminished in the plasma cfDNA 
samples of 6 Dffb−/− mice compared with WT mice. However, we 
no longer observed significant changes of F-profiles IV and V in 
another dataset (7, 21) comprising 11 Dffb−/− mice and 12 WT 
mice, whereas the significant reduction of F-profile III in Dffb−/− 
could be validated (SI Appendix, Fig. S2). Taken together, we 
concluded that only F-profile III was reproducibly associated with 
DFFB activity.

Although F-profile IV exhibited a high C-end preference (50%) 
which was to some extent reminiscent of F-profile I, it had several 
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unique characteristics, for example, the absence of CC-end preference. 
F-profile IV also exhibited “G” base preferences at the second, third, 
and fourth positions in 4-mer motifs (Fig. 3E). F-profile V exhibited 

a strong G-end preference (50%) (Fig. 3F). These results suggested 
that F-profile IV and V were not directly attributed to the previously 
established nucleases involved in cfDNA fragmentation (7), implying 

Fig. 1. Schematic of distinct types of cfDNA cleavage analysis for cfDNA molecules. The terminal 4 nucleotides at each of the 5′ fragment ends (i.e., 4-mer 
end motifs; n = 256) were determined from 93 murine cfDNA samples, including WT mice and nuclease-deficient mice. Six categories of distinct types of cfDNA 
cleavage patterns were found, referred to as "founder" end-motif profiles (i.e., F-profiles), by applying NMF analysis to the 4-mer end-motif profiles. F-profiles 
I, II, and III were associated with the cutting preference of DNASE1L3, DNASE1, and DFFB, respectively. The distinct types of cfDNA cleavage patterns learned 
from murine cfDNA could be extrapolated to human cfDNA for informing the proportional contributions of F-profiles in both mouse and human cfDNA samples 
(referred to as deconvolutional analysis of end motifs), allowing the detection of immune diseases and cancers.
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that some other cleavage pathways might play roles in cfDNA frag-
mentation. Notably, F-profile VI showed a relatively even distribution 
across 256 motifs without obvious end motif preference (Fig. 3G).

Deconvolutional Analysis of End Motifs during In Vitro Incubation 
of Mouse Plasma. Han et al. previously demonstrated the step-
wise fragmentations mediated by different DNA nucleases, such 

as DFFB, DNASE1L3, and DNASE1, based on different in vitro 
incubation conditions with the presence of EDTA or heparin (7). 
We tested whether F-profile could be used to reflect the degree of 
nuclease involvement by applying F-profile-based deconvolutional 
analysis to those independent samples. The previous study (7) has 
indicated that heparin could disrupt the nucleosomal structures 
and enhance DNASE1 cleavage (7). As shown in Fig. 4A, after 6-h 

A

B

D E

F G

C

Fig. 2. The observed end-motif profiles of mouse plasma and urinary cfDNA molecules. The observed end-motif frequencies of plasma cfDNA from (A) WT 
mice, (B) Dnase1l3−/− mice, (C) Dnase1−/− mice, and (D) Dffb−/− mice, respectively. The observed end-motif frequencies of urinary cfDNA from (E) WT mice, (F) 
Dnase1l3−/− mice, and (G) Dnase1−/− mice, respectively.
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incubation of whole blood in the presence of heparin, the average 
F-profile II (DNASE1) levels in WT mice increased 2.1 times from 
10.3 to 21.9%, compared to the data at the time point of 0 h. 
In contrast, there was a reduction in F-profile II (DNASE1) level 
in plasma cfDNA of Dnase1-deficient mice after 6-h incubation 
[F-profile II level: 4.5% (6 h) vs. 0.0% (0 h)]. On the other hand, 
after the 6-h incubation of whole blood with the presence of EDTA, 
the mean F-profile III (DFFB) levels in the plasma of WT mice 
increased 1.5 times (9.4% vs. 14.4%) (Fig. 4B), compared to the 
data at the time point of 0 h. In contrast, F-profile III (DFFB) 
showed no apparent change in the plasma cfDNA of Dffb–/– mice 
(5.6% vs. 4.5%) between these two time points. The observation 
agreed with the previous conclusion that DFFB-preferred cleavage 
was enriched in the plasma cfDNA newly released from cells at the 
6-h time point (7). These results further demonstrated the feasibility 
and biological relevance of revealing the linkage between nucleases 
and F-profile-based analysis. The other relevant F-profiles were 
shown in SI Appendix, Fig. S3.

