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In Brief
Proteomic and genomic studies
have identified new drug targets
for acute myeloid leukemia
(AML), leading to new
therapeutic options for certain
patient subpopulations. In
addition, many other drugs are in
advanced stages of clinical
development and proteomics
keeps uncovering targets of
interest. Given the large number
of new therapies likely to be
available for AML in the near
future, identification of proteomic
signatures of response for each
drug will be key to select the best
treatment for a given patient.
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Acute myeloid leukemia (AML) is a highly heterogeneous
cancer of the hematopoietic system with no cure for most
patients. In addition to chemotherapy, treatment options
for AML include recently approved therapies that target
proteins with roles in AML pathobiology, such as FLT3,
BLC2, and IDH1/2. However, due to disease complexity,
these therapies produce very diverse responses, and
survival rates are still low. Thus, despite considerable
advances, there remains a need for therapies that target
different aspects of leukemic biology and for associated
biomarkers that define patient populations likely to
respond to each available therapy. To meet this need,
drugs that target different AML vulnerabilities are
currently in advanced stages of clinical development.
Here, we review proteomics and phosphoproteomics
studies that aimed to provide insights into AML biology
and clinical disease heterogeneity not attainable with
genomic approaches. To place the discussion in context,
we first provide an overview of genetic and clinical as-
pects of the disease, followed by a summary of proteins
targeted by compounds that have been approved or are
under clinical trials for AML treatment and, if available, the
biomarkers that predict responses. We then discuss pro-
teomics and phosphoproteomics studies that provided
insights into AML pathogenesis, from which potential
biomarkers and drug targets were identified, and studies
that aimed to rationalize the use of synergistic drug
combinations. When considered as a whole, the evidence
summarized here suggests that proteomics and phos-
phoproteomics approaches can play a crucial role in the
development and implementation of precision medicine
for AML patients.
INTRODUCTION TO ACUTE MYELOID LEUKEMIA

Acute myeloid leukemia (AML) is a hematological cancer
with an incidence of approximately 18,500 and 20,000 new
cases in Europe and USA, respectively, making this the most
common form of acute leukemia (1). Contrary to other forms of
leukemia, for which targeted therapies have transformed their
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prognosis (2, 3), curative treatments do not exists for most
AML patients, and according to the American Cancer Society,
AML caused 11,500 deaths in the US in 2022. The risk of
suffering AML at some point in life is 0.5 to 1%, and although it
can occur at all ages, it is more frequent in adults with an
average age at first diagnosis of 68 years. AML risks factors
include exposure to chemicals (like benzene and chemother-
apeutic agents) or radiation, suffering from myelodysplastic
syndrome or myeloproliferative neoplasms, having germ line
mutations in genes linked to familial AML (e.g., CEBPA, DDX4,
or RUNX1) or somatic mutations in genes linked to clonal
hematopoiesis (e.g., DNMT3A, TET2, or ASXL1) (4, 5). Patients
with inherited genetic syndromes such as Fanconi’s anemia,
Bloom syndrome, Down syndrome, and others also present
an increased risk of AML (6–8).
AML originates from the malignant transformation of

myeloid precursors, leading to the uncontrolled production of
undifferentiated, immature, and nonfunctional blasts, causing
the displacement of hematopoietic stem cells and leading to
bone marrow (BM) failure. This process was postulated to
require genomic aberrations or mutations in epigenetic mod-
ifiers and/or transcription factors that impair hematopoietic
differentiation alongside mutations in signaling pathways that
sustain cell survival and proliferation (9). This “two-hit” model,
although now thought to be over-simplistic, presents clinical
implications for the design of combinational therapies (10).
Recent mutational studies show that frequent genetic al-

terations in AML include single gene mutations that affect
proteins with multiple functions, together with large cytoge-
netic aberrations that involve chromosome gains, losses, or
rearrangements that generate fusion proteins with aberrant
functions (Table 1). Another level of complexity in AML path-
ogenesis was provided by functional studies that showed that
AML is initiated and maintained by leukemia stem cells (LSCs,
also known as leukemia initiating cells), from where the bulk of
AML blast are derived (11, 12). The LSCs are resistant to
chemotherapy because they are quiescent and express anti-
apoptotic molecules at high levels (13, 14). Therefore, after the
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TABLE 1
Frequent genetic alterations in AML

Cytogenetic alterations

Balanced Unbalanced

KMT2A rearranged Complex Karyotype
DEK-NUP −5/del(5q)
RUNX1-RUNX1T1 −7/del(7q)
PML-RARA −17/del(17p)
CBFB-MYH11 +8/8q
MECOM rearranged

Single gene mutations

Signaling and kinase
pathway

FLT3, KRAS, NRAS, KIT, PTPN11, NF1,
JAK2, CBL

DNA Methylation DNMT3A, IDH1, IDH2, TET2,
Chromatin-
Remodeling

ASXL1, EZH2, KMT2A, BCOR,
BCORL1

Transcription factor CEBPA, RUNX1, GATA2, SETBP1
Tumor suppressor TP53, WT1, PH6
spliceosome–complex SRSF2, U2AF1, SF3B1, ZRSR2
Cohesin RAD21, STAG1, STAG2, SMC1A,

SMC3
Nucleophosmin NPM1

TABLE 2
Classification of AML cases based on FAB, WHO, and ENL

FAB classification

FAB-M0 Minimally differentiated AML
FAB-M1 AML without maturation
FAB-M2 AML with maturation
FAB-M3 Acute promyelocytic leukemia
FAB-M4 Acute myelomonocytic leukemia
FAB-M4Eo Acute myelomonocytic leukemia with eosinophils
FAB-M5a Acute monoblastic leukemia
FAB-M5b Acute monocytic leukemia
FAB-M6 Acute erytroleukemia
FAB-M7 Acute megakaryoblastic leukemia

WHO classification

1-AML with recurrent genetic
abnormalities

3-Therapy-related myeloid
neoplasms

RUNX1-RUNX1T1 fusion 4-AML, not otherwise
specified (NOS)

CBFB-MYH11 fusion AML with minimal
differentiation

PML-RARA fusion AML without maturation
KMT2A-MLLT3 fusion AML with maturation
DEK-NUP214 fusion Acute myelomonocytic

leukemia
GATA2(promotor)-
MECOM(coding) fusion

Acute monoblastic and
monocytic leukemia

RBM15-MKL1 fusion Pure erythroid leukemia
BCR-ABL1 fusion (Provisional) Acute megakaryoblastic

leukemia
Mutated NPM1 Acute basophilic

leukemia
Biallelic mutation of CEBPA Acute panmyelosis with

myelofibrosis
Mutated RUNX1 (Provisional) 5-Myeloid sarcoma

2-AML with myelodysplasia (MSD) 6-Myeloid proliferations
associated with Down
syndrome (DS)

Phenotypic changes associated
to MSD

Transient abnormal
myelopoiesis associated
with DS

Cytogenetic alterations
associated to MSD

Myeloid leukemia
associated with DS

Unbalanced: −7/del(7q), 7-Blastic plasmacytoid
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elimination of the bulk of leukemic cells by therapy, residual
LSCs in BM have the potential to replenish the leukemic
population, leading to relapse in patients that initially
responded to chemotherapy (15).
AML has been historically subdivided by the French-

American-British classification system (Table 2), which is
based on morphological and immunophenotypic features
linked to the differentiation and maturation stage of blasts (16).
More recently, the World Health Organization established an
AML classification scheme that incorporated genetic abnor-
malities and other clinicopathological features. In addition, the
European LeukemiaNet integrated genetic and cytogenetic
alterations into a risk classification system (favorable, inter-
mediate, and adverse) that prognosticates overall survival and
response to standard chemotherapy (17–19) (Table 2).
del(5q)/t(5q), i(17q)/
t(17p), −13/del(13q), del(11q),
del(12p)/t(12p) and idic(X)(q13)

dendritic cell neoplasm
Acute leukemias of
ambiguous lineage

Acute undifferentiated
leukemia

Balanced:
t(11;16)(q23.3;p13.3),
t(3;21)(q26.2;q22.1),
t(1;3)(p36.3;q21.2),
t(2;11)(p21;q23.3),
t(5;12)(q32;p13.2)

