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ABSTRACT
Introduction  In clear cell renal cell carcinoma (ccRCC), 
tumor-associated macrophage (TAM) induction of CD8+T cells 
into a terminally exhausted state has been implicated as a 
major mechanism of immunotherapy resistance, but a deeper 
biological understanding is necessary.
Methods  Primary ccRCC tumor samples were obtained 
from 97 patients between 2004 and 2018. Multiplex 
immunofluorescence using lymphoid and myeloid markers 
was performed in seven regions of interest per patient 
across three predefined zones, and geospatial analysis 
was performed using Ripley’s K analysis, a methodology 
adapted from ecology.
Results  Clustering of CD163+M2 like TAMs into the stromal 
compartment at the tumor–stroma interface was associated 
with worse clinical stage (tumor/CD163+nK(75): stage I/II: 4.4 
(IQR −0.5 to 5.1); stage III: 1.4 (IQR −0.3 to 3.5); stage IV: 0.6 
(IQR −2.1 to 2.1); p=0.04 between stage I/II and stage IV), 
and worse overall survival (OS) and cancer-specific survival 
(CSS) (tumor/CD163+nK(75): median OS–hi=149 months, 
lo=86 months, false-discovery rate (FDR)-adj. Cox p<0.001; 
median CSS–hi=174 months, lo=85 months; FDR-adj. 
Cox p<0.001). An RNA-seq differential gene expression 
score was developed using this geospatial metric, and was 
externally validated in multiple independent cohorts of patients 
with ccRCC including: TCGA KIRC, and the IMmotion151, 
IMmotion150, and JAVELIN Renal 101 clinical trials. In addition, 
this CD163+ geospatial pattern was found to be associated 
with a higher TIM-3+ proportion of CD8+T cells, indicative of 
terminal exhaustion (tumor-core: 0.07 (IQR 0.04–0.14) vs 0.40 
(IQR 0.15–0.66), p=0.05).
Conclusions  Geospatial clustering of CD163+M2 like 
TAMs into the stromal compartment at the tumor–stromal 
interface was associated with poor clinical outcomes and 
CD8+T cell terminal exhaustion.

INTRODUCTION
Since the emergence of immune checkpoint 
inhibiting (ICI) systemic immunotherapy in 

the management of metastatic renal cell carci-
noma (RCC), detailed investigations into the 
tumor immune microenvironment (TIME) 
of RCC have become critically important.1–6 
Only a subset of patients will have an objec-
tive response to ICIs, but responses can be 
substantial and durable.7 Given this response 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The clear cell renal cell carcinoma (ccRCC) tumor 
immune microenvironment is complex, with recent 
studies suggesting a potential interaction between 
CD8+T cells and M2-polarized macrophages driving 
immune dysfunction and poor clinical outcomes. 
This study was undertaken to determine the spatial 
relationships between lymphoid and myeloid cells 
within the ccRCC tumor immune microenvironment, 
to deepen the biological understanding of these cel-
lular interactions, and associate these findings with 
clinical outcomes in a large cohort of patients with 
ccRCC.

WHAT THIS STUDY ADDS
	⇒ This study found that geospatial clustering of 
CD163+M2-polarized macrophages into the stro-
mal compartment at the tumor–stromal interface 
was associated with poor clinical outcomes and 
CD8+T cell terminal exhaustion.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These findings demonstrate that specific cellular 
locations and spatial relationships contribute sig-
nificantly to clinical and biological outcomes, high-
lighting that cellular phenotype and abundance may 
not adequately describe the ccRCC tumor microen-
vironment in the absence of geospatial context.
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profile, identifying biomarkers for response and resis-
tance to ICI is a vital area of research.

Tumor mutational burden (TMB), PD-L1 expression, 
and CD8+T cell infiltration have emerged as promising 
biomarkers predicting response to ICI-based regimens 
across a wide spectrum of tumor primary sites and histol-
ogies.8–10 However, in clear cell RCC (ccRCC) these 
biomarkers have not performed particularly well in either 
a predictive or prognostic capacity.11–14 Despite being one 
of the most immune-inflamed tumor types, ccRCC tumors 
harbor a relatively modest TMB.13 A recent meta-analysis 
of ICI trials in RCC did not demonstrate improved overall 
survival (OS) for patients with PD-L1+ versus PD-L1− 
tumors, though it was associated with progression-free 
survival.15 CD8+ infiltration does not consistently predict 
improved ICI response in ccRCC and has paradoxically 
been associated with poor outcomes.16–18 These results 
point to the ccRCC TIME as being uniquely complex, 
with clinical outcomes not being associated with the same 
biomarkers identified in other solid-organ malignancies.19

Leveraging single-cell RNA-sequencing (scRNA-seq), 
recent investigations into the ccRCC TIME have impli-
cated M2-like tumor-associated macrophages (TAMs) 
as having a protumor immunosuppressive effect on the 
TIME of ccRCC.20–23 Several of these studies have iden-
tified a possible interaction between M2-like TAMS and 
CD8+T cells that results in switching CD8+T cells into 
a terminally exhausted state, resulting in poor clin-
ical outcomes.20–22 These findings partially explain the 
paradoxical association between increasing CD8+ infil-
tration and poor outcomes in ccRCC and demonstrate 
the emerging importance of recognizing distinct TAM 
subtypes and their biological actions in ccRCC.

However, scRNA-seq methodologies are tissue-
destructive, impeding the ability to analyze the effect of 
immune cell geospatial location and distribution. Previous 
spatially resolved analyses of TAMs and CD8+T cells have 
involved global analyses of cell density and infiltration 
identified within different tumor regions.24–26 TAMs 
affect the TIME through a variety of receptor-binding 
and paracrine mechanisms that rely on proximity to 
their effector cells, and a proof-of-concept analysis from 
our group suggested that highly specific geospatial TAM 
distributions have a significant impact on their protumor 
activity.27–31 Our primary aim was to quantify specific 
geospatial distributions of myeloid and lymphoid cells 
within the ccRCC TIME and determine associations with 
patient survival.