Deconvolutional Analysis of End Motifs for Human Plasma 
and Urinary cfDNA. As the homology of amino acid sequences 
between human and mouse nucleases are 82%, 79%, and 76% 
for DNASE1L3 (11), DNASE1, and DFFB, respectively, we 
hypothesized that the deconvolutional analysis of end motifs 
established from the mouse data could be extrapolated to human 
cfDNA. To test this hypothesis, we estimated the contributions 
of distinct types of cfDNA cleavage patterns by applying the 
deconvolution algorithm on cfDNA from 18 human plasma 
samples and paired urine samples (Fig. 5A). As shown in Fig. 5B, 
F-profile I levels (DNASE1L3) in plasma cfDNA (median: 42.9%; 
range: 33.2 to 48.7%) were significantly higher than that in urinary 
cfDNA (median: 5.2%; range: 0.3 to 22.1%) (P < 0.0001, Mann–
Whitney U test). Conversely, F-profile II (DNASE1) showed 
significantly higher proportional contributions in urinary cfDNA 
(median: 43.4%; range: 20.0 to 55.3%) than that in plasma 
cfDNA (median: 12.5%; range: 6.2 to 18.4%) (P < 0.0001, 
Mann–Whitney U test) (Fig.  5C). These data suggested that 

A
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G
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F

Fig. 3. Six F-profiles deduced from mouse plasma and urinary cfDNA using NMF analysis. (A) Proportional contribution of each F-profile in murine cfDNA 
samples with different knockout genotypes. (B–G) Plots for the six F-profiles.

http://www.pnas.org/lookup/doi/10.1073/pnas.2220982120#supplementary-materials
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DNASE1L3 and DNASE1 played major roles in shaping plasma 
and urinary cfDNA fragmentation patterns, respectively. This 
conclusion was in agreement with previous reports (7, 8, 10, 11), 
suggesting the F-profile analysis could be generalizable between 
murine and human cfDNA samples.

Distinct Types of cfDNA Cleavages in Human Subjects. Human 
subjects with DNASE1L3 deficiency would develop SLE-like 
symptoms with childhood onset, which was also referred to as 
familial SLE (9). We investigated the contributions of distinct 
types of cfDNA cleavages by analyzing plasma cfDNA from 
patients with both copies of DNASE1L3 gene carrying genetic 
mutations (i.e., DNASE1L3-deficient) (n = 10), parents of these 
patients (n = 3) carrying one copy of a mutant DNASE1L3 gene 
(the other copy was able to function), and healthy control subjects 
(n = 8) (9). F-profile I (DNASE1L3) levels in plasma cfDNA 

of patients with DNASE1L3 deficiency appeared to diminish 
significantly (median: 7.3%; range: 3.8 to 20.5%) compared with 
their parents (median: 51.4%; range: 47.4 to 51.9%) and healthy 
subjects (median: 52.9%; range: 47.3 to 58.2%) (P < 0.001, 
Kruskal–Wallis test) (Fig. 5 D and E).