Mixed phenotype
acute leukemia with;
BCR-ABL1 fusion

Mixed phenotype
acute leukemia with
rearranged KMT2A

Mixed phenotype
acute leukemia,
B/myeloid, NOS

Mixed phenotype
acute leukemia,
T/myeloid, NOS
THERAPEUTIC OPTIONS FOR AML

Until recently, essentially all AML patients were treated with
an induction therapy regime that aims to achieve a complete
morphologic remission and the restoration of normal hema-
topoiesis, followed by consolidation therapy to minimize the
probability of relapse (1). The exception are patients in the
acute promyelocytic leukemia subgroup, whose blast cells
have an immature phenotype and who therefore respond to
differentiating agents such as all-trans retinoic acid. For in-
duction therapy, non-acute promyelocytic leukemia fit AML
patients (generally <65 years) receive several cycles of cytar-
abine and daunorubicin, while unfit patients (usually
>65 years) are treated with low dose cytarabine, DNA
2 Mol Cell Proteomics (2023) 22(4) 100517



TABLE 2—Continued

ELN classification

Favorable t(8;21)(q22;q22.1); RUNX1-RUNX1T1
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-
MYH11

Mutated NPM1 without FLT3-ITD or with FLT3-
ITD low

Biallelic mutated CEBPA
Intermediate Mutated NPM1 and FLT3-ITD high

WT NPM1 without FLT3-ITD or with FLT3-ITD
low (and no adverse-risk genetic lesions)

t(9;11)(p21.3;q23.3); MLLT3-KMT2A
Cytogenetic abnormalities not classified as
favorable or adverse

Adverse t(6;9)(p23;q34.1); DEK-NUP214
t(v;11q23.3); KMT2A rearranged
t(9;22)(q34.1;q11.2); BCR-ABL1
inv(3)(q21.3q26.2) or
t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)

t (3q26.2;v); MECOM (EVI1)-rearranged
−5 or del(5q); −7; −17/abn(17p)
Complex karyotype, monosomal karyotype
WT NPM1 and FLT3-ITD high
Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1,
SRSF2, STAG2, U2AF1, or ZRSR2

Mutated TP53
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hypomethylating agents, like azacitidine and decitabine, or
palliative care. Consolidation therapy for patients who achieve
complete remission includes different dosages of cytarabine
and stem cell transplantation depending on the fitness of the
patient and the prognosis of the leukemia provided by genetic
and other biomarkers. Although most patients initially respond
to this standard chemotherapeutic regime, most of them
eventually relapse, leading to a 5-year survival of just 20%,
and highlighting the need for more targeted approaches to
treat AML (1).
The standard of care started to change gradually from 2017,

when several targeted therapies were approved to treat AML
subpopulations (Fig. 1 and Table 3). These advances were
spurred by the increasing understanding of AML genetic
landscape as well as of its molecular biology at the proteomic
level.
Activating mutations of the receptor tyrosine kinase FLT3,

due to internal tandem duplications (ITDs) in the juxtamem-
brane domain or point mutations in the tyrosine kinase domain
(TKD), occur in approximately 30% of patients, making this the
most common genetic alteration in AML. WT FLT3, when
bound to its ligand, promotes the generation of myeloid cells
from precursors. However, ITD and TKD mutations constitu-
tively activate FLT3 and downstream prosurvival pathways,
which support tumorigenesis in hematopoietic precursor cells
(20). Midostaurin, a multitargeted kinase inhibitor, was
approved by the FDA in April 2017 for adult patients with
newly diagnosed FLT3-mutated AML, and this was followed in
November 2018 by the approval of gilteritinib for the treatment
of adult patients with relapsed/refractory (R/R) AML with FLT3
mutations (21, 22). Quizartinib, another FLT3 inhibitor, was
rejected by the FDA but was approved in 2019 by the Japan
Ministry of Health for the treatment of R/R AML with mutated
FLT3 (15).
Other druggable recurrent genetic alterations in AML

include gain-of-function mutations in isocitrate de-
hydrogenases (IDHs), which occur in about 20% of AML
patients (23, 24). IDH1 (cytoplasmic) and IDH2 (mitochon-
drial) catalyze the transformation of isocitrate into α-keto-
glutarate and generate NADPH. However, gain-of-function
mutated forms or IDHs use NADPH as a cofactor to
generate the oncometabolite 2-hydroxyglutarate. Accumu-
lation of 2-hydroxyglutarate together with the depletion of
NADPH and α-ketoglutarate produce a series of metabolic
and epigenetic alterations that favor the leukemogenic
process (24). In August 2017, the IDH2 mutant inhibitor
enasidenib and in July 2018, the IDH1 mutant inhibitor
ivosidenib were approved for treatment of refractory or
relapsed AML patients with gain-of-function mutations in
IDH2 and IDH1, respectively (25, 26).
Although the genetic mutational landscape has revealed

opportunities for therapeutic intervention, not all new drugs
derive from such new knowledge. A critical feature of cancer
cells is their ability to evade proapoptotic signals that prevent
normal cells to be transformed. BCL2, a key antiapoptotic
protein, has roles in leukemogenesis and is overexpressed in
leukemia stem and progenitor cells, as well as in AML blasts
when compared to normal hematopoietic cells (27, 28). BCL2
uses its BH3 domain to bind and inhibit the proapoptotic
proteins BIM, truncated BID and BAX that facilitate the
translocation of cytochrome C from the mitochondria to the
cytoplasm, which consequently activates caspases that
execute the apoptotic process (29). As an antiapoptotic pro-
tein, BCL2 has also been shown to play a role in resistance to
chemotherapy of AML (29). Venetoclax is a “BH3 mimetic”
small molecule inhibitor that blocks BCL2 antiapoptotic ac-
tivity (30). In November 2018, the FDA approved the use of
venetoclax in combination with hypomethylating agent or low
dose cytarabine for the treatment of newly diagnosed AML
patients aged ≥75 years or unfit for intensive induction
chemotherapy (31). In addition, venetoclax is currently being
studied in numerous clinical trials as single agent and in
combination therapies (15).
Glasdegib, an antagonist of the G protein–coupled receptor

Smoothened (SMO), is another drug derived from an
increased mechanistic understanding of AML biology. The
Hedgehog (HH) signaling pathway is important to normal he-
matopoiesis, promotes embryogenesis, maintains adult stem
cells, and regulates cell proliferation and differentiation (32). In
the absence of HH ligands (Sonic HH, Indian HH, and Desert
HH), SMO is inhibited by the Patched transmembrane proteins
(PTCH-1 and PTCH-2). The union of the HH ligands to the
Patched proteins triggers the activation of SMO and its
downstream targets, the transcription factors GLI1 and GLI2,
Mol Cell Proteomics (2023) 22(4) 100517 3



FIG. 1. Compounds approved or under clinical trials for the treatment of AML and their intended targets. Names in green denote drugs
that have been approved by the FDA for the treatment of AML, while those in magenta are compounds currently under clinical trials. Proteins,
when mutated or with a fusion partner produce 2HG or interact with DOT1L, are shown in red fonts. 2HG, 2-hydroxyglutarate; AML, acute
myeloid leukemia.
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that regulate the expression of proteins involved in cell cycle,
apoptosis, and differentiation (33). HH signaling is aberrantly
activated in AML and associated with poor clinical outcomes,
and SMO activity plays a critical role for disease progression
in several AML models (34). Glasdegib was approved by the
FDA in November 2018 for use in combination with LDAC for
the treatment of newly diagnosed AML patients aged
≥75 years or unfitted for intensive induction chemotherapy
(35).
Another proteomic feature that has been exploited for drug

development is the presence of cluster of differentiation (CD)
proteins on the surface of blast cells. These CD markers have
roles in cell adhesion, immune recognition, and signaling and
are indicative of the maturation state of the myeloid cell type
from where AML derived and confer them with a unique
immunophenotype. The CD33 protein antigen in particular is
frequently expressed on the surface of AML blasts (36).
Gemtuzumab is an antibody drug-conjugate (ADC) directed at
CD33, where a humanized monoclonal antibody covalently
linked to the cytotoxic drug N-acetyl gamma calicheamicin
4 Mol Cell Proteomics (2023) 22(4) 100517
binds to the CD33 antigens. Binding prompts internalization
and subsequent calicheamicin release to the nucleus, leading
to DNA damage and cell death (36). In September 2017, the
FDA approved gemtuzumab for the treatment of adults with
CD33-positive AML (37).
CANDIDATE TARGETS FOR NEW AML THERAPIES

The drugs discussed above are gradually being incorporated
into treatmentprotocols inhealthcaresystemsasmonotherapies
or in combination. In addition, several other proteins are currently
being tested as targets for the treatment of AML. Below, we
provide a nonexhaustive summary of those that are currently
(end of 2022) undergoing clinical trials (Fig. 1 and Table 3).