RESULTS
Study population
The overall study population included 97 patients who 
had surgically excised ccRCC samples that underwent 
multiplex immunofluorescence (mIF) (age: 66 years (IQR 
59–72); male gender: 66 (68%); white race: 84 (87%)). 
The cohort included patients with a wide spectrum of 
clinical disease states: 24 patients (25%) presenting with 

clinical stage I/II, 49 (50%) with clinical stage III, and 24 
(25%) with clinical stage IV. (online supplemental table 
1, figure 1).

ccRCC immune cell density is most often highest at the 
tumor–stroma interface
When stratified by tumor zone and cell type, the tumor–
stroma interface most often contained the highest 
immune cell density (cells/mm2). CD3, CD8, FOXP3, 
T-bet, CD163, CD206, CD20, and PD-L1 positive cell 
densities were higher at the tumor–stroma interface than 
in the tumor-core (CD3: 77 vs 50 cells/mm2, p=0.002; 
CD8: 131 vs 76 cells/mm2, p=0.035; FOXP3: 12 vs 6 cells/
mm2, p<0.001; T-bet: 12 vs 6 cells/mm2, p<0.001; CD163: 
392 vs 244 cells/mm2, p=0.01; CD206: 190 vs 53 cells/
mm2, p<0.001; CD20: 5 vs 1 cells/mm2, p<0.001; PD-L1: 
85 vs 44 cells/mm2, p=0.02) (figure 2B).

When patients were stratified into clinically localized 
(AJCC clinical stage I–III) versus clinically metastatic 
disease (stage IV), T-bet density was consistently lower 
in patients with metastatic disease across all three zones 
(tumor-core: 39 vs 9 cells/mm2, p<0.001; tumor–stroma 
interface: 73 vs 45 cells/mm2, p<0.001; stroma: 45 vs 12 
cells/mm2, p<0.001). None of the other immune cell 
types demonstrated significant differences in cellular 
density between clinically localized and metastatic 
patients (online supplemental figure 1).

ccRCC immune cell clustering: B-cells display uniquely high 
levels of clustering and preference for stroma
Immune cell clustering was quantified using a normaliza-
tion of the univariate Ripley’s K estimate at a search-circle 
radius of 75 µm (nK(75)). Values greater than 0 indicate 
cellular clustering, and less than 0 indicate cellular disper-
sion. Univariate clustering indicates clustering between 
cells of the same type (eg, whether cell-type A tends to be 
clustered or dispersed with other type-A cells). Bivariate 
clustering indicates clustering or dispersion between cells 
of different types (eg, whether cell-type A tends to be clus-
tered or dispersed with type-B cells).

In the tumor-core, all immune cells displayed statis-
tically significant univariate clustering with other cells 
of their same type (CD8: 11.3, p<0.001; FOXP3: 7.1, 
p<0.001; T-bet: 6.7, p<0.001; CD20: 31.0, p<0.001; CD68: 
6.9, p<0.001; CD163: 8.1, p<0.001; CD206: 10.2, p<0.001) 
(figure 2C). Notably, univariate clustering of CD20 cells 
in the tumor-core was substantially higher than that of 
the other immune cell types (p<0.001 for all pairwise 
comparisons).

At the tumor–stroma interface, a bivariate normaliza-
tion of the Ripley’s K metric was used, assessing clustering 
between immune cells and ccRCC tumor cells. This metric 
effectively tests the immune cell type’s proclivity for clus-
tering into the tumor compartment (values greater than 
0), or the stromal compartment (values less than 0), at 
the tumor–stroma interface. FOXP3 and T-bet cells did 
not demonstrate significant clustering with tumor cells 
at this location (interface bivariate nK(75); FOXP3: 
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−0.3, p=0.33; T-bet: 1.3, p=0.25). CD8, CD68, CD163, 
and CD206 cells demonstrated significant clustering 
into the tumor compartment (CD8: 2.0, p=0.02; CD68: 
8.1, p<0.001; CD163: 4.5, p<0.001; CD206: 7.3, p<0.001). 
Interestingly, CD20 cells were outliers in this regard and 
demonstrated significant clustering into the stromal 
compartment (CD20: −6.25, p<0.001) (figure 2D).

CD163+ TAM stromal clustering at the tumor–stroma interface 
is associated with decreased survival
In the ccRCC cohort, survival outcomes were determined 
for each of the mIF-derived cell density and geospatial 
metrics using median cut-point cohort stratification and 
false discovery rate (FDR) adjusted multivariable Cox 
proportional hazards models accounting for patient 
age and SSIGN score.32 Outcomes included OS, cancer-
specific survival (CSS), and recurrence-free survival 
(RFS).

An example mIF image of a slide with low tumor/CD163 
nK(75) at the tumor–stroma interface is displayed in 
figure 3A. At the tumor–stroma interface, tumor/CD163 
nK(75) and CD163 cell density demonstrated poor but 
statistically significant correlation (R=0.27, p<0.001), 
demonstrating that these metrics are not redundant 
(figure 3B).

Bivariate clustering between CD163+TAMs and tumor 
cells at the tumor–stroma interface was strongly associ-
ated with OS and CSS. Specifically, patients with higher 

clustering of CD163+TAMs into the tumor compart-
ment at the tumor–stroma interface had better survival 
outcomes (tumor/CD163+nK(75): median OS–
hi=149 months, lo=86 months, FDR-adj. Cox p<0.001; 
median CSS–hi=174 months, lo=85 months; FDR-adj. Cox 
p<0.001) (figure 3C). CD163+cell density was not associ-
ated with OS or CSS (figure 3D). None of the mIF density 
or geospatial clustering metrics were associated with RFS 
on the FDR-adjusted Cox proportional hazards regres-
sion (online supplemental table 2).

When stratified into AJCC clinical stage, median 
tumor/CD163+nK(75) at the interface decreased in a 
stepwise fashion (stage I/II: 4.4 (IQR −0.5 to 5.1); stage 
III: 1.4 (IQR −0.3 to 3.5); stage IV: 0.6 (IQR −2.1 to 2.1); 
p=0.04 between stage I/II and stage IV), while median 
CD163+cell density at the interface was similar across 
clinical stages (stage I/II: 431 cells/mm2 (IQR 178–762); 
stage III: 398 cells/mm2 (IQR 130–735); stage IV: 289 
cells/mm2 (IQR 137–703); p>0.2 for all comparisons) 
(figure 3E,F).