Moreover, in a cohort comprising 10 healthy controls, 11 and 
13 patients with inactive and active sporadic SLE (22), respec-
tively, we observed that the DNASE1L3 usage levels gradually 
decreased across healthy subjects (median: 39.8%; range: 38.0 to 
42.3%), patients with inactive SLE (median: 33.3%; range: 31.4 
to 41.0%), and patients with active SLE (median: 29.7%; 
range:14.9 to 34.2%) (P < 0.0001, Kruskal–Wallis test) (Fig. 6A 
and SI Appendix, Fig. S4A). The metric of DNASE1L3 usage level 
(F-profile I) enabled the differentiation between human individuals 
with and without SLE, with an AUC of 0.97 (Fig. 6B). The use of 
F-profiles II, III, IV, V, and VI resulted in worse performance, with 

A B

Fig. 4. Deconvolutional analysis of end motifs of mouse 
plasma cfDNA samples that were subjected to whole blood 
in vitro incubation. (A) F-profile II (DNASE1) levels in plasma 
cfDNA from WT mice before and after 6  h incubation in 
heparin-contained tube, and from Dnase1−/− mouse before 
and after 6 h heparin incubation. (B) F-profile III (DFFB) 
levels in plasma cfDNA from WT mice before and after 6 h 
incubation in EDTA-contained tube, and from Dffb−/− mice 
before and after 6 h EDTA incubation.

A D

CB E

Fig. 5. Deconvolutional analysis of end motifs in paired human plasma and urinary cfDNA samples, and human plasma cfDNA of subjects with and without 
DNASE1L3 deficiency. (A) Bar chart of results of deconvolutional analysis between human plasma and urinary cfDNA. (B–C) Boxplots of F-profile I and II levels 
between human plasma and urinary cfDNA. (D) Bar chart of results of deconvolutional analysis in plasma cfDNA between subjects with and without DNASE1L3 
disease-associated variants. (E) Boxplot of F-profile I levels for healthy subjects, patients with DNASE1L3 deficiency, and parents of the patients.

http://www.pnas.org/lookup/doi/10.1073/pnas.2220982120#supplementary-materials
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AUC values of 0.56, 0.75, 0.73, 0.61, and 0.87, respectively. The 
DNASE1L3 usage levels showed a negative correlation with the 
Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) 
(Pearson’s r: −0.43; P = 0.03) (Fig. 6C). Hence, the metric of 
F-profile I, which was linked to DNASE1L3, would inform the 
presence of autoimmune diseases, as well as facilitate the moni-
toring of disease progression.

Besides the autoimmune disease model, patients with hepato-
cellular carcinoma (HCC) were reported to have aberrant 
DNASE1L3 activities (11). We further analyzed the contributions 
of distinct types of cfDNA cleavages in a cohort consisting of 38 
healthy controls (CTR), 17 HBV carriers without HCC (HBV), 
and 34 patients with HCC from a previous study (HCC) (11) 
(Fig. 7A). Compared with healthy controls, F-profile I level was 
indeed found to be decreased by a median of 6.9% in HCC 
patients, whereas no appreciable change was observed in HBV 
carriers (Fig. 7B). Interestingly, among the 6 F-profiles, the most 

discriminative power in detecting patients with HCC was F-profile 
VI (AUC: 0.97). F-profile VI was distinct from the other F-profiles, 
for seemingly lacking specific preference across the 256 end motifs 
(Fig. 7 C and D). As a tool in discriminating HCC patients from 
HBV carriers, F-profile VI was superior to the previously reported 
motif diversity score (AUC: 0.86) (P = 0.019, DeLong test) (11). 
The motif diversity score was essentially a measure of the evenness 
of overall end-motif frequencies.

Potential Biological Significance of F-profile VI. As F-profile VI 
showed a promising differentiation power between the patients 
with and without HCC, we wondered whether any biological 
process was linked to F-profile VI. Because F-profile VI displayed 
a lack of obvious preference in the frequencies across 256 4-mer 
motifs, we hypothesized that cfDNA fragmentation occurring in 
patients with cancer might in part be induced by DNA damages 
via a mechanism which was distinct from the known apoptotic 

A B C

Fig. 6. Deconvolutional analysis of end motifs in plasma cfDNA of human subjects with and without SLE. (A) Boxplot of F-profile I levels (DNASE1L3) in plasma 
cfDNA across healthy control subjects, patients with inactive SLE, and patients with active SLE. (B) Area under the receiver operating characteristic (ROC) curve 
(AUC) for differentiation between patients with and without SLE using F-profile I. (C) Correlation between the SLEDAI and F-profile I levels in patients with SLE.

