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Abstract
The research team has utilized privacy-protected mobile device location data, integrated with COVID-19 case data and cen-
sus population data, to produce a COVID-19 impact analysis platform that can inform users about the effects of COVID-19
spread and government orders on mobility and social distancing. The platform is being updated daily, to continuously inform
decision-makers about the impacts of COVID-19 on their communities, using an interactive analytical tool. The research
team has processed anonymized mobile device location data to identify trips and produced a set of variables, including social
distancing index, percentage of people staying at home, visits to work and non-work locations, out-of-town trips, and trip dis-
tance. The results are aggregated to county and state levels to protect privacy, and scaled to the entire population of each
county and state. The research team is making their data and findings, which are updated daily and go back to January 1,
2020, for benchmarking, available to the public to help public officials make informed decisions. This paper presents a sum-
mary of the platform and describes the methodology used to process data and produce the platform metrics.

Informed decision-making requires data. In the case of
COVID-19, no previous pandemic has had such a big
universal impact on societies in modern history; as a
result, historic data lacked key information on how peo-
ple react to such a universal pandemic and how the virus
affects economies and societies. Data-driven decision-
making becomes a challenge in such an unprecedented
event. Thanks to the technology, there is now an enor-
mous amount of observed data collected by mobile
devices amid pandemics. It is now possible to utilize this
data to learn more about the various impacts of a pan-
demic on people’s lives, make informed decisions to fight
the current ‘‘invisible enemy,’’ and be better prepared
next time such pandemics happen. The research team
has utilized a national set of privacy-protected mobile
device location data and produced a COVID-19 Impact
Analysis Platform to provide comprehensive data and
insights on COVID-19’s impact on mobility, economy,
and society.

Mobile device location data are becoming popular for
studying human behavior, especially mobility behavior.
Earlier studies with mobile device location data were
mainly using GPS technology, which is capable of
recording accurate information, including location, time,
speed, and possibly a measure of data quality (1). Later,

mobile phones and smartphones gained popularity, as
they could enable researchers to study individual-level
mobility patterns (2–4). Other emerging mobile device
location data sources, such as call detail record (CDR),
cellular network data, and social media location-based
services, have also been used by researchers to study
mobility behavior (5–13). Mobile device location data
has proved to be a great asset for decision-makers amid
the current COVID-19 pandemic. Many companies, such
as Google and Apple, or Cuebiq, have already utilized
location data to produce valuable information about
mobility and economic trends (14–16). Researchers have
also utilized mobile device location data for studying
COVID-19-related behavior (17, 18).

The effect of mobility patterns and non-pharmaceutical
interventions such as social distancing has been well stud-
ied for preventing virus spread (19–21). Empirical analysis
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utilizing airline travel revealed the significant influence of
international air travel on the progress of influenza out-
breaks, as well as the impacts of domestic air travel on the
evolution of disease spread across the United States (U.S.)
(20). Later on, studies utilized more comprehensive mobi-
lity data to investigate the influence of mobility patterns
and travel restrictions on containing the epidemic spread
(21, 22). One of the most recent studies projected that the
recurrent outbreaks might be observed in the winter of
2020 based on pharmaceutical estimates of COVID-19 and
other coronaviruses, so prolonged or intermittent social
distancing may be required until 2022 without any inter-
ventions, highlighting the importance of improving under-
standing of individuals’ reactions to social distancing (23).
Researchers have highlighted the importance of social dis-
tancing in disease prevention through modeling and simu-
lation (24–27). The simulation models assume a level of
compliance, which can now be validated through observed
data. Furthermore, artificial intelligence (AI) techniques,
along with big data, have also been largely applied in sev-
eral different aspects to manage the COVID-19 pandemic,
such as early detection and diagnosis, monitoring the treat-
ment, contact tracing of individuals, and projection of
cases and mortality (28, 29).

The research team’s current platform utilizes mobile
device location data to provide observed data and evi-
dence on social distancing behavior and the impact of
COVID-19 on mobility. Daily feeds of mobile device
location data were used, representing movements of more
than 100 million anonymized devices, integrated with
COVID-19 case data from John Hopkins University and
census population data, to monitor mobility trends in the
U.S. and study social distancing behavior (30). The next
section describes the underlying mobile device location
data used for constructing the mobility patterns. The
methodology used to process the anonymized location
data and produce the metrics that are available on the
platform is described next. The methodology section is
followed by a brief overview of the platform. The last sec-
tion presents concluding remarks.