We further examined a small subset of 27 patients in the 
cohort who had advanced ccRCC and received systemic 
targeted therapy (n=19) or immunotherapy (n=9), with 
one patient receiving combination targeted and immu-
notherapy. This small cohort was underpowered to iden-
tify statistically significant differences between groups. 
Per RECIST response criteria, patients who responded to 

Figure 1  Overview of the demographics and selected findings from the overall cohort. Listed in descending order: SSIGN 
risk score, age, gender, pT stage, ISUP histological grade, sarcomatoid variant status, overall survival (months), vitality status, 
xCell bulk RNA-seq immune expression scores, multiplex immunofluorescence cellular density in the tumor-core, and somatic 
mutation alteration status. xCell scores and mIF cell densities have been normalized to a 0–100 scale, as indicated by the color 
scale in the legend. mIF, multiplex immunofluorescence; OS, overall survival. SSIGN = Stage, Size, Grade and Necrosis score; 
ISUP = International Society of Urologic Pathology.

https://dx.doi.org/10.1136/jitc-2022-006195
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Figure 2  (A) Example tumor-core mIF image of a patient with ISUP grade 4 ccRCC, using the lymphoid panel. Magnified 
area indicated by the gray box. (B) Differential cell densities stratified by histological zone. (C) Differential univariate cellular 
clustering, nK(75), in the tumor-core histological zone. (D) Differential bivariate clustering of tumor and immune cells, nK(75), in 
the tumor–stoma interface histological zone. ccRCC, clear cell renal cell carcinoma; mIF, multiplex immunofluorescence. ISUP = 
International Society of Urologic Pathology. Asterisk denotes p<0.05.
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therapy had higher median tumor/CD163+nK(75) values 
than those who did not respond (1.5 vs −1.2, respectively; 
p=0.10), particularly in the immunotherapy subgroup 
(7.7 vs 1.7, respectively; p=0.20), though these differences 
were not statistically significant (figure 3G).

CD163+ TAM interface clustering gene expression score
A CD163 clustering differential gene expression score 
was developed using bulk RNA-seq data and tumor/
CD163+nK(75) values at the tumor–stroma interface 
in our cohort. The expression score was trained within 
our cohort, filtering for protein-coding genes correlated 

with tumor/CD163+nK(75) with r2 (Spearman’s) > 0.3, 
median expression >0, and range >1, resulting in 20 iden-
tified genes (figure  4A and online supplemental table 
3). The genes were grouped into positively or negatively 
correlated gene groups. For validation in external cohorts, 
the ratio of geometric mean expression between the posi-
tive to negative correlation groups was used as an expres-
sion score. The resultant CD163 Clustering Score was 
then applied to RNA-seq data from patients with ccRCC 
identified in four independent external ccRCC cohorts: 
the TCGA KIRC cohort (all stages), the JAVELIN Renal 

Figure 3  (A) Example multiplex immunofluorescence image of a sample with low tumor/CD163 nK(75). (B) Scatter plot and 
Spearman’s correlation between CD163+ cell density and tumor/CD163 nK(75) in the tumor–stroma interface histological zone. 
(C) Kaplan-Meier distributions for overall survival as stratified by the median value of tumor/CD163 nK(75) in the tumor–stroma 
interface histological zone. (D) Kaplan-Meier distributions for overall survival as stratified by the median value of CD163+ cell 
density in the tumor–stroma interface histological zone. (E) Tumor/CD163 nK(75) values stratified by AJCC clinical stage at 
diagnosis. (F) CD163+ cell density values stratified by AJCC clinical stage at diagnosis. (G) RECIST responses to systemic 
therapy for a subgroup of patients (n=27), either presenting with or developing clinical stage IV ccRCC, who received either 
systemic immunotherapy or targeted therapy. Adjacent box-plots demonstrate differences in tumor/CD163 nK(75) stratified 
by therapy response status. ccRCC = clear cell renal cell carcinoma, AJCC = American Joint Committee on Cancer, RECIST = 
Response Evaluation Criteria in Solid Tumours, CR = Complete Response, PR = Partial Response, SD = Stable Disease, PD = 
Progressive Disease.
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101 phase III clinical trial (stage IV), the IMmotion151 
phase III clinical trial (stage IV), and the IMmotion150 
phase II clinical trial (stage IV). Higher expression scores 
reflect higher tumor/CD163+nK(75) values, indicating 
clustering of CD163+TAMs into the tumor compartment 
at the tumor–stroma interface.

In the TCGA KIRC cohort (n=533, median CD163 clus-
tering expression was significantly higher in patients with 
AJCC clinical stage I/II tumors versus those with stage 
III or stage IV (stage I/II: 1.9 (IQR 1.4–2.3; stage III: 1.6 
(IQR 1.1–2.2); stage IV: 1.5 (IQR 1.1–2.1)) (figure 4B), 
similarly to the result seen for tumor/CD163+nK(75) 
in the mIF cohort (figure  3E). When stratified by the 
median, patients with low CD163 clustering expression 
scores had substantially worse OS (log-rank p<0.0001), in 
a similar manner to that seen for Tumor/CD163+nK(75) 
in the mIF cohort (figure 4C,E). Likewise, patients with 

low CD163 clustering expression scores had substantially 
worse ccRCC specific survival (log-rank p<0.0001), in a 
similar manner to that seen for tumor/CD163+nK(75) in 
the mIF cohort (figure 4D,F).

The CD163 clustering score was then applied to 
three independent clinical trial cohorts of patients with 
stage IV ccRCC, undergoing active systemic treatment 
on a trial protocol. In the JAVELIN Renal 101 trial, no 
significant difference was identified in the avelumab+ax-
itinib arm (log-rank p=0.177) (figure 4G), but in the suni-
tinib arm patients with low CD163 clustering scores has 
worse OS (log-rank p=0.016) (figure 4H). In the IMmo-
tion151 phase III randomized clinical trial, patients with 
low CD163 clustering scores has worsened survival in 
both treatment arms (atezolizumab+bevacizumab arm: 
log-rank p=0.002; sunitinib arm: log-rank p<0.0001) 
(figure 4I,J). In the IMmotion150 phase II clinical trial, 