A

B C D

Fig.  7. The distinct types of cfDNA cleavage analysis in 
plasma cfDNA of human subjects with and without HCC. 
(A) Bar chart of F-profile levels in plasma cfDNA of patients 
with and without HCC. Boxplots of F-profile (B) I and (C) VI 
levels in plasma cfDNA of patients with and without HCC. 
(D) ROC curves for the differentiation between non-HCC and 
HCC groups using different metrics, including motif diversity 
score and six F-profiles.
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pathways, for example, DFFB and/or DNASE1L3-mediated 
DNA fragmentation (7, 23). Considering that oxidative stress 
was implicated in many steps in carcinogenesis, and cancer 
cells produced more oxidants than normal cells (24), including 
HCC (25), colorectal cancer (CRC) (26), and nasopharyngeal 
carcinoma (NPC) (27), we hypothesized that F-profile VI might 
be associated with oxidative stress. In the previous section, we 
observed that F-profile VI contribution significantly increased 
in patients with HCC (Fig.  7C). To further investigate this 
mechanism beyond HCC, we analyzed a cohort comprising 
15 human healthy control subjects, 25 CRC patients without 
liver metastasis, and 24 CRC patients with liver metastasis. 
We observed that F-profile VI contributions were increased in 
CRC patients without liver metastasis (median: 30.5%; range: 
23.4 to 34.5%) and with liver metastasis (median: 34.5%; 
range: 18.1 to 43.5%), compared with the healthy control 
group (median: 24.3%; range 16.8 to 33.3%) (P < 0.0001, 
Kruskal–Wallis test) (Fig. 8A and SI Appendix, Fig. S4B). Such a 
finding coincided with the report that oxidative stress increased 
in patients with CRC and further enhanced in CRC patients 
with liver metastasis (26, 28).

In addition, the increase of oxidative stress could be observed 
during chemotherapy (29) and radiotherapy (30). The chemora-
diation therapy (e.g., concurrently treated by ionizing radiation 
and platinum coordination complexes such as cisplatin and car-
boplatin) would be expected to generate high levels of reactive 
oxygen species (ROS), which would likely induce oxidative stress 
and damage DNA (31). Indeed, the F-profile VI contributions in 
plasma were elevated in patients with NPC (n = 12) who were 
subjected to cisplatin- or carboplatin-based chemoradiotherapy 
(median: 10.2%; range: 1.8 to 18.4%), compared with cfDNA 
from the same patient collected before the treatment (median: 

6.2%; range: 0.0 to 12.8%) (P = 0.02, Wilcoxon signed-rank test) 
(Fig. 8B and SI Appendix, Fig. S4C).

On the other hand, the oxidative stress in the placenta was 
reported to decline as the gestational age increased (32). In this 
regard, we observed that the F-profile VI contributions in 
fetal-specific DNA molecules in maternal plasma, which were 
essentially of placental origin, exhibited a downward trend across 
the first, second and third trimesters, with median F-profile VI 
contributions of 26.7%, 23.7%, and 22.0%, respectively  
(P = 0.01, Kruskal–Wallis test) (Fig. 8C and SI Appendix, Fig. S5). 
However, such a decline trend was not observed in maternal-specific 
DNA molecules mainly of hematopoietic origin (P = 0.99, 
Kruskal–Wallis test) (Fig. 8D). Taken together, these observations 
suggested that F-profile VI might be at least in part associated 
with oxidative stress.