Kinase Inhibitors

In addition to FLT3, other RTKs that have a major impact on
leukemia biology include KIT (also known as CD117 and SCF
receptor), MERTK, and AXL. KIT, which codes for a protein
with important roles in self-renewal and differentiation of



TABLE 3
Compounds approved or under clinical trials for the treatment of AML and their intended targets

Target Compound Compound class Clinical trial

Topoisomerase II complex Daunorubicin DNA intercalator Approved
DNA polymerase complex Cytarabine Antimetabolite Approved
DNMTs Azacitidine Pyrimidine nucleoside analog Approved

Decitabine Pyrimidine nucleoside analog Approved
FLT3 Midostaurin Small molecule inhibitor Approved

Gilteritinib Small molecule inhibitor Approved
BCL2 Venetoclax Small molecule inhibitor Approved
Mutated IDH1 Ivosidenib Small molecule inhibitor Approved
Mutated IDH2 Enasidenib Small molecule inhibitor Approved
SMO Glasdegib Small molecule inhibitor Approved
CD33 Gemtuzumab Conjugated antibody Approved
KIT Sorafenib Small molecule inhibitor NCT05404516

Dasatinib Small molecule inhibitor NCT02013648
MERTK MRX-2843 Small molecule inhibitor NCT03510104
AXL Bemcentinib Small molecule inhibitor NCT03824080
XPO1 Selinexor Small molecule inhibitor NCT02835222, NCT02403310, NCT04898894
MCL1 AZD5991 Small molecule inhibitor NCT03218683

MIK665 Small molecule inhibitor NCT02979366
AMG 176 Small molecule inhibitor NCT02675452
AMG 397 Small molecule inhibitor NCT03465540

CDK9 Alvocidib Small molecule inhibitor NCT03969420
Dinaciclib Small molecule inhibitor NCT03484520
AZD4573 Small molecule inhibitor NCT03263637
Voruciclib Small molecule inhibitor NCT03547115

BRD4 Mivebresib Small molecule inhibitor NCT02391480
FT-1101 Small molecule inhibitor NCT02543879
Birabresib Small molecule inhibitor NCT02303782

ETC complex I IACS-010759 Small molecule inhibitor NCT02882321
CLPP ONC201 Allosteric agonist NCT02392572
CHK1 Prexasertib Small molecule inhibitor NCT02649764
PARP1 Talazoparib Small molecule inhibitor NCT02878785

Veliparib Small molecule inhibitor NCT03289910
MDM2 Idasanutlin Small molecule inhibitor NCT04029688
HDAC Belinostat Small molecule inhibitor NCT03772925

Entinostat Small molecule inhibitor NCT01305499
Pracinostat Small molecule inhibitor NCT01912274

CDK6 Palbociclib Small molecule inhibitor NCT03844997
KMT2A SNDX-5613 Small molecule inhibitor NCT05326516
MENIN JNJ-75276617 Small molecule inhibitor NCT04811560
DOT1L Pinometostat Small molecule inhibitor NCT03724084
CD123 MGN632 Conjugated antibody NCT04086264

Tagraxofusp Conjugated interleukin NCT04342962
CD47 Magrolimab Naked antibody NCT04435691
CD33 Anti-CD33-CART CAR-T Cell NCT05445765
CD123 Anti-CD123-CART CAR-T Cell NCT04318678
CLL-1 Anti-CLL-1-CART CAR-T Cell NCT04219163
CD7 Anti-CD7-CART CAR-T Cell NCT04033302
CD28 Anti-CD28-CART CAR-T Cell NCT04850560
CD38 Anti-CD38-CART CAR-T Cell NCT05239689
CD19 Anti-CD19-CART CAR-T Cell NCT04257175
FLT3 Anti-FLT3-CART CAR-T Cell NCT03904069
NKG2D Anti-NKG2D CAR-T Cell NCT04658004
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hematopoietic stem cells (38), is found mutated in about 17%
of AML patients, and its expression is increased in 60 to 80%
of AML samples when compared to normal hematopoietic
cells (39). There are no specific KIT inhibitors, but multiple
clinical trials are currently evaluating broad-spectrum RTK
inhibitors that also target KIT including midostaurin (already
approved for AML treatment), sorafenib (NCT05404516), and
dasatinib (NCT02013648). Inhibitors of MERTK and AXL,
which are also frequently overexpressed in leukemic cells,
reduce the proliferation of AML cell lines and increase survival
Mol Cell Proteomics (2023) 22(4) 100517 5
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in animal models of AML (40). Clinical trials with the MERTK
inhibitor MRX-2843 (NCT03510104) and the AXL inhibitor
bemcentinib (NCT03824080) are ongoing. In addition, the
approved FLT3 inhibitor gilteritinib also targets AXL.
Overactive RTKs promote cell proliferation by activating

intracellular kinase-driven signaling cascades—including
MEK/ERK, PI3K/AKT, and JAK/STAT—which in turn regulate
cell cycle kinases. Although inhibitors of MEK and PI3K/AKT
have not progressed in the clinic, considerable effort is
currently underway to treat cell cycle kinases downstream of
these signaling pathways (41, 42). CDK9 is a cyclin-dependent
kinase that forms part of the transcription elongation factor b.
This factor phosphorylates the CTD of RNA polymerase 2 and
stimulates the elongation of the transcription of most protein-
coding genes but in particular, those regulated by super en-
hancers like MYC and MCL1 (43). In in vitro AML models,
CDK9 inhibitors decreased the phosphorylation of RNA Pol II
and the expression of MYC, MCL1, XIAP, and cyclin D1,
induced apoptosis, and reduced cell proliferation. In animal
AML models, these compounds reduced tumor growth and
prolonged survival (43). These results encouraged the initia-
tion of clinical trials with the CDK9 inhibitors alvocidib
(NCT03969420), dinaciclib (NCT03484520), AZD4573
(NCT03263637), and voruciclib (NCT03547115). Another cell
cycle regulator that has been targeted in AML is CDK6, a ki-
nase important for the leukemogenic processes triggered by
FLT3-ITD and JAK-V617F mutations and KMT2A-MLLT3 and
RUNX1-ETO fusion proteins (44). Currently, the CDK4/6 in-
hibitor palbociclib (NCT03844997) is in clinical trials for the
treatment of AML.

Proapoptotic Therapies

In addition to promoting uncontrolled proliferation, over-
active RTKs and downstream signaling pathways promote
survival of cancer cells by suppressing apoptosis, a pro-
cess that, in normal cells, regulate cellular homeostasis
(15). Therefore, several small molecule inhibitors of anti-
apoptotic proteins have been tested for AML treatment.
Indeed, the success of venetoclax provides proof-of-
concept for this inhibitor class. Targeting the MCL1 pro-
vides an approach for targeting the process of apoptosis
because this protein is an antiapoptotic member of the
BCL2 protein family that, similarly to BCL2 (the target of
venetoclax), binds and inhibits the proapoptotic activity of
BIM, truncated BID, BAK, and BAX (29, 45). MCL1 is highly
expressed in patients with untreated AML and is necessary
for survival of AML cells and for the development and
persistence of the disease (46, 47). Inhibitor screens (48)
showed that AML cells were sensitive to MCL1 inhibition
leading to the initiation of several phase I studies for the
MCL1 inhibitors AZD5991 (NCT03218683), MIK665
(NCT02979366), AMG 176 (NCT02675452), and AMG 397
(NCT03465540) in AML.
6 Mol Cell Proteomics (2023) 22(4) 100517
DNA Damage Response Modulators

Targeting the DNA damage response (DDR) provides
another opportunity for interfering with the antiapoptotic pro-
cess in AML. DDR is a complex system that maintains
genomic integrity through regulation of DNA damage repair,
cell cycle progression, and apoptosis. Deregulation of the
DDR allows cancer cells to withstand DNA damage, which
would normally trigger apoptosis, but this also generates
certain vulnerabilities that can be exploited therapeutically.
One of such targets is CHK1, a kinase that upon activation by
DNA damage blocks cell cycle progression and triggers DNA
damage repair (15, 49, 50). The CHK1 inhibitor prexasertib is
being tested in combination with chemotherapy in a clinical
trial for the treatment of R/R AML (NCT02649764). Similarly,
PARP1, a key mediator of various forms of DNA damage
repair, is used by AML cells to withstand replicative stress
and/or deficiencies on the homologous repair system, features
that sensitize cells to PARR1 inhibitors (51). Currently, the
PARP1 inhibitors talazoparib (NCT02878785) and veliparib
(NCT03289910) are in clinical trials for the treatment of AML. A
further protein involved in DDR and apoptosis that is being
targeted in AML is MDM2, which is an ubiquitin ligase that
negatively regulates the levels and activity of TP53, a key
regulator of DNA repair, cell cycle progression, and apoptosis.
Impairment of TP53 plays a pivotal role in the process of
leukemogenesis, and, although just 10% of AML cases pre-
sent TP53 inactivating mutations, its impairment is more
generally associated to the overexpression of MDM2 (52). This
has led to the development of MDM2 inhibitors like idasa-
nutlin, currently in clinical trials for the treatment of AML
(NCT04029688).