Data

The emergence of mobile device location technologies
such as cellphone, GPS, and location-based services
(LBS) made mobile device location data a prominent
asset in various application areas, such as human mobi-
lity behavior, marketing, and advertising. A typical
mobile device location data record from LBS technology
contains information about the timestamp, location of
the device (latitude and longitude coordinates), and a
measure of spatial accuracy. Because of privacy protec-
tion, in some cases, the location information may be
reported in an aggregated or transformed form. In the

data platform, the research team first integrated and
cleaned mobile device location data from multiple lead-
ing data vendors including sources representing both
person and vehicle movements.

Although mobile device location data are rich in terms
of spatio-temporal characteristics, certain treatments and
data cleaning steps are needed before extracting informa-
tion from the data. Removing outliers, checking for
potential consistency issues in the data (e.g., unreason-
able high-speed records), identifying duplicate observa-
tions for the same device, and merging them are among
the state-of-practice methods for cleaning raw data and
controlling its quality. The data cleaning approach uti-
lized in this study is based on four well-known aspects of
data quality assessment framework: consistency, accu-
racy, completeness, and timeliness (31).

To ensure the consistency of the data, the research
team defined certain semantic rules, such as integrity
constraints, to be checked through the entire raw data.
At this step, all data entries are evaluated to identify
observations with invalid values. For example, the lati-
tude and longitude information of a location should fol-
low a reasonable range, so integrity constraint removes
all records with invalid entries. The other check is to
identify duplicate records to reduce data redundancy.
Since one device should only present in no more than
one location at the same time, this procedure keeps only
one data entry with the highest spatial accuracy at a cer-
tain time for one device.

Accuracy is another important dimension of data
quality assessment, covering both syntactic and semantic
accuracies. The semantic accuracy evaluates the closeness
of a value to its real-world observation, while syntactic
accuracy ensures the closeness of a value to the elements
of its corresponding definition domain. In the applica-
tion, a spatial accuracy of 50m indicates that the device
should be within 50m distance of the reported location
with a certain confidence interval, for example, 95%.
Thus, entries with extremely poor spatial accuracy, for
example, 2mi, are removed from the dataset based on
the semantic accuracy rule.

The completeness aspect requires prior knowledge of
the actual movement patterns and mobile device usage,
which is not available in the application. Therefore, this
dimension has not been incorporated into the data clean-
ing procedure. For the timeliness dimension, an attempt
was made to address it by incorporating daily feeds of
location data in the platform.

In the final dataset, location-based services technology
provides the majority of the observations covering more
than 100 million monthly active users across the U.S. On
average, the final dataset contains more than 250 sight-
ings per device during a day. Figure 1 demonstrates the
heatmap sightings density at the national level.
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Methodology

After cleaning and integrating the location data, the loca-
tion points were then clustered into activity locations,
and home and work locations were identified at the cen-
sus block group (CBG) level to protect privacy. Both
temporal and spatial features for the entire activity loca-
tion list were examined to identify home CBGs and work
CBGs for workers with a fixed work location. Next, pre-
viously developed and validated algorithms were applied
to identify all trips from the cleaned data panel, including
trip origin, destination, departure time, and arrival time
(32). Additional steps were taken to impute missing trip
information for each trip, such as trip purpose (e.g.,
work, non-work), point-of-interest (POI) visited (restau-
rants, shops, etc.), travel mode (air, rail, bus, driving,
biking, walking, and others), trip distance (airline and
actual distance), and socio-demographics of the travelers
(income, age, gender, race, etc.) using advanced artificial
intelligence and machine learning algorithms. If an anon-
ymized individual in the sample did not make any trip
longer than 1mi in distance, this anonymized individual
was considered as staying at home. A multi-level weight-
ing procedure expanded the sample to the entire popula-
tion, using device-level and trip-level weights, so the
results are representative of the entire population in the
nation, a state, or a county. The data sources and com-
putational algorithms have been validated based on a
variety of independent datasets, such as the National
Household Travel Survey and American Community
Survey, and peer reviewed by an external expert panel in
a U.S. Department of Transportation (U.S. DOT)

Federal Highway Administration’s Exploratory
Advanced Research Program project, titled ‘‘Data analy-
tics and modeling methods for tracking and predicting
origin-destination travel trends based on mobile device
data’’ (32). Mobility metrics were then integrated with
COVID-19 case data, population data, and other data
sources. Figure 2 shows a summary of the methodology.