Discussion

In this study, we developed an approach for discerning the distinct 
types of cfDNA cleavage patterns, referred to as F-profiles, using 
the NMF algorithm. The proportional contribution (i.e., weight) 
for each F-profile in a cfDNA sample could be determined when 
the product of F-profiles and their weights were closest to the 
observed end-motif profile of that sample. In contrast to the pre-
vious studies that focused on one specific nuclease activity each 
time using one end motif or several top-ranked end motifs (8–11), 
the approach investigated in this study could simultaneously assess 
a number of nuclease activities as well as other possible non-en-
zymatic fragmentation processes. We identified six distinct types 
of F-profiles. Based on mice with different nuclease-knockout 
genotypes, we had annotated the biological meanings of a number 
of F-profiles. F-profiles I, II, and III were linked to DNASE1L3, 

A B

C D

Fig. 8. The F-profile VI levels in plasma cfDNA of human 
subjects under different oxidative stress. (A) Boxplot of 
F-profile VI contributions in healthy control subjects, CRC 
patients without and with liver metastasis. (B) Boxplot of 
F-profile VI contributions in patients with NPC who were 
subjected to chemoradiotherapy or not. Boxplots of F-profile 
VI contributions in the (C) fetal- and (D) maternal-specific 
DNA in plasma cfDNA of pregnant women across first, 
second and third trimesters.

http://www.pnas.org/lookup/doi/10.1073/pnas.2220982120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220982120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220982120#supplementary-materials
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DNASE1, and DFFB-mediated cleavages, respectively. Hence, 
the proportional contributions of F-profiles I, II, and III could 
reflect the nuclease usage levels related to these three nucleases.

The analytic framework for the distinct types of cfDNA cleav-
age analysis established from murine models was then extended 
to human cfDNA samples. Among those distinct types of 
cfDNA cleavage patterns, three of them were associated with 
known DNA nucleases, thus allowing the assessment of their 
nuclease usage levels. F-profile I (DNASE1L3) level was drasti-
cally reduced in patients with homozygous DNASE1L3 muta-
tions who developed SLE-like symptoms. In addition, F-profile 
I (DNASE1L3) level was higher in human plasma cfDNA than 
in human urinary cfDNA, whereas F-profile II (DNASE1) level 
showed the opposite pattern. The observation was in agreement 
with the fact that the DNASE1L3 concentration was higher in 
human plasma than urine, whereas the DNASE1 concentration 
was higher in human urine (10). The nuclease activities across 
serial plasma samples that underwent in vitro incubation could 
be monitored using the NMF-based deconvolutional analysis of 
end motifs in this study. In addition, F-profile I (DNASE1L3) 
level declined in patients with HCC in which the DNASE1L3 
RNA expression was downregulated (11), compared with 
patients without HCC. These results suggested that it would be 
feasible to use deconvolutional analysis of end motifs to examine 
the nuclease activities in liquid biopsy, by making use of the 
founder end-motif profiles established from mice with various 
DNASE-knockout genotypes.

F-profile I (DNASE1L3) level appeared to be effective in dif-
ferentiating the patients with and without sporadic SLE, with 
an AUC of 0.97. However, for the detection of patients with 
HCC, the best performance was achieved when using F-profile 
VI (AUC: 0.97), rather than those linked to the currently known 
DNA nucleases. F-profile VI did not exhibit an obvious link to 
certain end motifs. In other words, F-profile VI represented a 
nonspecific cleavage pattern. The increase in F-profile VI level 
was observed in patients with HCC compared to individuals 
without HCC. We conjectured that the increase in F-profile VI 
level might be associated with oxidative stress, providing that 
the various types of cancer cells would be subjected to the 
increase of oxidative stress (24). One possible mechanism would 
be that the oxidative stress could induce free radicals that might 
exert oxidative damage to DNA, thus likely at least in part caus-
ing DNA breaks distinct from the cleavages mediated by those 
well-studied nucleases such as DNASE1, DNASE1L3 and DFFB 
(6, 7). Such a hypothesis was in part supported by the observa-
tion that an increased level of F-profile VI was present in plasma 
of patients with NPC subjected to chemoradiotherapies that 
were expected to enhance the oxidative stress. Of note, mecha-
nistically, ionizing radiation and chemotherapy drugs might 
cause DNA damages in various ways. For example, ionizing 
radiation could directly induce DNA double-strand breaks and 
indirectly introduce abasic sites and single-strand breaks via 
induced ROS (30). The cisplatin used in chemotherapy could 
be a ROS inducer, and it could also directly cause DNA intras-
trand diadducts (33). During chemoradiation therapy, the exact 
impact of radiological and chemical factors on F-profile VI 
remains to be explored. On the other hand, the decrease in 
F-profile VI contribution for fetal DNA molecules was seen in 
plasma of pregnant women, coincidentally in line with the fact 
that the oxidative stress in the placenta was expected to be down-
regulated at advanced gestational ages (32). Such a hypothesis 
regarding the biological linkage between F-profile VI and oxi-
dative stress would require further experimental validation, for 
example, using the serial plasma DNA samples of a mouse model 