Epigenetic Targeted Therapies

Epigenetic regulation has also been targeted for the devel-
opment of AML therapeutics because genes coding for
epigenetic proteins are frequently mutated or otherwise
deregulated in this disease. One of such protein is the histone
deacetylase (HDAC) family of epigenetic erasers that remove
acetylation marks from histones, leading to chromatin
compaction and gene silencing. HDACs also act on nonhis-
tone proteins to regulate their activities. HDAC inhibitors
cause changes in the expression of multiple genes, including
downregulation of the key oncogene MYC and induce differ-
entiation, cell cycle arrest, and apoptosis in AML cells (53).
Belinostat (NCT03772925), entinostat (NCT01305499), and
pracinostat (NCT01912274) are currently in clinical trials for
AML treatment.
Another epigenetic protein targeted in AML is the lysine

methyltransferase KMT2A, which methylates histone H3K4. In
10% of AML cases, KMT2A fusion proteins generated by
chromosomal rearrangements drive the leukemogenic pro-
cess. In these fusion proteins, the catalytic domain of KMT2A
is replaced by a region of the partner protein that facilitates
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recruitment of the histone H3K79 methyltransferase DOT1L to
the KMT2A target genes, a process that requires the KMT2A-
MENIN protein–protein interaction (54). Numerous small
molecule inhibitors have been designed to target proteins
necessary for the activity of KMT2A fusion proteins and
currently the KMT2A, MENIN, and DOT1L inhibitors SNDX-
5613, JNJ-75276617, and pinometostat, respectively, are in
clinical trials for the treatment of AML (NCT05326516,
NCT04811560, NCT03724084).
The bromodomain and extraterminal domain-containing

protein BRD4 is yet another promising epigenetic target for
AML treatment. BRD4 is a reader that binds to acetylated
histones and other proteins thus recruiting the TEFb complex
that, as previously discussed, stimulates transcription elon-
gation of genes relevant for the leukemogenic process like
MYC and MCL1 (55). Currently, the BET inhibitors mivebresib
(NCT02391480), FT-1101 (NCT02543879), and birabresib
(NCT02303782) have entered clinical trials for the treatment of
AML.

Protein Transport Inhibitors

Protein mislocalization is a frequent occurrence in cancer
cells and a potential mechanism of oncogenesis. Indeed,
several nuclear tumor suppressors cannot serve their func-
tions in cancer cells because they are mislocated to the
cytoplasm. TP53, BRCA1/2, NPM1, FOXO, RB1, and other
tumor suppressors are substrates of XPO1, an export receptor
responsible for the nuclear-cytoplasmic transport of hundreds
of proteins and RNA species (56). In addition, XPO1 levels
inversely correlate with the overall survival of AML patients
(57). Encouraging preclinical studies showing that XPO1 inhi-
bition promoted cell cycle arrest and apoptosis in in vitro and
in vivo AML models (58) accelerated the initiation of multiple
clinical trials with the XPO1 inhibitor selinexor in AML patients
(NCT02835222, NCT02403310, or NCT04898894).

Energy Metabolism Targeting Compounds

Like in other cancer types, targeting metabolic processes
open avenues for therapeutic intervention in AML. The elec-
tron transport chain (ETC) powers the mitochondrial oxidative
phosphorylation (OXPHOS), which has been proved as a main
source of energy in AML LSCs and chemotherapy-resistant
cells (59). The ETC complex I inhibitor IACS-010759 is a
potent antileukemic agent in in vitro and in vivo models and
has entered clinical trials for the treatment of AML
(NCT02882321) (60). Another way to target OXPHOS is with
activators of the ATP-dependent mitochondrial caseinolytic
protease P, which regulates OXPHOS by controlling the
degradation of the respiratory chain components and trig-
gering the mitochondrial unfolded protein response. ONC201
is an allosteric agonist that hyperactivates caseinolytic pro-
tease P impairing the OXPHOS and triggering an atypical in-
tegrated stress response mediated by ATF4. This compound
has also been effective as an antileukemic agent in in vitro and
in vivo AML models and is in clinical trials for the treatment of
AML (NCT02392572) (49).

Immunotherapies

In addition to the targeted agents discussed above, new
immunotherapy approaches have been developed in AML
with the aim to treat the disease using ADCs or immune cells
directed against surface markers on LSCs or bulk cell pop-
ulations. As noted above, gemtuzumab, an approved ADC
against CD33, provides proof-of-concept for this approach.
The receptor of interleukin 3 CD123 and the antiphagocytic
protein CD47 are highly expressed in LSCs (61, 62). Reagents
targeting CD123 in clinical trials for AML include MGN632
(NCT04086264), an anti-CD123 antibody linked to a genotoxic
compound, and tagraxofusp (NCT04342962), an agent
composed of human IL-3 fused to a portion of the diphtheria
toxin. In addition, the CD47 antibody magrolimab that facili-
tates the phagocytosis of LSC is also in clinical trials
(NCT04435691). CAR-T cells are cytotoxic T cells with T cell
receptors modified to target specific antigens (63). There are
currently multiple clinical trials testing the treatment of AML
with CAR-T cells design to target CD33 (NCT05445765),
CD123 (NCT04318678), CLL-1 (NCT04219163), CD7
(NCT04033302), CD28 (NCT04850560), CD38
(NCT05239689), CD19 (NCT04257175), FLT3 (NCT03904069),
and NKG2D (NCT04658004).
THE NEED TO PRIORITIZE THERAPIES FOR AML PATIENTS

As outlined above, intense research is producing a large
array of therapies that could potentially be used to treat AML.
Oncologists are already facing the issue of having to select the
drugs or drug combinations, out of the many available, more
likely to be efficacious for a given patient, a dilemma that will
become even more intricate as some of the new therapies
discussed above reach the clinic. Current technologies for
precision and personalized medicine are based on the anal-
ysis of genomic markers (64). Although these methods can
enrich for potential responders, and are thus an improvement
over therapies in unselected patient populations, results of
clinical trials show that genetic screens often fail to accurately
predict therapy outcome. For example, only ~20% of R/R AML
patients positive for NRAS or KRAS mutations responded to
the MEK inhibitor trametinib (65). Similarly, ~40% of FLT3
mutant–positive newly diagnosed AML patients failed to
respond to the FLT3 inhibitor midostaurin in combination with
chemotherapy (66), while, conversely, 41% to 56% of FLT3
mutant-negative patients responded to FLT3 inhibitors (65,
67, 68).
Focusing only on the genomic and transcriptomic layers of

cell function regulation leaves us blind to other important
regulators of cell phenotypes and outcomes (64). It is well
known that changes in gene expression do not always reflect
changes in protein abundance (69) and protein amounts in
Mol Cell Proteomics (2023) 22(4) 100517 7
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cells may not predict how enzymatically active they are (70,
71). Proteins are the major effectors of cell functions and their
regulation by allosteric and posttranslational modifications,
localization, interaction partners, and abundance combine to
regulate their enzymatic activity and proximity to their sub-
strates, which together influence pathway fluxes and cell
phenotypes. It is therefore critical to also consider proteomics,
phosphoproteomics, and other posttranslational modification-
‘omics’ datasets to understand disease development and
subtypes, as they can better capture the functional state and
dynamic properties of a given cell or cell population (64).
Therefore, the combination of genomics and transcriptomics
with proteomics and phosphoproteomics could complement
current approaches for disease classifications (including AML)
by defining new pathological subtypes linked to specific
therapeutic vulnerabilities.