Figure 4  (A) Twenty genes included in the CD163 clustering gene expression score, ordered by Spearman correlations with 
tumor/CD163 nK(75) values, all p>0.001. (B) TCGA KIRC cohort (N=530), boxplots depicting gene CD163 clustering gene 
expression score by AJCC clinical stage. (C) OS in the Moffitt mIF cohort, stratified by the median value of tumor/CD163 
nK(75). (D) ccRCC specific survival in the Moffitt mIF cohort, stratified by the median value of tumor/CD163 nK(75). (E) OS 
in the TCGA KIRC cohort, stratified by the median value of CD163 clustering gene expression score. (F) ccRCC-specific 
survival in the TCGA KIRC cohort, stratified by CD163 clustering gene expression score. (G) PFS in the JAVELIN Renal 101 
RCT avelumab+axitinib arm, stratified by CD163 clustering gene expression score. (H) PFS in the JAVELIN Renal 101 RCT 
sunitinib arm, stratified by CD163 clustering gene expression score. (I) PFS in the IMmotion151 RCT atezo+bev arm, stratified 
by CD163 clustering gene expression score. (J) PFS in the IMmotion151 RCT sunitinib arm, stratified by CD163 clustering gene 
expression score. (K) CD163 clustering gene expression score in the three arms of the IMmotion150 trial, stratified by best 
treatment response. ccRCC = clear cell renal cell carcinoma; mIF = multiplex immunofluorescence; OS = overall survival; PFS = 
progression-free survival, TCGA-KIRC = The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma.
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non-responders to treatment (best-response: progressive 
disease) had significantly lower CD163 clustering scores 
in two out of three treatment arms (Wilcoxon test; atezoli-
zumab: p=0.082; atezolizumab+bevacizumab: p=0.001; 
sunitinib: p=0.005) (figure 4K).

CD8+ interface clustering versus conventional CD8+ inflamed, 
desert, and excluded categories
Example mIF images demonstrating high and low 
bivariate tumor/CD8 clustering at the tumor–stroma 
interface are depicted in figure  5A. High bivariate 
clustering between CD8+T cells and tumor cells at the 
tumor–stroma interface was strongly associated with 
improved OS and CSS (tumor/CD8+nK(75): median 
OS–hi=149 months, lo=68 months, FDR-adj. p<0.001; 
median CSS–hi=174 months, lo=69 months, FDR-adj. Cox 
p<0.001) (figure 5B).

Patients with ccRCC were stratified into conventional 
CD8+ inflamed, desert, and excluded categories based 
on differential cell-density within the tumor-core and 
stromal histological zones, as previously described.16 
Kaplan-Meier (K-M) estimates did not identify an asso-
ciation between these categorizations and OS (log-rank 
p=0.13) (figure  5C). Patients classified as having high 
stromal clustering of CD8+ cells at the tumor–stroma 
interface had an even distribution of classification into 
the inflamed, excluded, and desert categories (n=17, 15, 
and 12, respectively), whereas patients classified as having 
CD8+ cells clustered into the tumor compartment at the 
tumor–stroma interface were heavily skewed toward the 
inflamed category (inflamed=31 patients, excluded=4, 
desert=9) (figure 5D).

Stromal co-localization of CD163+ TAMs and CD8+ T-cells at 
the tumor–stroma interface
Tumor/CD8+and tumor/CD163+nK(75) were weakly 
correlated among all patients with ccRCCs (Spearman’s 
r=0.22, p=0.05; figure 5E). Patients were then stratified by 
concordance of geospatial clustering of CD8+and CD163+ 
cells at the tumor–stroma interface. If both cell-types 
demonstrated clustering into the tumor compartment, 
they were determined to be ‘co-localized in the tumor’, 
if both were clustered into the stromal compartment 
they were ‘co-localized in the stroma’, and other samples 
were not considered to demonstrate co-localization 
(figure 5E).

OS was substantially worse for patients with CD8+/
CD163+ stromal co-localization and improved in a step-
wise manner for patients with no-colocalization, followed 
by patients with CD8+/CD163+tumor co-localization who 
had favorable OS (median OS: 64 months, 116 months, 
178 months, respectively; log-rank p<0.001)(figure  5F). 
Patients with CD8+/CD163+stromal co-localization had 
a higher proportion who presented with AJCC clin-
ical stage IV (7/21 patients, 33.3%), as compared with 
patients with CD8+/CD163+ tumor co-localization (4/22 
patients, 18.2%) (figure  5G). Of the 27 patients who 
received systemic targeted or immunotherapy, 6 patients 

had CD8+/CD163+ stromal co-localization, and none 
responded to therapy (0/6 patients, 0%), as compared 
with 5 out of 14 responding in the no-colocalization 
group (35.7%), and 4 out of 7 patients responding in 
the CD8+/CD163+tumor co-localization group (57.1%) 
(figure 5H). Similarly, for the subgroup of patients who 
received immunotherapy 0/2 patients responded in the 
CD8+/CD163+stromal co-localization group (0%), 2/4 
patients responded in the no co-localization group (50%), 
and 2/3 patients responded in the CD8+/CD163+tumor 
co-localization group (66.6%).

CD163+ TAM stromal clustering at the tumor–stroma interface 
is associated with CD8+ T-cell terminal exhaustion
Grounded in the above findings, an exploratory 
mIF panel was performed to determine associations 
between CD163+TAM clustering and CD8+/CD163+co-
localization with immune cell exhaustion. Eighteen 
patients with adequate density of CD8+ and CD163+ 
immune cells (>10 cells per region of interest (ROI)) 
were selected for this panel from the initial cohort. The 
gross specimens were reprocessed and ROIs selected in 
identical fashion as the first two panels, with unique ROI 
locations. This panel included pan-cytokeratin (PCK), 
4′,6-diamidino-2-phenylindole (DAPI), CD163, TIM-3 (a 
marker of CD8+T cell terminal exhaustion), and PD-L1 
(figure 6A).