Trip Identification

Trips are the unit of analysis for almost all transportation
applications. Traditional data sources, such as travel sur-
veys, include trip-level information. The mobile device
location data, on the other hand, do not directly include
trip information. Location sightings can be continuously
recorded while a device moves, stops, stays static, or
starts a new trip. These changes in status are not recorded
in the raw data. As a result, researchers must rely on trip
identification algorithms to extract trip information from
the raw data. Basically, researchers must identify which
locations form a trip together. The following subsections
describe the steps the research team took to identify trips.
The algorithm runs on the observations of each device
separately.

Pre-Processing. First, all device observations are sorted by
time. The trip identification algorithm assigns a random
ID to every trip it identifies. The location dataset may
include many points that do not belong to any trips. The
algorithm assigns ‘‘0’’ as the trip ID to these points to
identify them as static points. For every observation, the

Figure 1. The density map of anonymized location data across the nation.
Note: brighter shades = higher density of sightings within a day across the nation.
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distance, time, and speed between the point and its previ-
ous and next points (if they exist) are computed.

The trip identification algorithm has three hyper-
parameters: distance threshold, time threshold, and
speed threshold. The speed threshold is used to identify
if an observation is recorded on the move. The distance
and time thresholds are used to identify trip ends. At this
step, the algorithm identifies the device’s first observa-
tion with speedfrom ø speed threshold. This identified
point is on the move, so a random trip ID is generated
and assigned to this point. All points recorded before
this point (if they exist) are set to have ‘‘0’’ as their trip
ID. Next, a recursive algorithm identifies if the next
points are on the same trip and should have the same
trip ID.

Recursive Algorithm. This algorithm checks every point to
identify if they belong to the same trip as their previous
point (Figure 3). If they do, they are assigned the same
trip ID. If they do not, they are either assigned a new ran-
dom trip ID (when their speed from ø speed threshold) or
their trip ID is set to ‘‘0’’ (when their speed from\
speed threshold). Identifying if a point belongs to the
same trip as its previous point is based on the point’s

‘‘speed to,’’ ‘‘distance to,’’ and ‘‘time to’’ attributes. All
the aforementioned attributes are calculated for each
individual sighting to compare the measures between
every consecutive observation of a device. If a device is
seen in a point with distanceto ø distancethreshold but is
not observed to move there (speedto\speed threshold),
the point does not belong to the same trip as its previous
point.

When the device is on the move at a point
(speedto ø speed threshold), the point belongs to the
same trip as its previous point; but when the device
stops, the algorithm checks the radius and dwell time to
identify if the previous trip has ended. If the device stays
at the stop (points should be closer than the distance
threshold) for a period of time shorter than the time
threshold, the points still belong to the previous trip.
When the dwell time reaches above the time threshold,
the trip ends, and the next points no longer belong to the
same trip. The algorithm does this by updating ‘‘time
from’’ to be measured from the first observation in the
stop, not the point’s previous point. After conducting
several rounds of test runs and comparing the results
with the national ground truth data sources, such as the
2017 national household travel survey (NHTS), as well
as considering the reasonableness of the parameters, the

Figure 2. Methodology.
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research team has set the speed threshold, time thresh-
old, and distance threshold equal to 3mph, 300 s, and
300m, respectively. The algorithm may identify a local
movement as a trip if the device moves within a stay
location. To filter out such trips, all trips that are within
a static cluster and all trips that are shorter than 300m
are removed.

Validation. Figures 4 and 5 show the validation of this
algorithm by running the algorithm on a sample of
national mobile device location data and comparing the
trip lengths and travel times with the reported travel dis-
tances and travel times from NHTS 2017. A satisfactory
match is observed between the two datasets. A more
comprehensive validation result can be found in detailed
project report (32).

Activity Identification

First, all activity points are identified. Then, based on the
temporal and spatial distribution of activity points, the
home CBG and the work CBG are identified.