OVERVIEW OF PROTEOMICS AND PHOSPHOPROTEOMICS
APPROACHES

Proteomics and phosphoproteomics methods based on
LC-MS/MS can accurately and simultaneously measure
abundances for thousands of proteins and phosphorylation
sites. Consequently, LC-MS/MS techniques are contributing
to the identification of clinically relevant biomarkers and tar-
gets for disease diagnosis and prognosis in precision medi-
cine (72–75). Quantitative proteomics and phosphoproteomic
approaches for profiling cell lines and primary samples could
be subdivided into label-based and label-free methods. La-
beling approaches put a limit on the number of samples that
can be assessed and makes it difficult to compare the results
of different experimental batches but are reputed to offer
greater analytical precision. Label-free and targeted prote-
omics methods, such as those based on data-independent
analysis, solve many of these issues and renders them suit-
able for clinical assays (76, 77). Detailed description of
quantitative labeling and label-free mass spectrometry
methods have been described elsewhere (78–83) and will not
be discussed here.
Quantitative proteomics produces large volumes of data

that require specialized computational methods for their bio-
logical interpretation. Multiple bioinformatics tools originally
designed for the analysis of gene expression, such as term
overrepresentation analysis and gene set enrichment analysis,
are also useful for obtaining pathway level information from
proteins differentially expressed or phosphorylated between
groups of interest. Term and ontology enrichment can be
computed against different databases (e.g., gene ontology,
KEGG, and NCI) utilizing algorithms frequently used in tran-
scriptomic data analysis (84). In addition, specialized software
has been developed for the analysis of phosphoproteomics
data. The algorithm kinase substrate enrichment analysis
(KSEA) uses phosphoproteomics data to estimate kinase ac-
tivities based on the phosphorylation of their substrates. The
first version of the algorithm (85) used databases based on
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empirically demonstrated associations between kinases and
substrates. An improved version of the algorithm uses data-
bases defined by a chemical proteomics approach that codes
information on kinase–kinase interactions that can allow the
reconstruction of kinase network topologies (71). Several
other methods for the inference of kinase network activity from
phosphoproteomics data have been developed and dis-
cussed in detail elsewhere (86). One of such tool, named
integrative inferred kinase activity (INKA), calculates kinase
activity form phosphoproteomics data takes by measuring
phosphorylation sites on the kinase and on its activation loop,
in addition to experimentally established substrates (as in
KSEA) and on substrates predicted in silico by NetworKin (87).
Studies that inferred kinase activity from phosphoproteomic

data are starting to provide biological insights in the field of
AML. For example, Van Alpen et al. showed that INKA analysis
of 16 AML cell lines using tyrosine-targeted phosphoproteo-
mics identified hyperphosphorylated, active kinases as can-
didates for targeted therapies. Validation drug response
experiments showed that, in addition to driver kinases corre-
sponding with activating mutations present in these cell lines,
INKA analysis also pinpointed driver kinases undetected by
standard molecular analyses. Furthermore, INKA detected
hyperactivation of FLT3 in two clinical AML samples with an
FLT3-ITD mutation (88). Another example is the application of
KSEA to primary cells from a cohort of 20 patients (85), which
identified MEK1/2, casein kinases, CDKs, and PAKs as the
most frequently activated kinases in AML cases compared to
periferal blood cells from healthy donors. Furthermore, KSEA
showed that substrates of ERK, CDC7 were more phosphor-
ylated in primary cells resistant to a compound targeting the
PI3K/MTOR pathway, while substrates of ABL, LCK, SRC, and
CDK1 were more phosphorylated in sensitive cells.

LIMITATION OF AML CELL LINES AS CLINICALLY RELEVANT MODELS
FOR PROTEOMICS AND PHOSPHOPROTEOMICS STUDIES

Cell lines are frequently used as disease models in basic
research. However, cell lines may not always resemble the
biology of primary cells, and therefore are not useful to model
all aspects of cancer biology. In the case of AML, although
cytogenetic signatures based on gene expression have been
found to be conserved, to some extend at least, between AML
primary samples and cell lines, other reports highlight the
limitations of cell lines as disease models (89). For example,
analysis of the expression of 380 genes linked to multidrug
resistance proteins and upregulated genes that facilitate cell
survival showed that cell lines from different origins (including
AML) were more similar between them than to the primary
tumor cells that they were supposed to model (90). Regarding
protein expression, Aasebo et al. (91) found, in a dataset
comprising five AML cell lines and 27 primary AML samples,
that about one third of the proteins quantified were differen-
tially expressed between cell lines and primary cells, with
proteins involved in translation overexpressed in cell lines and
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proteins associated to the mitochondria overexpressed in
primary cells. These results imply that, although cells lines can
be used to investigate some aspects of tumor biology and for
drug development, they do not fully recapitulate the biological
complexity of AML (89). Therefore, the focus of this review is
on studies that used primary AML cells as the focus of the
analysis.

PROTEOMICS AND PHOSPHOPROTEOMICS STUDIES FOR TARGET
IDENTIFICATION AND DRUG RESPONSE PREDICTION

Access to large cohorts of primary AML clinical specimens
and the availability of appropriate control samples still remains
challenging (89). Nevertheless, multiple studies have used
mass spectrometry to identify proteins or phosphorylation
sites differentially regulated between AML patients and
healthy donors, to define subgroups of AML patients, to
model drug responses and other features using machine
learning (ML) algorithms, and to identify determinants of re-
sponses to approved and experimental therapies. Differen-
tially expressed features derived from these studies could
potentially be used as new drug targets and/or response
markers for precision medicine in AML. Here, we review in a
chronological order of publication, proteomics, and phos-
phoproteomic studies of primary AML that aimed to identify
drug targets or mechanisms of drug sensitivity.
Casado et al. (85) profiled the basal phosphoproteomes in a

cohort of 20 primary AML samples linked to preclinical re-
sponses to kinase inhibitors. A pathway activity signature of
phosphosites that decreased by the treatment of cell lines
with PI3K and MTOR inhibitors was then evaluated in primary
AML cells for its ability to predict responses to kinase in-
hibitors in preclinical development. Linear regression models
were trained using signatures derived from individual phos-
phopeptides as well as KSEA-estimated kinase activities and
values of phosphorylation motifs enrichment. Interestingly, it
was found that the activity of the PI3K/MTOR pathway was
not the only determinant of sensitivity to inhibitors of this
pathway and that the activity of pathways, such as ERK1/2
and PKC, that can compensate for PI3K target inhibition were
elevated in resistant cells. Thus, accurate predictive models
could be constructed by combining kinase activities in the
target kinase pathways relative to those that act in parallel to
compensate for target inhibition.
A follow up study from the same group integrated phos-

phoproteomics, proteomics, genomics, and mass cytometry
(immunophenotype) data with ex vivo responses to MEK, PAK,
PKC/FLT3, CK2, and MAPK P38 inhibitors (92). The study
showed evidence of molecular features associated to
response to treatment and identified kinase and differentiation
determinants as markers of sensitivity to kinase inhibitors in
primary leukemic blasts. The study, performed in primary cells
form 30 AML cases, revealed that protein phosphorylation
positively correlated with the surface expression of differen-
tiation makers (CDs) associated to myeloid differentiation.
AML cases were subsequently separated into more and less
differentiated cases (CDs+ and CDs groups, respectively)
using the surface expression of myeloid differentiation
markers. More differentiated (CDs+) cases expressed higher
levels of kinases and signal transduction regulators and
increased the activity of kinases downstream of growth fac-
tors such as MAPK1, MAPK3, PAK2, and PKCδ. Consistently,
CDs+ cases were more sensitive to the MEK, PAK, and FLT3/
PKC inhibitors in ex vivo assays. These results established a
link between differentiation, kinase activity, and sensitivity to
kinase inhibitors.
In the same study, a more integrative and systematic

analysis of mutational profiles and mass spectrometry and
cytometry data showed that NRAS or BRAF mutations, high
MAPK1 activity, or the CDs+ phenotype were associated with
sensitivity to trametinib, while FLT3-ITD mutations or high
pSTAT5A phosphorylation were linked to resistance. These
data suggested two distinct mechanisms of intrinsic resis-
tance to MEK inhibition. In the first one, cells with low RAS/
MEK/ERK pathway activity were not addicted to the pro-
survival actions of MEK. In the second, cells with highly active
RAS/MEK/ERK, as a result of RAS/RAF mutations and/or
expression of myeloid differentiation markers, but resistant to
MEKi, were found to activate an FLT3/STAT5 axis, which may
act in parallel to MEK/ERK to sustain cell survival. Interest-
ingly, the response to midostaurin was not associated to FLT3
mutations; instead, the CDs+ phenotype and the phosphory-
lation of PKCδ, a known target of midostaurin, were associ-
ated to the response to this drug, suggesting that the mode of
action of midostaurin involves inhibiting other kinases in
addition to FLT3.
In a different study, Alanazi et al. (93) identified misex-