When analyzed as a continuous variable, tumor/
CD163+nK(75) at the tumor–stroma interface was nega-
tively correlated with the TIM-3+proportion of CD8+ 
cells (Spearman’s r=−0.46; p=0.05) (figure  6B). CD8+/
CD163+co-localization at the tumor–stroma interface was 
not correlated with the TIM-3+ proportion of CD 8+cells 
(r=−0.08; p=0.77) (figure 6C). When categorized into high 
and low groups, the TIM-3+proportion of CD8+ cells was 
higher in patients with low tumor/CD163+nK(75) within 
the tumor-core and tumor–stroma interface (tumor-core: 
0.07 (IQR 0.04–0.14) vs 0.40 (IQR 0.15–0.66), p=0.05; 
tumor–stroma interface: 0.02 (IQR 0–0.08) vs 0.11 (IQR 
0.04–0.37); p=0.05) (figure 6D). No such association was 
identified between CD8+/CD163+ co-localization high 
and low groups and the TIM-3+ proportion of CD8+ 
cells (figure  6E). No statistically significant associations 
were identified between tumor/CD163+nK(75) or 
CD8+/CD163+ co-localization and PD-L1+ cell density 
(figure 6F,G).

Supplemental analyses
Additional supplemental correlative analyses were 
performed assessing the effect of recurrent somatic 
mutations on tumor-core immune cell density (online 
supplemental figure 2), RNA-seq-based immune cell 
deconvolution using xCell score (online supplemental 
figure 3), as well as angiogenesis and T-effector gene 
signatures as described in the IMmotion150 trial (online 
supplemental figure 4). Several sensitivity analyses were 
conducted (online supplemental figures 5–8). A written 
description can be found in online supplemental results.

https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
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Figure 5  (A) Example multiplex immunofluorescence images of a samples with high and low tumor/CD8 nK(75). (B) Kaplan-
Meier distributions for overall survival as stratified by the median value of tumor/CD8 nK(75) in the tumor–stroma interface 
histological zone. (C) Kaplan-Meier distributions for overall survival as stratified by the median value of CD8+ cell density 
derived infiltration, exclusion, and desert status. (D) Stacked bar chart depicting proportions of patients falling in CD8+ cell 
density derived infiltration, exclusion, and desert groups, stratified by low and high tumor/CD8 nK(75) values. (E) Scatter plot 
and Spearman’s correlation comparing tumor/CD8 nK(75) and tumor/CD163 nK(75), overlaid with groupings by CD8-CD163 
co-localization status. Purple dotted line is the median value for tumor/CD163 nK(75), green dotted line is the median value 
for tumor/CD8 nK(75). (F) Kaplan-Meier distributions for overall survival, as stratified by CD8-CD163 co-localizations status. 
(G) Proportion of patients diagnosed with AJCC clinical stage IV ccRCC, stratified by CD8-CD163 co-localization status. (H) 
RECIST responses to systemic therapy for a subgroup of patients (n=27), either presenting with or developing clinical stage 
IV ccRCC, who received either systemic immunotherapy or targeted therapy. ccRCC = clear cell renal cell carcinoma, PCK = 
Pan-cytokeratin, AJCC = American Joint Committee on Cancer, RECIST = Response Evaluation Criteria in Solid Tumours, CR = 
Complete Response, PR = Partial Response, SD = Stable Disease, PD = Progressive Disease.
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DISCUSSION
Leveraging mIF, digital pathological image analysis, and 
empirical geospatial clustering models, we outlined a 
global view of immune cell spatial distribution within the 
RCC microenvironment and identified highly specific 

cellular distributions that were significantly associated 
with clinical outcomes. Namely, clustering of M2-like 
CD163+ macrophages and CD8+T cells into the stromal 
compartment at the tumor–stromal interface was associ-
ated with more advanced clinical stage and significantly 

Figure 6  (A) Example multiplex immunofluorescence image of a sample from the exploratory third panel including stains 
for PCK, DAPI, CD163, CD8, TIM-3, and PD-L1. Image is taken from the tumor–stroma interface. In the magnified region, the 
triangle indicates a CD8+TIM3 cell, chevron indicates a CD163+ cell, and the arrow indicates a CD8+TIM3+ cell. (B) Spearman’s 
correlation between interface tumor/CD163 nK(75) and the proportion of CD8+ cells expressing TIM-3. (C) Spearman’s 
correlation between interface tumor/(CD8-CD163) nK(75) (ie, CD8/CD163 interface co-localization) and the proportion of CD8+ 
cells expressing TIM-3. (D) Ridgeline distribution density plots demonstrating the proportion of CD8+ cells expressing TIM-3 
in the tumor-core, tumor–stroma interface, and stromal zones, stratified by tumor/CD163 nK(75) status. Adjacent boxplots 
with Wilcoxon p values correspond to the ridgeline density plots. (E) Ridgeline distribution density plots demonstrating the 
proportion of CD8+ cells expressing TIM-3 in the tumor-core, tumor–stroma interface, and stromal zones, stratified by CD8/
CD163 co-localization status. Adjacent boxplots with Wilcoxon p values correspond to the ridgeline density plots. (F) Ridgeline 
distribution density plots demonstrating PD-L1 density in the tumor-core, tumor–stroma interface, and stromal zones, stratified 
by Tumor/CD163 nK(75) status. Adjacent boxplots with Wilcoxon p values correspond to the ridgeline density plots. (G) Present 
cellular clusterin ridgeline distribution density plots demonstrating PD-L1 density in the tumor-core, tumor–stroma interface, 
and stromal zones, stratified by CD8/CD163 co-localization status. Adjacent boxplots with Wilcoxon p values correspond to the 
ridgeline density plots. PCK, pan-cytokeratin.
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worsened OS and CSS. Given the lack of publicly available 
spatial coordinate data in ccRCC, these findings were 
independently validated by developing an RNA-seq gene 
signature score which was applied to several clinical trials 
of immunotherapy in patients with metastatic ccRCC. In 
addition, clustering of M2-like CD163+macrophages into 
the stromal compartment at the tumor–stromal interface 
was associated with a higher proportion of CD8+T cells 
expressing TIM-3, suggestive of terminal exhaustion. To 
our knowledge, this report is the first to describe these 
spatial dynamics and their clinical associations in RCC.