Activity Clustering. The algorithm starts by clustering all
device observations into activity locations using
HDBSCAN clustering algorithm (33). This step takes
the cleaned multi-day location data as input and applies
an iterative algorithm until no cluster has a radius larger
than 2mi. The iterative algorithm consists of two parts:
HDBSCAN based on a minimum number of point para-
meters, and filtering non-static clusters based on time
and speed checks. After finalizing the potential stay clus-
ters, the framework combines nearby clusters to avoid
splitting a single activity (Figure 6).

Home and Work CBG Identification. Figure 7 shows the
methodology for home and work CBG identification.
Instead of setting a fixed time period for each type, for
example, 8 p.m. to 8 a.m. as the study period for home
CBG identification and the other half day for work CBG
identification, the framework examines both temporal
and spatial features for the entire activity location list.
The benefits are two-fold: the results for workers with
flexible or opposite work schedules would be more accu-
rate, and the employment type for each device could be

Figure 3. Recursive algorithm for trip identification methodology.
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detected simultaneously. The land use information, along
with the POI data, also helped avoid identifying home
and work locations for devices in pure commercial or
pure residential regions, respectively. The POI data also
make it possible to further distinguish between different
employment categories, which the research team is inves-
tigating currently and which will be added to the plat-
form in the near future. Figure 8 shows the validation of
home and work location imputations, by comparing the
distance from home to work between longitudinal
employer-household dynamics (LEHD) data and the
imputed locations for a set of mobile device location data
for the Baltimore metropolitan area. A satisfactory
match can be observed.

Imputation

Mode Imputation. The research team developed a jointly
trained single-layer model and deep neural network
(DNN) for travel mode detection (34). This model com-
bines the advantages of both types of model to be able to
make sufficient generalizations using a multi-layer DNN
and capture the exceptions using the wide single-layer
model. An overview of the proposed framework is pre-
sented in Figure 9. The datasets used for training the
model were collected from the incenTrip mobile phone
app (developed by the authors) where the ground truth
information for car, bus, rail, bike, walk, and air trips
were collected (35). To effectively detect the travel mode
for each trip, feature construction is critical in providing

Figure 4. Distance validation of the trip identification algorithm against national household travel survey (NHTS) 2017.

Figure 5. Travel time validation of the trip identification algorithm against national household travel survey (NHTS) 2017.

Figure 6. Activity clustering methodology.
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useful information. Travel-mode-specific knowledge is
needed to improve the detection accuracy. In addition to
the traditional features used in the literature (e.g., aver-
age speed, maximum speed, trip distance), the multi-
modal transportation network data were also integrated
to construct innovative features to improve the detection
accuracy based on network data integration. The wide
and deep learning method utilized in this study achieved
over 95% prediction accuracy for drive, rail, and non-
motorized, and over 90% for bus modes on test data.
The comprehensive description of the model framework,
the training procedure, and result comparison can be
found in another paper by the authors (36).

The trained algorithms have been applied on the loca-
tion dataset to obtain multi-modal trip rosters (see
Figure 10 that shows raw location data points by differ-
ent travel modes). The resulting mode shares show a
decent match with the available travel surveys at both
national and metropolitan levels.

Socio-Demographic Imputation. Because of privacy con-
cerns, mobile device location data contain no informa-
tion about the device owners. However, it is essential to
understand how representative the sample is and how
different segments of the population travel. The state-of-
the-practice method is to assign either the census popula-
tion socio-demographic distribution or the public use
microdata sample (PUMS) units to the sample devices
within the same geographic area based on the imputed
home locations. More advanced socio-demographic
imputation methods utilize travel patterns and visited
POI types to impute the socio-demographics. These
methods require a significant amount of computation, as
various features from different databases should be
calculated and used. To balance the computations and
conduct a timely analysis for the pandemic, the state-of-
the-practice method has been used, and socio-demographic
information has been assigned to the anonymized devices
based on the census socio-demographic distribution of

Figure 7. Home/work Census block group (CBG) imputation methodology.