pressed or mislocalized proteins to the nucleus that could
regulate the malignant properties of AML blasts. The com-
parison of the nuclear proteomes of CD34+ cord blood cells
from five healthy donors and blasts from 15 cases with FAB-
M2 AML led to the identification of 113 proteins, 11 of which
were transcription factors frequently mislocalized in AML
blasts. S100A4 was the highest differentially expressed pro-
tein in AML nuclei that was not previously implicated in AML.
Relevantly, protein but not mRNA levels of S100A4 were
overexpressed in the nucleus of a larger cohort of 24 patients.
Functional experiments showed that knock down of S100A4
strongly impacted the survival of AML cell lines, but not the
survival of normal hematopoietic stem progenitor cells, sug-
gesting that S100A4 could be a new target for AML treatment.
In a follow up from (92), Hijazi et al. (71) analyzed drug

response data by multivariate regression using kinase network
edge activities (derived by KSEA) as input to predict response
to trametinib, midostaurin, silmitasertib, and the PAK4 inhibi-
tor PF-3758309. These models predicted drug response with
an accuracy between 20 and 40% and highlighted that the
activity of target and parallel pathways contribute to model
performance.
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Aasebo et al. (94) profiled the proteome and phosphopro-
teome of AML primary blasts at the time of diagnosis from 41
AML patients that reached complete remission, from where
proteins differentially expressed or phosphorylated were
identified in patients that relapsed within 5 years relative to
those who did not. Relapsed cases presented increased
expression of RNA processing proteins and increased phos-
phorylation of proteins liked to CDKs and CK2, while relapse-
free cases increased the expression of V-ATPase proteins.
Therefore, this study suggested markers that could help to
predict relapse in AML.
Assessing drug response in ex vivo models has provided

highly valuable information related to targetable pathways in
AML (95). However, ex vivo models are devoid of all signals
from stromal components and clearly differ from human
in vivo responses. Therefore, proteomics and phosphopro-
teomics studies in primary AML blast obtained at diagnosis
from AML patients with known responses to treatment
would provide extremely useful information. In line with this,
Hernandez-Valladares et al. (96) performed a proteomics
analysis in nontreated samples from 28 AML cases that
were subsequently treated with all-trans retinoic acid and
valporic (a HDAC inhibitor), a treatment used alone or in
combination with low dose chemotherapy for patients unfit
for standard chemotherapy. Nonresponders overexpressed
the lysosomal protein ARSA, while responders overex-
pressed proteins linked to myeloid cells, neutrophil
degranulation, lysosomes, carcinogenesis (including ANO6,
CHI3L1, CTSG, ELANE, and FGR), and M phase of the cell
cycle (including CENPE, CENPK, CDK1, NCAPG; and
several histones). Interestingly, the proteins differentially
expressed between responders and nonresponders pre-
sented a low overlap between mRNA and protein levels.
Phosphoproteomics analysis showed that responders
increased the phosphorylation of proteins liked to the pro-
cess of apoptosis, such as SPTAN1 and ACIN1, as well as
LIMKs and CDKs substrates. In addition, proteomics and
phosphoproteomics analysis comparing patient samples
before and after 3-day treatment revealed an altered
expression and phosphorylation of proteins involved in the
regulation of transcription, translation, and RNA metabolism.
Nguyen et al. (97) profiled the proteome of BM cells from 16

pediatric AML patients at diagnosis and found that 117 pro-
teins that were differentially expressed in cases with fusion
proteins involving components of core binding factor complex
(CBF). Patients with CBF rearrangements deregulate proteins
involved in several metabolic pathways such as the TCA cycle
and the ATP synthesis coupled to proton transport. In addi-
tion, CD34 protein expression was significantly increased in
cases with CBF rearrangements, suggesting that CBF AMLs
carry unique protein expressions that resemble CD34+ pro-
genitor cells. These data also imply that cases with or without
CBF rearrangements could present a differential response to
compounds that interfere with the ETC.
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Casado et al. (72) described a ML workflow aimed to predict
ex vivo patient response to trametinib, a specific inhibitor of
MEK1 and MEK2, in primary AML using kinase activity (KSEA)
as input. A model using the partial least squares algorithm was
used to rank and filter the most relevant kinase activities in the
training set, which were subsequently used as input for a
random forest regression model. The ML model predicted
trametinib response with a root median square error of 0.131
in the validation dataset.
A proteogenomic study by Jayavelu et al. (98), in addition to

providing insights into the pathogenesis of AML, also revealed
altered molecular features that could influence response to
therapy and suggested that a group, termed C-Mito AML, with
defined mitochondrial protein expression patterns, tended to
respond to venetoclax and electron transport I complex
inhibitors.
In a more integrative study, Kramer et al. (99) performed

proteomics and phosphoproteomics in BM samples from six
healthy donors and 44 patients for which data on DNA and
RNA sequencing were available. The patient cohort covered
all European LeukemiaNet cytogenetic risk groups and
frequent single gene mutations. Protein-mRNA level correla-
tion analysis showed no positive correlation (spearman < 0) for
more than a thousand proteins that were mainly linked to
spliceosome, OXPHOS, and RNA polymerase processes. On
the other hand, the 1198 proteins that showed positive cor-
relation included differentiation markers and other proteins
relevant for the AML physiopathology. The authors demon-
strated that IDH1 or IDH2 mutations caused increased protein
expression of the 2-HG–dependent histone demethylases
KDM4A, KDM4B, and KDM4C. NPM1c mutations relocate
NPM1 to the cytoplasm and it was shown that cases with
NPM1c mutations had increased levels of the nuclear impor-
tins KPNA4 and KPNA1 that are able to interact with mutated
but not with normal forms of NPM1. Of interest, proteomics
data guided the identification of the markers CD180 and
CD206 in the plasma membrane of AML blast from some
patients but not in the surface of healthy CD34+ cells, sug-
gesting that these markers could represent novel targets for
immunotherapy. Clustering analysis using phosphoproteo-
mics data also separated healthy donors from AML cases and
segregated patients according to the presence of FLT3 mu-
tations or PML-RARA fusions. When compared to healthy
donors, AML cases presented abnormal phosphorylation of
specific residues in PTPN11, STAT3, AKT1, and PRKCD. In
addition, FLT3-TKD–mutated samples increased the phos-
phorylation of activating residues in the tyrosine kinases FGR
and HCK and other signaling related proteins, while the PML-
RARA–initiated samples displayed a unique phosphorylation
signature that included increased phosphorylation of JUN at
S60 and STK26 at the activation loop. Finally, TP53-mutant
samples showed abundant phosphorylation of TP53 at S183.
This study shows that the link between mRNA and protein
abundance in AML cells is relatively limited, especially for
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proteins linked to RNA maturation and mitochondrial function,
highlighting the relevance of proteomics studies.
In agreement with this, a study by Caplan et al. (100),

combining proteomics and transcriptomics in AML mouse
models, identified a set of 34 proteins upregulated in AML
tumors at the protein but not at the mRNA level that also
showed an enrichment of mitochondrial and spliceosome
proteins. Relevantly, proteins differentially expressed or
phosphorylated were found associated to AML and specific
mutations that could constitute new targets or markers for
precision medicine. However, no link was established be-
tween protein expression or phosphorylation and drug
response.
In another study that used ML from mass spectrometry data

to derive models of therapeutic response and mechanistic
inference in AML cases, Gosline et al. (101) performed pro-
teomics and phosphoproteomics from 38 AML cases for
which genomics and transcriptomics data were available.
Identified signatures from different omic layers were evaluated
for their ability to model ex vivo responses to 26 drugs. Ge-
netic mutations were found to be relatively robust in modeling
responses to targeted therapy (e.g., trametinib and quizartinib
for NRAS- and FLT3-activating mutations), but models based
on protein features showed greater performance when
assessed across all drugs. The proteins and phosphopeptides
more relevant for quizartinib and trametinib predictive models
clustered AML cell lines based on response to these drugs. In
addition, these features were integrated to identify putative
underlying molecular pathways and provide a biological
interpretation of the signatures. The phosphatase SHP-1 (also
known as INPP5D) was part of the signature used by LASSO
and logistic regression models, and patients sensitive to qui-
zartinib downregulated this phosphatase, a known regulator of
signaling downstream of FLT3 (102). An integration algorithm
added the expression of SHC1, a protein expressed in AML
blasts, and the phosphorylation of SMC3, that synergize with
FLT3 in AML, to the SHP-1 network. Patients highly resistant
to trametinib expressed proteins associated to mRNA pro-
cessing and catabolism. Network integration using mRNA and
protein expression data highlighted BID, CASP1, GZMB, and
other proteins linked to apoptosis, thus suggesting that
expression of apoptosis-related proteins and transcripts could
predispose patients to trametinib sensitivity.
In another recent study, Casado et al. (103) profiled 74 AML