M2-like macrophages are increasingly being recog-
nized as an important a protumor component of the RCC 
TIME.20 29 33 34 In contrast with proinflammatory M1-po-
larized macrophages, M2-like TAMs are associated with 
tissue remodeling, secreting a variety of growth factors 
and proteases, and have consistently been implicated in 
conferring a protumor effect on the TIME.34 A landmark 
mass cytometry study of the RCC TIME by Chevrier et al 
identified that a specific macrophage cluster, labeled as 
M-11, was associated with more advanced disease.17 The 
most specific surface marker for cluster M-11 was CD163, 
a high affinity scavenger receptor that is a classical 
marker of M2-like TAMs.17 33 Recent scRNA-seq studies 
have further associated M2-like TAMs with poor clinical 
outcomes, and implicated these cells in switching tissue-
resident CD8+ cells into a terminally exhausted state via 
specific receptor–ligand interactions.20–22

Most hypothesized mechanisms for the M2-like TAM 
protumor effect rely on close proximity to their effector 
cell, and as such we aimed to associate measures of 
geospatial TAM clustering with clinical outcomes. 
Previous work by our group identified worse OS in 
patients with increased interface clustering of tumor 
cells and CD68+TAMs in a small cohort of patients with 
metastatic ccRCC who subsequently received IT, further 
supporting the notion that TAM spatial distribution 
can affect outcomes.28 In this study, we identified more 
advanced clinical stage and substantially worse OS and 
CSS for patients with CD163+M2 like TAMs clustered into 
the stromal compartment at the tumor–stroma interface.

In light of recent studies highlighting immunosuppres-
sive receptor–ligand interactions between CD8+T cells 
and M2-like TAMs, we stratified patients by co-localization 
of CD8+and CD163+ immune cells at the tumor–stroma 
interface, and found that co-localization of these cells 
in the stromal compartment was associated with poor 
clinical outcomes, as compared with co-localization in 
the tumor compartment.20 Furthermore, an exploratory 
third mIF panel was designed and performed to assess 
associations between these metrics and immune microen-
vironment exhaustion. Indeed, we identified that patients 
with CD163+ clustering in the stromal compartment also 
exhibited a high proportion of CD8+T cells expressing 
TIM-3, an indication of terminal exhaustion.

The biological underpinnings of this association are 
unclear but could be driven by an environmental niche 
in the stromal compartment that favors receptor–ligand 

interactions between CD8+T cells and CD163+TAMs, 
potentiating their immunosuppressive pro-tumor effect. 
This hypothesis is supported by a 2018 study by Peran-
zoni et al, who demonstrated that CD8+T cells develop 
impeded motility and poor tumor migration after coming 
in direct contact with stromal TAMs, a high proportion 
of which expressed CD163.27 CD8+T cell motility and 
tumor migration was then restored following deple-
tion of stromal TAMs from the specimen.27 In addition, 
studies have consistently shown that elimination of 
myeloid-derived suppressor cells from the ccRCC TIME 
results in enhancement of antitumor T-cell infiltration 
and effect.35 36 Our findings imply that these CD8-TAM 
geospatial interactions within the stromal compartment 
at the tumor–stroma interface may translate to substantial 
clinical impact. Further study will be necessary to eluci-
date the exact nature of these interactions.

Another interesting finding in this analysis was that 
patients with high clustering of CD8+T cells into the 
stromal compartment at the tumor–stroma interface has 
worse OS and CSS. Infiltration of CD8+T cells has been 
associated with improved ICI response and OS in several 
primary solid tumors but has been paradoxically associ-
ated with poor clinical outcomes in RCC.16 In this study, no 
OS associations were identified using conventional CD8+ 
metrics stratifying patients into ‘inflamed’, ‘“desert’, and 
‘excluded’ categories by their differential tumor-core 
and stroma CD8+ immune cell densities. However, signifi-
cantly worse OS was seen in patients with CD8+ clustering 
into the stromal compartment at the tumor–stromal inter-
face, a cellular distribution that is conceptually in-line 
with immune cell exclusion. Further study is needed to 
validate this finding in external cohorts, but it is possible 
that bivariate geospatial clustering metrics measured at 
the tumor–stromal interface result in a more accurate 
and biologically meaningful framework for determining 
immune cell exclusion.

Notably, the CD163 Clustering gene signature 
(figure  4) identified several intriguing genes that have 
been previously implicated in cancer biology (online 
supplemental table 3). The most interesting of which is 
IFNGR1, the gene coding for interferon-gamma receptor 
1, the primary receptor for the IFN-γ cytokine. Increased 
expression of IFNGR1 was negatively associated with the 
CD163 clustering gene signature, which corresponds to 
CD163 stromal compartment clustering at the tumor–
stroma interface, and worse prognosis. Previous research 
has identified IFN-γ as a critical cytokine for switching 
immunosuppressive M2 polarized TAMs into an M1 
phenotype, inducing an antitumor immune response.37 
In addition, loss of the IFN-γ pathway has been shown to 
confer resistance to anti-CTLA-4 checkpoint blockade 
in metastatic melanoma.38 It is plausible that increased 
IFNGR1 expression in our cohort is indicative of receptor 
upregulation in response to a shortage of the IFN-γ cyto-
kine. Further study is necessary to correlate IFN-γ cyto-
kine and receptor dynamics with geospatial immune cell 
distributions.

https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
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Future directions for this research will aim to ameliorate 
the limitations to the present analysis, while expanding 
on the most clinically pertinent cohort. The cohort of 
clinical stage IV patients was not large enough (n=27) 
to adequately address the question of clinical response, 
particularly in the IT subgroup (n=9). Further efforts will 
be devoted to a larger cohort of patients with stage IV 
disease, including M2-like TAM and CD8+ exhaustion 
markers in the same mIF panel, as to directly measure 
the geospatial clustering between these cells in a larger 
population. Furthermore, spatial transcriptomic analysis 
would certainly build on these marker-based findings, 
associating geospatial distributions with specific RNA 
transcripts and signatures, while potentially identifying 
specific receptor–ligand interactions governing the 
immunosuppressive TAM-CD8 dynamic.

METHODS
Patient and sample selection
We obtained 97 primary tumor samples from patients 
with ccRCC, and 5 tissue samples from normal kidneys, 
from the years 2004 to 2018. Samples were obtained via 
surgical excision. Written informed consent was obtained 
from all tissue donors. Patients were included in this study 
if they provided written consent to the molecular charac-
terization of their tissue and did not receive any systemic 
therapy prior to tissue collection.