Figure 8. Validation of home and work imputation against longitudinal employer-household dynamics (LEHD).
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their imputed CBG. Five-year American Community
Survey (ACS) estimates for 2014–2018 from the U.S.
Census Bureau were used to obtain median income, age
distribution, gender distribution, and race distribution for
each U.S. CBG (37). For each device, Monte-Carlo simu-
lation was used to draw from the age, gender, and race dis-
tribution at the device’s imputed home CBG (38). The
CBG’s median income was also assigned to the device.

Weighting

The sample data needs to be weighted to represent
population-level statistics. First, the devices available in
the dataset are a sample of all individuals in the

population, so it is necessary to apply device-level
weights. Second, for an observed device, only a sample
of all trips may be recorded, so trip-level weights are also
needed. For the sake of timeliness, simple weighting
methods have been applied to obtain county-level device
weights and state-level trip weights. To obtain device-
level weights, the home county has been used, obtained
from the imputed home CBG information. The weight
for each device is equal to the number of devices
observed in the device’s imputed home county divided
by the population of the county, so all devices residing in
a county would have the same device-level weight. For
instance, if the sample includes 100 devices in a county
with a population of 2,000, each device would be
assigned a weight of 20. The population of each county
can be obtained from the U.S. Census Bureau. For trip-
level weights, the number of trips per person (trip rate)
has been calculated for each state during an average
weekday in the first 2weeks of February from the sam-
ple. This trip rate number has also been calculated for
each state from NHTS 2017. A single trip rate for all
trips generated from each state has been used, equal to
the NHTS trip rate divided by the observed trip rate dur-
ing the pre-pandemic period.

Mobility Metrics

After going through all the aforementioned steps, the
research team summarized the weighted trips with the
additional imputed information into several core mobi-
lity metrics that are critical for a better understanding of
the national mobility pattern before and during the

Figure 9. The framework of the mode detection model based
on wide and deep learning.

Figure 10. Demonstration of the multi-modal travel patterns.
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pandemic. Table 1 shows the list of metrics available on
the platform at the national, state, and county levels,
along with a brief description of each metric. In addition
to the basic mobility metrics provided in the platform,
the research team proposed a score-based social distan-
cing index (SDI) that integrates various aspects of mobi-
lity measures into one single index that shows the extent
of social distancing practices based on the mobility mea-
sures. The index was calculated based on five basic mobi-
lity metrics (e.g., percentage of residents staying home,
work trip rate, non-work trip rate, miles traveled, and
percentage of out-of-county trips) compared with the
benchmark values. Benchmark values are also computed
based on the weekdays’ measures of the aforementioned
five mobility metrics in the first 2weeks of February
2020. The more detailed information concerning the
development of this index and its efficacy to help policy-
makers and researchers can be found in another paper
by the authors (39).

Platform Overview

The COVID-19 Impact Analysis Platform (available at
data.covid.umd.edu) provides data and insights on
COVID-19’s impact, with daily data updates. The
research team is exploring how social distancing and
stay-at-home orders are affecting travel behavior, the
spread of the coronavirus, and local economies. Through
this interactive analytics platform, the authors are

making thier data and research findings available to
other researchers, agencies, non-profits, media, and the
general public. The platform has evolved and expanded
over time as new data and impact metrics are computed
and additional visualizations are developed. Figure 11
illustrates the platform. In addition to the mobility
metrics, the platform provides information on other
aspects of importance to the pandemic analysis, includ-
ing COVID and health, economic impact, and vulnera-
ble population, which are not in the scope of this
paper.

As shown in Figure 11, users can select the level of
analysis they are interested in by choosing either the
‘‘States’’ or ‘‘Counties’’ tab on the platform. For the
national level trend and data, the ‘‘Show National
Statistics’’ button has been created that summarizes the
national data and trend. The time range option facili-
tates the ease of data inquiry and visualization for a spe-
cific time of study. By selecting the desired time range,
the platform converts all the mobility metrics to their
average values for the specified time. Two of the mobility
metrics—for example, social distancing index and %
staying home—are presented on the default first page of
the platform. For the additional mobility metrics of
interest, users can select from the drop-down menu of
the mobility and social distancing sector.