patients from Finland and the UK with poor risk karyotype
using genomics, transcriptomics, proteomics, and phospho-
proteomics platforms, as well as ex vivo responses to 550
drugs. Integration of the data identified a phosphoproteomics
signature that defined two biologically distinct groups of
KMT2A-rearranged leukemia, which were termed MLLGA and
MLLGB. Increased DOT1L phosphorylation and HOXA gene
expression indicated that MLLGA cases have higher activity of
DOT1L and TEFb at KMT2A target genes when compared to
MLLGB and the no KMT2A rearrangement group. MLLGA
cases also increased the activity of CDK1 and the phos-
phorylation of proteins involved in RNA metabolism, replica-
tion, and DNA damage when compared to MLLGB and no
KMT2A. Compared to other groups, MLLGA was particularly
sensitive to 15 compounds including genotoxic drugs and
inhibitors of mitotic kinases and inosine-5-monosphosphate
dehydrogenase (IMPDH). Further experiments suggested
that the ability of IMPDH inhibitors to interfere with the
nucleolar biology is, at least partially, responsible for the
higher efficiency of these compounds in MLLGA. This study
identifies a signature that classifies AML patients with KMT2A
rearrangements into two biologically and functionally different
groups, and it provides a rationale for the potential testing of
IMPDH inhibitors and potentially mitotic and genotoxic com-
pounds in KMT2A patients positive for the MLLGA signature.
In summary, multiple strategies using phosphoproteomics

and proteomics data have been implemented to identify po-
tential new targets and response markers in AML (Fig. 2). The
wealth of data that is now generated using proteomic ap-
proaches require data science strategies to mine such rich
datasets for biological and clinical insights. A frequently used
strategy consists of classifying AML cases into groups using
previously known labels (e.g., responder versus nonresponder
groups to a given drug) for the identification of proteins
differentially phosphorylated or expressed between groups
using classical statistics (Fig. 2). Differentially expressed or
modified features provide biological insights and may reveal
candidate drug response markers and drug targets specific for
each patient population. Groups have been defined based on
patients versus healthy donors (85), relapsed versus no
relapsed patients (94), patients with presence versus no
presence of chromosome rearrangements (97) or mutations
(99), or responders versus nonresponders to a treatment (96).
Another option is to define new labels using proteomics,

phosphoproteomics, or other omics data as input for unsu-
pervised ML algorithms like hierarchical clustering or principal
component analysis to generate new labels, which may be
used to classify cases and identify potential response markers
and drug targets as described above (Fig. 2). This strategy has
been used to define the CDs groups and C-Mito cluster (92,
98). The rationalization of response markers and drug targets
can also be used to refine the definition of the labels used to
classify the patients (92, 93). Other approaches used super-
vised ML to generate regression or classification models that
model and predict drug response or other relevant features
(71, 104). While these models may in the future be useful to
clinicians when deciding on therapeutic options, it is clear that
these will not be used in isolation and will instead complement
the information derived from the assessment of classical
clinicopathological and genomics features, which together
may provide more accurate drug response predictions. A
limitation of this approach is that it produces black box
models from which is it difficult to derive mechanistic insight,
although considerable work to solve this issue is being carried
Mol Cell Proteomics (2023) 22(4) 100517 11



FIG. 2. Data science strategies for the identification of new drug targets and response markers for the treatment of AML using
proteomics or phosphoproteomics data. Individuals are classified based on known labels (e.g., resistant or sensitive to a given treatment).
Differences in protein phosphorylation and expression between groups are determined using classical statistics and utilized to rationalize
mechanisms, from which potential drug targets and response markers may be identified. Unsupervised ML methods, like hierarchical clustering
or PCA, may use proteomics, phosphoproteomics, or other omics data to define new labels and patient groups. Differences between such
groups may again reveal potential treatments for these patient subpopulations, and response markers may in turn be used to refine labels
further. Supervised ML is used to generate regression or classification models of drug responses from proteomics and phosphoproteomics data
(or values derived thereof). Features (proteins, phosphopeptides, etc.) that define the models may give insights into drug response mechanism.
AML, acute myeloid leukemia; ML, machine learning.
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out (105). In some instances (e.g., when explainability is an
essential requirement or when sample numbers are limited), it
may be preferable to use ML methods based on linear
regression or random forest (106), which although simpler and
less powerful than deep learning (105), allow inferring feature
importance with relative ease (106).

RATIONALIZATION OF DRUG SYNERGY IN AML CELLS USING
PROTEOMICS AND PHOSPHOPROTEOMICS

Tumors depend on a limited number of molecular mecha-
nisms for their survival and proliferation. Therefore, drug
combination therapies that simultaneously target several of
these crucial mechanisms would produce a synergistic effect
that is greater than the sum of the effect of the single treat-
ments. Although attractive, precision medicine for cancer
treatment using combinations of drugs with a synergistic
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effect proves to be highly challenging (107). Proteomics and
phosphoproteomics approaches may contribute to the
rationalization of drug combinations, and below we summa-
rize illustrative studies that aimed to do so in AML.
Cucchi et al. (67) used an ex vivo drug response analysis in

19 AML cases to identify sensitive and resistant patients to the
FLT3 inhibitors gilteritinib and midostaurin. FLT3-ITD–mutated
samples were more responsive towards gilteritinib and mid-
ostaurin, compared with FLT3 Wt cases, but the presence of
FLT3-ITD mutations could not fully explain these responses.
To address this, phosphoproteomics was used to investigate
associations between response and phosphorylation.
Gilteritinib-resistant samples increased the phosphorylation
and activity of MAPK1/MAPK3, EGFR1, and KIT. While no
difference in responses were found between FLT3 mutant and
WT cases, a small fraction of peptides differentially
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phosphorylated between sensitive and resistant cases to gil-
teritinib and midostaurin were also differentially phosphory-
lated between ITD and Wt FLT3 cases, suggesting that most
of the differences in phosphorylation between resistant and
sensitive cells come from parallel pathways to FLT3 signaling
that support survival in the absence of FLT3 activity. Conse-
quently, their targeting could sensitize cells to FLT3 inhibition,
a hypothesis that was confirmed with the combination of gil-
teritinib or midostaurin with the MEK inhibitor trametinib,
which showed synergy, although this was only observed in
one NRAS-mutated sample. This is in line with studies
reporting resistance to midostaurin in NRAS-mutated cases
(92).
Murray et al. (108) profiled the phosphoproteome of primary

AML blasts from seven patients with Wt or mutant FLT3. A set
of 143 peptides were found to be highly phosphorylated in
FLT3 mutant patients, and these presented an enrichment of
proteins linked to the Non Homologous End Joining DNA
repair pathway, while the 90 peptides downphosphorylated in
FLT3 mutant cases showed an enrichment of proteins asso-
ciated to the Base Excision Repair pathway. Mutant cases
increased the autophosphorylation DNA protein kinase
(PRKDC) at S2612 and the phosphorylation of other key
proteins in the Non Homologous End Joining pathway like
XRCC4, XRCC5, and TP53BP1. PRKDC phosphorylation at
S2612 was sensitive to FLT3 inhibitors. Furthermore, the
PRKDC inhibitor M3814, when combined with the FLT3 in-
hibitor sorafenib, showed a synergistic effect in reducing the
survival of primary blast with mutated FLT3 but not of blast
with Wt FLT3. Finally, a xerograph mice model of the FLT3-ITD
mutant AML cell line MV4-11 survived longer when treated
with the combination of M3814 and sorafenib than when
subjected to single agent therapy. In summary, phosphopro-
teome profiling showed that primary AML blast with mutated
FLT3 overactivated the PRKDC pathway, and this rationalized
a synergistic FLT3 and PRKDC inhibitor combination in FLT3
mutant–positive AML cells.
Zhu et al. carried out a phosphoproteome profiling of pri-