in which the oxidative stress could be gradually induced by 
chemotherapeutic drugs. Nonetheless, the metric of the 
F-profile-based analysis led to a better performance in cancer 
detection than the motif diversity score (11). One possible reason 
might be that the cfDNA cleavage analysis was conducted in a 
way that multiple nucleases as well as other underlying fragmen-
tation factors were holistically examined under one analytic 
framework. Such analysis may improve the signal-to-noise level, 
allowing for more precise quantification of distinct types of 
cfDNA cleavages involved in cfDNA fragmentation.

In addition to different DNA nucleases and other non-specific 
mechanisms of DNA degradation, differential chromatin accessi-
bility may be another contributor to the generation of character-
istic patterns of cfDNA end motifs. Genomic DNA in various 
tissues is characterized by specific nucleosomal patterns, such as 
histone-bound regions and open chromatin regions (34, 35). Such 
differential chromatin structures across tissues have been reported 
to be associated with cfDNA fragmentation patterns (36). For 
instance, it has been demonstrated that the nucleosomal footprints 
(i.e., recurrently protected regions) are often present in cfDNA 
molecules (3, 4, 37), which are associated with the tissues of origin 
(36, 38). The complex interplay of factors involving DNA frag-
mentation and differential chromatin accessibility is worthy of 
future exploration.

One question that remained to be solved in this study was 
that the biological meanings of F-profiles IV and V were still 
elusive. For F-profile IV, the predominant motif preference was 
at C ends, followed by G ends, T ends, and A ends, seemingly 
similar to F-profile I (DNASE1L3), but was characterized by 
several notable differences from F-profile I. For example, 
F-profile IV preferred “CG”-started ends instead of “CC” ter-
mini of F-profile I. Of note, compared with the plasma of WT 
mice, the contributions of F-profiles IV and V diminished in 
one dataset of Dffb–/– mice but did not show significant change 
in another dataset of Dffb–/– mice. We cannot rule out the pos-
sibility that the interplay among different nucleases as well as 
other biological factors such as chromatin remodeling factors 
involved in cfDNA fragmentation may contribute towards 
inter-batch variability among these Dffb–/– mice. It is worth not-
ing the potential limitation of the current study that as a certain 
number of F-profiles may not be identified during the factori-
zation step due to the limited number of nuclease-depleted 
mouse types available, the incomplete list of F-profiles may also 
affect the accuracy of F-profile contribution deduction. This 
issue could be alleviated with the availability of other types of 
nuclease knockout mice in the future. F-profile-based cfDNA 
fragmentation analysis is still at a nascent stage. It would be 
interesting to explore how sample heterogeneities, the complex 
interplay between nonenzyme/enzyme-mediated fragmentations 
and chromatin accessibility, and preanalytical experimental pro-
cess would impact F-profile analysis in future studies. The poten-
tial room for improvement of F-profile analysis is to eliminate 
the need of prior information of nucleases responsible for 1-mer 
motif in the future version, it may broaden the applicability of 
this technology and unveil more insights for those F-profiles 
altered in mice with the deletion of nucleases.