Besides the interactive data table presented on the left
side of the platform, a national map of the U.S. is
depicted on the right side to portray the spatial and

Table 1. List of Mobility Metrics Available on the COVID-19 Impact Analysis Platform

Current metrics Description

Social distancing index (SDI) An integer from 0–100 that represents the extent residents and visitors are practicing social
distancing. ‘‘0’’ indicates no social distancing is observed in the community, while ‘‘100’’ indicates
all residents are staying at home and no visitors are entering the county.
It is computed by this equation:
social distancing index = 0:8 � ½% staying home+ 0:01 � (100� % staying home)

� (0:1 � % reduction of all trips compared to pre-COVID-19 benchmark+ 0:2

� % reduction of work trips+ 0:4 � % reduction of non-work trips+ 0:3

� %reduction of travel distance)�+ 0:2 � % reduction of out-of -county trips
% staying home Percentage of residents staying at home (i.e., no trips more than 1 mi away from home)
Trips/person Average number of trips taken per person
% out-of-county trips The percent of all trips taken that travel out of a county. (Additional information on the origins

and destinations of these trips at the county-to-county level is available, but not currently shown
on the platform.)

% out-of-state trips The percent of all trips taken that travel out of a state. (Additional information on the origins and
destinations of these trips at the state-to-state level is available, but not currently shown on the
platform.)

Miles traveled/person Average person-miles traveled on all modes per person per day (car, train, bus, plane, bike, walk,
etc.)

#work trips/person Number of work trips per person (where a ‘‘work trip’’ is defined as going to or coming home
from work)

#non-work trips/person Number of non-work trips per person. (e.g., grocery, restaurant, park)
Transit mode share Percentage of rail and bus transit mode share for the baseline scenario based on American

Community Survey (ACS) data
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temporal trend of all the metrics available in the plat-
form. The platform enables the zoom option to investi-
gate the trend of the selected metrics either at the
national level or for a specific state or county. By select-
ing the time range, the platform provides the animation
of the temporal trend using the play button underneath
the map along with a date slider.

Discussion

Since the outbreak of the novel coronavirus disease
(COVID-19), non-pharmaceutical interventions and
mobility restrictions were among the most important
mitigation strategies across the world. In this study, the
team developed an analytical framework to measure and
monitor the mobility patterns of the communities in the
U.S. The mobility metrics provided on the platform can
be used to track the travel trends to help regions under-
stand factors shaping this pandemic and prepare the
decision-makers and public for what might be happening
‘‘down the road.’’ For instance, analysis based on the
platform data has quantified the effectiveness of the
stay-at-home order, and also reveals that the out-of-

county human mobility inflow shows an increasingly
strong correlation with the number of COVID-19 infec-
tions (40, 41). Therefore, the out-of-county and out-of-
state trips provided in the platform can alert lawmakers
and decision-makers to take precautions on potential
outbreaks. Furthermore, the empirical analysis based on
the proposed social distancing index (SDI) on the plat-
form, revealed the relationship between the extent people
are practicing social distancing and the spread of the
COVID-19 virus (39). It is also worth noting that such
metrics can all be provided based on other customized
zoning systems, as long as the population size of the
regions is sufficient to ensure that the privacy of anon-
ymized mobile device users is protected.

In future research, from the methodological point of
view, additional efforts in improving the weighting
method based on the imputed socio-demographic infor-
mation are worth investigating. Further validation and
calibration also can be conducted to build more confi-
dence in the mobility pattern products derived from the
mobile device location data. Furthermore, as an addi-
tional application, the platform can also release the POI-
level visits to provide finer-level human mobility patterns

Figure 11. Platform illustration.
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to inform the general public and decision-makers about
the risks of visiting certain places or POIs. Related
research has shown that restricting the maximum occu-
pancy at a small minority of ‘‘superspreader’’ POIs is
more effective than uniformly reducing mobility (42).

Conclusion

The integrated dataset compiled by the research team
shows how the nation and different states and counties
are affected by COVID-19 and how the communities are
conforming with the social distancing and stay-at-home
orders issued to prevent the spread of the virus. The plat-
form utilizes privacy-protected anonymized mobile
device location data integrated with healthcare system
data and population data to assign a social distancing
score to each state and county based on derived informa-
tion such as percentage of people who are staying home,
average number of trips per person, and average distance
traveled by each person. As the next step, the research
team is integrating socio-demographic and economic
data into the platform to study the multifaceted impact
of COVID-19 on mobility, health, economy, and society.
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Transportation Institute. Census population data is available at
https://www.census.gov.
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