Multiplex immunofluorescence
Prior to mIF, tissue blocks were prepared, and an experi-
enced genitourinary pathologist (JD) reviewed each slide 
obtained from macrodissected formalin-fixed paraffin-
embedded tissue samples and annotated seven spatially 
distinct ROIs from three predetermined tumor zones: 
two ROIs from the tumor core, three from the tumor–
stroma interface, and two from the stroma. The tumor-
core ROIs studied were selected regions with high tumor 
cell content, and without evidence of grossly necrotic 
tissue. The tumor–stroma interface ROIs were selected to 
contain approximately equal parts of tumor and stromal 
tissue. Section thickness was 4 um.

Tissue samples were then stained using the Perkin-
Elmer OPAL 7 Color Automation Immunohistochem-
istry Kit (PerkinElmer, Waltham, MA) on the BOND RX 
Autostainer (Leica Biosystems, Vista, California, USA). 
In brief, tissue slides were sequentially stained in two 
panels using antibodies against CD3, CD8, CD20, CD68, 
CD163, CD206, forkhead box P3 (FOXP3), T-box tran-
scription factor TBX21 (T-Bet; a T-box protein expressed 
in T cells), epidermal growth factor receptor (EGFR), 
and programmed death-ligand 1 (PD-L1). These markers 
were selected for their previously demonstrated frequency 
in ccRCC.17

All subsequent steps, including deparaffinization, 
antigen retrieval, and staining, were performed using 
the OPAL manufacturer’s protocol. PCK and DAPI 
counterstaining were applied to all slides, and imaging 

was performed using the Vectra3 Automated Quanti-
tative Pathology Imaging System (Akoya Biosciences). 
Importantly, PCK was applied only after confirmation 
of tumor content by examination of H and E images for 
each ROI. Multilayer TIFF images were exported from 
InForm (PerkinElmer) and loaded into HALO (Indica 
Labs, Albuquerque, New Mexico, USA) for quantitative 
image analyses.39 The size of the ROIs was standardized 
at 1356×1012 pixels, with a resolution of 0.5 µm/pixel, 
for a total surface area of 0.343 mm2. Using HALO, for 
each staining marker a positivity threshold within either 
the nucleus or cytoplasm was set based on previously 
published staining patterns and visual intensities.40 41 The 
entire image set was analyzed with the same algorithm. 
Representative images with and without masking are 
included in online supplemental figure 9. From this anal-
ysis, generated data included the total cell count, positive 
cell counts for each IF marker, fluorescence intensity of 
every individual cell, percent of cells that were positive for 
each marker, and Cartesian coordinates for their location 
in the ROI image.

A third exploratory panel was designed based on the 
results of the initial analysis, using antibodies against 
DAPI, PCK, CD8, CD163, TIM-3, and PD-L1, using 18 
samples from the initial cohort with CD8 and CD163 cell 
densities adequate for geospatial analysis. All steps for 
tissue preparation, ROI selection, and image analysis, 
were identical to those in the first two panels. Online 
supplemental table 3 details the markers used in each of 
the three panels.

Geospatial analysis
For each ROI in our IF analysis, cell density was deter-
mined for each IF marker and for a subset of dual-positive 
markers. For each sample, ROI cell densities were aver-
aged within each tumor zone (tumor core, stroma, and 
tumor–stroma interface) such that one density value 
remained for each zone in each sample. This stratification 
allows for broad macrolevel comparisons of immune cell 
densities across each tumor zone. For the geospatial anal-
ysis, cells were classified as single-mark using a hierarchy 
favoring the more specific marker when dual-staining 
was present. PD-L1 positivity was described on PCK+cells, 
excluding dual-staining with immune markers.

A quantitative framework leveraging Ripley’s K esti-
mates, a methodology for quantifying spatial heteroge-
neity most commonly used in ecology and economics, 
was used to assess complex local geospatial relationships 
among tumor cells, stromal cells, and immune cells.42 
ROIs containing ≥10 cells positive for a relevant marker 
were considered eligible for spatial analysis. As there is no 
previously validated standard for this cut-off, the ≥10 cell 
cut-off was agreed on through consensus of the authors, 
as it yields >40 pairwise cell-cell distances for analysis, 
allowing for an accurate estimation of a continuous distri-
bution from a discrete one.43

The Ripley’s K function (K(r)) measures the number 
of points within a search-circle containing a point at its 

https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
https://dx.doi.org/10.1136/jitc-2022-006195
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center, repeating this process for each point of interest 
and summating/averaging the results, then repeating 
this process across a range of search-circle radii (r).42 44 
The resultant distribution can then be compared with an 
estimated distribution of complete spatial randomness, 
assuming a Poisson process. Edge correction is necessary 
to account for points that are near the boundary of the 
observation window, where a portion of the search-circle 
falls beyond this boundary.45 46 Isotropic edge correction 
was used in this study, adjusting the K(r) value by the ratio 
of the search-circle circumference within and beyond the 
boundary of the observation window.

K(r) values were determined for each chosen 
metric within each ROI, using isotropic edge correc-
tion, and the following normalization was applied : 

‍
nK

(
r
)

=
√(

K
(
r
)

/π
)
− r

‍
, which is sometimes described as 

either the ‘H-function’ or ‘L(r)–r’.44 47 This normalization 
is an improvement of the naïve Ripley’s K function in that 
the expected value of nK(r), reflecting complete spatial 
randomness and assuming a Poisson process, is 0 across 
all values of r, facilitating interpretation and comparison 
of the results across values of r. After application of this 
normalization the expected variance for complete spatial 
randomness becomes relatively consistent across all values 
of r. Values of nK(r) >0 represent cellular clustering and 
values <0 represent cellular dispersion. The theoretical 
range of possible nK(r) values is negative infinity to posi-
tive infinity. A one-sample Wilcoxon signed-rank test 
can be used to compare the nK(r) value for a group of 
samples at any given radius to 0, the expected value of 
complete spatial randomness.

nK(r) can be applied in a univariate (ex: assessing clus-
tering among cell-type A with other cell-type A cells) or 
bivariate (ex: clustering of cell-type A with cell-type B) 
manner. In the tumor-core and stromal zones, univariate 
clustering was used for each IF-marker. At the tumor–
stroma interface, bivariate clustering with tumor cells was 
assessed for each IF-marker, to assess the affinity for the 
marked immune cells to exist in the tumor or stromal 
compartment in this zone. Bivariate clustering metrics 
can accommodate instances where multiple interfaces 
exist in the same image, which was occasionally present 
in our samples. A radius of 75 um was selected (accom-
modating approximately 3 ccRCC tumor cells) to reflect 
clustering in the vicinity of the cell of interest.