In summary, this study provided an approach for studying the 
mechanisms involved in cfDNA fragmentation. This approach 
can be used for generating testable hypotheses that could yield 
further light on the mechanisms of cfDNA fragmentation. In 
addition to plasma, this approach can also be used in multiple 
bodily fluids, e.g., urine. This method is also of value in developing 
biomarkers for pregnancy complications, autoimmune diseases, 
and cancer.
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Materials and Methods

Datasets of Murine cfDNA. Paired-end massively parallel sequencing data 
of 93 murine cfDNA samples were obtained from previous studies (8–10, 39), 
including 60 plasma cfDNA samples and 33 urinary cfDNA samples. The mouse 
plasma cfDNA samples were taken from 27 WT mice, 10 mice with Dnase1 gene 
deletion (Dnase1−/−), 18 mice with Dnase1l3 gene deletion (Dnase1l3−/−), five mice 
with Dffb gene deletion (Dffb−/−), with a median number of paired-end reads of  
50 million (range: 16 to 243 million). In addition, whole-genome sequencing data of 
mouse urinary cfDNA samples were obtained from 14 WT mice, 10 Dnase1−/− mice, 
and 9 Dnase1l3−/− mice (median number of paired-end reads: 43 million; range: 
2 to 134 million). Furthermore, we analyzed 30 mouse plasma samples obtained 
from a previous study (7) that were subjected to in vitro incubation experiments for 
0 h and 6 h in the conditions with EDTA or heparin (median number of paired-end 
reads: 37 million; range: 22 to 55 million). All animal studies were approved by the 
Animal Experimentation Ethics Committee of The Chinese University of Hong Kong.

Datasets of Human cfDNA. Paired-end sequencing data of 192 human plasma and 
18 urinary cfDNA were obtained from previous studies (9, 39–41), including plasma 
cfDNA from eight healthy individuals, 10 patients with DNASE1L3 disease-associated 
variants, three parents of the patients with mutant DNASE1L3 gene (median number 
of paired-end reads: 108 million; range: 40 to 162 million); plasma cfDNA from 24 SLE 
patients and 10 healthy individuals (median paired-end reads: 120 million; range: 18 
to 208 million); plasma cfDNA from 38 healthy individuals, 17 patients with chronic 
HBV infection but without HCC (i.e., HBV carriers), and 34 patients with HCC (median 
paired-end reads: 38 million; range: 18 to 65 million); and plasma cfDNA from 30 preg-
nant women across first trimester (12 to 14 wk; n = 10), second trimester (20 to 24 wk; 
n = 10), and third trimester (38 to 40 wk; n = 10) (median number of paired-end reads:  
103 million; range: 52 to 186 million); and paired plasma and urinary cfDNA samples 
collected from 18 individuals without cancer (median paired-end reads: 126 million; 
range: 21 to 205 million). In addition, paired-end sequencing data of 94 human 
plasma was generated, including target-capture sequencing of plasma cfDNA from 
15 healthy subjects, 25 patients with CRC but without liver metastasis, and 24 CRC 
patients with liver metastasis (median number of paired-end reads: 40 million; range: 
16 to 89 million); and plasma cfDNA from 12 patients with NPC subjected to cisplatin- 
or carboplatin-based chemoradiotherapy, as well as paired plasma cfDNA samples 
before the treatment (median number of paired-end reads: 58 million; range: 20 to 
113 million). The detailed clinical information for the cancer patients was summarized 
in SI Appendix, Tables S2–S4. All recruited human subjects gave written informed 
consent, and the study was approved by The Joint Chinese University of Hong Kong–
Hospital Authority New Territories East Cluster Clinical Research Ethics Committee 
under the Declaration of Helsinki.