mary cells at diagnosis from eight AML patients that did
(remission) or did not (refractory) respond to standard
chemotherapy. This study showed that refractory patients
increased the phosphorylation of proteins linked to ATM,
FLT3, and MAPK/ERK signaling (109). Kinase activity infer-
ence using NetworKIN showed that refractory samples had an
increase in the phosphorylation of putative substrates of CK2
and CDKs. Consistent with these observations, the CK2 in-
hibitor silmitasertib increased cell death induced by cytarabine
in primary AML cases from refractory cases. The CK2 sub-
strate HMGA1 was highly phosphorylated in refractory cases;
removal of this protein in AML cell lines reduced their prolif-
eration, and conversely, transduction of a phosphomimetic
mutant for HMGA1 at CK2 sites increased the colony forma-
tion of a MLL-AF9/FLT3-ITD murine model of AML. HMGA1
and the transcription factor SP1 regulate the expression of
BIRC5, a relevant antiapoptotic protein in AML. A functional
study showed that only phosphorylable forms of HMGA1 at
CK2 sites bind SP1 at the BIRC5 promoter. This work revealed
a potential mechanism by which HMGA1 phosphorylation at
CK2 sites promotes intrinsic resistance cytarabine-based
chemotherapy and how CK2 inhibitors could sensitize
chemo-resistant cells.
In another elegant study, Emdal et al. (110) performed a

phosphoproteomic analysis of 20 primary AML samples sen-
sitive or resistant to ex vivo treatment with selinexor for 6 h. In
patient samples and cell lines sensitive to the drug, selinexor
increased the phosphorylation of TP53 at S15, a marker of its
transcriptional activity. However, in patients resistant to seli-
nexor treatment, the drug increased the phosphorylation of
FOXO3A at S253, an AKT site that sequesters FOXO3A in the
cytoplasm and inhibit its proapoptotic transcriptional activity.
In AML cell lines with Wt TP53 and sensitive to selinexor,
nutlin-3 (an MDM2 inhibitor that increase TP53 transcriptional
activity) and selinexor treatment produced a synergistic effect
in which nutlin-3 decreased the degradation of TP53, a key
protein for the cell death induced by selinexor. In addition, in
AML cell lines resistant to selinexor, the combination of the
AKT inhibitor MK-220 with selinexor showed a synergistic
effect together with an increase in the nuclear localization of
FOXO3A where it executes its proapoptotic transcriptional
activity.
Inspired by previous studies showing that differentiation is

closely linked to kinase signaling and response to kinase in-
hibitors (92), Pedicona et al. (111) tested the idea that inducing
differentiation in AML would reshape kinase networks into
topologies that confer sensitivity to kinase-targeted drugs.
Phosphoproteomics and proteomics showed that inhibitors of
the lysine-specific demethylase 1 (LSD1) rewired kinase
signaling in AML cells in a way that increased the activity of
the kinase MEK and suppressed the activity of other kinases
and feedback loops. Consequently, AML cell lines and about
half of the 17 primary AML samples tested were primed for
sensitivity to the MEK inhibitor trametinib. Phosphoproteo-
mics analysis showed that cases that responded to sequential
treatment with LSD1 inhibitors and trametinib presented
KRAS mutations and high MEK activity, whereas those with
NRAS mutations and high MTOR activity were poor re-
sponders. This study revealed the MEK pathway as a mech-
anism of resistance to LSD1 inhibitors in AML, and more
importantly, it provided a rationale to modulate kinase network
circuitry to potentially overcome therapeutic resistance to ki-
nase inhibitors. This approach targets both epigenetics and
signaling processes, which are key for the “two-hit” theory of
leukemogenesis (10).
Another study used proteomics and phosphoproteomics to

identify and rationalize the synergistic effect between FLT3
and autophagy inhibitors in AML cells positive for FLT3-ITD
mutations. Koschade et al. (112) used quantification of
translation changes by proteomics to reveal global attenuation
Mol Cell Proteomics (2023) 22(4) 100517 13
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of translation, but an increase in the transcription and syn-
thesis of proteins involved in autophagy, upon FLT3 inhibition.
Phosphoproteomics analysis showed an increase in the
phosphorylation of proteins related to autophagy and MTOR
signaling after pharmacological inhibition of FLT3. Functional
studies demonstrated that FLT3 inhibitors induced autophagy
in cell lines with FLT3-ITD mutations, but not in cells with WT
FLT3 through a pathway that involves inhibition of MTOR and
activation of ULK1. Autophagy is a cytoprotective mechanism
that increases survival. Genetic or chemical inhibition of the
autophagy induced by FLT3 inhibitors in cell lines with FLT3-
ITD increased the sensitivity of these cells to FLT3 inhibitors.
Consistently, the combination of FLT3 inhibitors and auto-
phagy inhibitors synergistically reduced the viability of FLT3-
ITD primary blast from AML patients ex vivo and reduced the
tumor burthen in FLT3-ITD cell line and PDX models.
SINGLE CELL PROTEOMICS

MS-based proteomics and phosphoproteomics are
providing valuable information on AML biology. However,
these analyses, so far carried out on bulk cell populations, do
not capture biological clonality within complex cell systems.
Therefore, since AML show highly intratumor heterogeneity,
single cell resolution would provide important information for
targeting the entire leukemia rather than the dominant AML
subclones. While single cell methods based on nucleotide
sequencing are increasingly used, very recent improvements
in mass spectrometry sensitivity also allow quantifying ~1000
proteins per single cell across thousands of individual cells
(113). This approach was able to recapitulate the hierarchy of
AML populations obtained by flow cytometry analysis (114)
and therefore it has the potential to provide new information
on AML intratumor heterogeneity not attainable with standard
proteomic methods.
IMPLEMENTATION OF MS-BASED PROTEOMICS IN CLINICAL
SETTINGS

Despite recent enormous technological and conceptual
advances, broad implementation of MS-based proteomics
and phosphoproteomics in routine clinical environments has
not yet materialized. Issues with analyte stability, complexity
of workflows, reproducibility of protein extraction, and cost
make translation of these techniques to the clinic challenging.
Validation and implementation of candidate markers in clinical
settings require precise and specific protein quantification
approaches that are harmonized across laboratories and run
in a multiplexed manner with sufficient throughput for the in-
formation to be actionable (114–116). These requirements are
better addressed by targeted MS approaches, like selected or
parallel reaction monitoring, that focus the full analytic ca-
pacity of the instrument on a discrete number of analytes of
interest previously identified by shoot-gun proteomics. The
FDA considers all targeted MS proteomics approaches run in
14 Mol Cell Proteomics (2023) 22(4) 100517
clinical laboratories as in vitro diagnostic medical devices (77).
Specific guidelines for LC-MS–based tests are not yet issued,
but the studies required for their clearance or approval will
likely follow the standards of other in vitro diagnostic medical
device tests (77). While to our knowledge no LC-MS–based
targeted proteomics have been cleared or approved by the
FDA by 2022 (75, 77, 117), a small number of laboratory
developed tests based on MS proteomics have been devel-
oped, and some of them are implemented as end points in
clinical trials in the field of cancer (e.g., NCT04389112) and
other diseases (e.g., NCT04049019, NCT04514744).
CONCLUSIONS AND OUTLOOK

Proteomics and phosphoproteomics provide biological in-
formation that cannot always be extracted from genomics and
transcriptomics data. Protein expression rarely overlap with
mRNA expression, especially for mitochondrial proteins, an
organelle targeted by new AML treatments. Similarly, protein
expression may not correlate with their extent of activation.
Protein phosphorylation is closer to protein function and can
be used to infer the activities of kinases, which are enzymes
that participate in the regulation of essentially all biological
processes in normal and cancer cells (118). Therefore, prote-
omics and phosphoproteomics approaches—alone or inte-
grated with genomics and transcriptomics—provide new
mechanistic insights into disease pathogenesis from which to
identify drug targets and biomarkers of drug response, to be
used as input of predictive models, and to rationalize drug
combinations that synergistically induce AML cell death.
Application of these concepts more broadly will advance
precision medicine and may also be used for analyzing and
interpreting single cell proteomics data, now that instruments
with the required sensitivity are becoming available (119), thus
contributing to the deconvolution of the intratumor complexity
that characterizes AML. Proteomics and phosphoproteomics
approaches are therefore likely to play a pivotal role in the
design and implementation of precision medicine in AML in
the near future.
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