Conventional inflamed, desert, and excluded pheno-
types were used as a comparison to the geospatial analysis 
of CD8+T cells. As per commonly reported conventions, 
these categories were based on differential cell density of 
CD8+ cells within the tumor-core and stroma, ignoring 
the interface regions.16 Median cut-points were utilized. 
Immune desert is defined as low density in both tumor 
and stromal regions. Exclusion is defined as low tumor 
density with high stromal density. Any sample with high 
tumor density is defined as inflamed.

All spatial analysis was conducted using the spatstat 
package for R statistical computing software.46

CD163+ interface clustering gene expression score
An exploratory analysis regarding differential gene 
expression was performed as it related to Tumor/
CD163+nK(75) at the tumor–stroma interface, as this was 
the strongest predictor of OS and clinical stage in our 
cohort and is directly relevant to the currently accepted 
model of immunotherapy response and resistance in 
ccRCC.

Eighty-one samples had overlapping RNA-seq and mIF 
data. From an initial set of 23 595 unique genes, the correla-
tion between each gene and tumor/CD163+nK(75) was 
calculated, resulting in 20 unique protein-coding genes 
(figure 4A and online supplemental table 4) with an r2 
(Spearman) >0.3 or, median expression >0 and a range 
larger than 1. This filtering ensures that the genes are 
expressed in most samples and that they have a range 
larger than 1 log2 units.

In independent external RNA-seq cohorts, these 
20 genes were used in a gene signature for tumor/
CD163+nK(75). Genes were split into positively and 
negatively correlated gene groups, and a ratio of the 
geometric mean expression of the positive to negatively 
correlated gene groups was used as an expression score. 
Higher values of the resultant CD163 clustering score 
indicate higher tumor/CD163 nK(75), or more clus-
tering of CD163+TAMs into the tumor compartment 
at the tumor–stroma interface. This method was used 
in the TCGA KIRC (The Cancer Genome Atlas Kidney 
Renal Clear Cell Carcinoma) cohort (n=533), including 
all clinical stages, stratifying the CD163 clustering score 
by the median for the OS analysis, then using this value 
for dichotomization in further analyses in the remaining 
external cohorts. To address whether the score was appli-
cable to patients with advanced cancer receiving systemic 
therapy, this same score was then applied to three addi-
tional independent clinical trial cohorts: the JAVELIN 
Renal 101 phase III clinical trial (n=726), IMmotion151 
phase III clinical trial (n=823), and the IMmotion150 
phase II clinical trial (n=151).

 

Statistical analysis
Cell densities and spatial metrics were abstracted as 
described above. Correlations were weakly negative 
between univariate nK(75) metrics and their corre-
sponding marked-cell densities (−0.30 to −0.10), and 
correlations were consistently poor between bivariate 
nK(75) metrics and their corresponding marked-cell 
densities (−0.10 to 0.10), confirming that the nK(75) and 
density metrics were supplying distinct information from 
one another. Thus, we proceeded with treating cellular 
density and geospatial clustering as distinct metrics for 
the remainder of the analysis.

Between-groups comparisons were made using 
Wilcoxon signed-rank testing. When one compar-
ator group had <5 samples, such as the somatic muta-
tion analysis, p values were generated by performing a 

https://dx.doi.org/10.1136/jitc-2022-006195
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randomization t-test based on 10,000 permutations. Cell 
densities were compared across the three studied histo-
logical zones (tumor-core, stroma, and tumor–stroma 
interface). Both univariate and bivariate geospatial 
metrics were compared with the value for complete spatial 
randomness, zero, within marked-cell types using a one-
sample Wilcoxon signed-rank test, and between marked-
cell types using a two-sample Wilcoxon signed-rank test.

The survival analysis was primarily conducted using 
an FDR adjusted multivariable Cox proportional 
hazards regressing using age and SSIGN (Stage, Size, 
Grade and Necrosis) score as covariates. Outcomes 
tested were OS from date of diagnosis to censoring or 
death at last follow-up, kidney CSS from date of diag-
nosis to censoring or death at last follow-up, and RFS 
for patients who did not present with metastatic disease. 
K-M curves were used to visualize survival functions. 
A subgroup of patients with AJCC (American Joint 
Committee on Cancer) stage IV disease (n=27) received 
systemic targeted therapy (n=19) or immunotherapy 
(n=9). Response to therapy was determined per RECIST 
(Response Evaluation Criteria in Solid Tumours) 1.1 
radiographic criteria.48

Statistical significance was defined as a two-tailed 
α<0.05. All statistical analyses were conducted using R 
statistical software V.4.0.2 (Vienna, Austria) or SAS V.9.4 
(SAS Institute).

Additional information regarding the methodology can 
be found in the Supplementary Methods, Supplementary 
RNAseq Methods, and Supplementary WES Methods. 
Additionally a Full Gene List, Key Resources Table, and 
example mIF Images have been made available to accom-
pany this manuscript.

Translational relevance
Clear cell RCC (ccRCC) is clinically unique—boasting 
a favorable response profile to immunotherapy while 
harboring a relatively low TMB, with many studies para-
doxically associating CD8+ T-cell infiltration with worse 
prognosis. Recent studies have implicated M2-like TAMs 
with inducing CD8+ T-cells into a terminally exhausted 
state, partially explaining this paradox. Developing ther-
apies to increase immunotherapy response in ccRCC 
depends on a more detailed understanding of these 
biological processes. We sought to elucidate these TAM-
CD8+ interactions within the ccRCC TIME by adapting a 
geospatial framework borrowed from the field of ecology 
to analyze mIF samples. We found that patients have poor 
clinical outcomes when M2-like TAMs are clustered into 
the stromal compartment at the tumor–stroma interface, 
and when co-localized with CD8+ T-cells in this location. 
In addition, this specific geospatial pattern of M2-like 
TAMs was associated with CD8+ T-cell terminal exhaus-
tion. These findings suggest that TAM-CD8+ interactions 
within the ccRCC tumor microenvironment are influ-
enced by geospatial relationships in addition to cellular 
phenotype.
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