End-Motif Frequency Calculation and Normalization. End motifs were deter-
mined from the terminal 4-nucleotide sequence, i.e., 4-mer end motif, at each 5′ 
fragment end of cfDNA molecules (8). The observed frequency (O) of each of the 
motifs (i.e., a total of 256 motifs) was determined from the total number of fragment 
ends. As the different sequence contexts between the mouse and human genomes 
could cause biases when using the end motif patterns of murine cfDNA to interpret 
the data from human cfDNA, we performed a reference genome context-based 
normalization for end motif measurement. An expected 4-mer end-motif frequency 
(E) was introduced for this normalization step, which was determined by simulating 
4-mer end motifs from a reference genome using a 4-nucleotide sliding window 
across each chromosome. For the data generated using target-capture sequencing, 
the reference genome herein refers to the probe-targeted regions (42). The nor-
malized end motif frequency was calculated as a ratio of observed and expected 
frequencies (O/E ratio) and then divided by the sum of all 256 normalized motif 
frequencies. The end motif frequency mentioned in this study was termed the 
 normalized end motif frequency of which the sum is equal to 100%.

Defining the “Founder” End-Motif Profiles (F-profiles). After obtaining the 
end-motif frequencies, a data matrix (M) was constructed in a way that each row 
indicates a cfDNA sample (a total of 93 murine cfDNA samples) and each column 
represents a type of end motif (a total of 256 end motifs), thus having the dimension of 
93 × 256. The data matrix was subjected to NMF analysis (15, 16) to obtain two matri-
ces W and F. The mathematical relationship among M, W, and F were shown below:

M = WF.

M was the result of the product of W and F, where W was the relative weight 
for each F-profile in a 93 × n matrix, where n corresponded to the number of 
F-profiles. F represented F-profiles in a n × 256 matrix. W and F were determined 
by minimizing the objective function below:

∥ M − WF ∥ , subject to W ≥ 0 and F ≥ 0.

Singular value decomposition (SVD) was used to initialize the procedure of 
NMF. Such factorization analysis was implemented in the Python language by 
using the function of sklearn.decomposition.NMF (v1.1.1) (43).

To estimate the optimal number of F-profiles, a fivefold cross-validation 
pre-analysis was performed. Six F-profiles (SI Appendix, Table S1) were deter-
mined by considering the tradeoff between the reproducibility of factorized com-
ponents and the value of objective function (i.e., end-motif profile reconstruction 
error) (SI Appendix, Fig. S1).

Deducing Percentage Contributions of F-profiles. The six F-profiles were 
deduced via NMF as mentioned above. The percentage contribution of each F-profile 
in a cfDNA sample could be determined using non-negative least square (NNLS) 
based deconvolution analysis. We let a matrix of F represent the deduced F-profiles. 
The end-motif frequencies of cfDNA molecules were represented by a vector of X. The 
F-profile level was denoted as P which could be determined by NNLS:

X =
∑

i

(

P
i
×F

i

)

.

where i represented an integer index of a particular F-profile, ranging from 1 
to 6. Furthermore, all the F-profile levels would be required to be non-negative 
with a sum of 100%:

P
i
≥ 0, ∀ i; 

∑

i

P
i
= 100% .

NNLS was implemented based on the Python function of scipy.optimize.nnls 
(v1.8.1).

Data, Materials, and Software Availability. Raw sequencing data can be 
accessed in  European Genome-Phenome Archive (EGA) (https://www.ebi.ac.uk/
ega/), with the accession numbers  EGAS00001000962  (44), EGAS00001003174   
(45),  EGAS00001003409  (46),  EGAS00001003514  (47),  EGAS00001004080   
(48),  EGAS00001004342  (49),  EGAS00001005563  (50), EGAS00001006700 
(51) EGAS00001006701  (52); and Sequence Read Archive (SRA) (https://www.
ncbi.nlm.nih.gov/sra), with the accession number PRJNA842499 (53). All study 
data are included in the article and SI Appendix. Previously published data were 
used for this work (7–11, 22, 39–41). 
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