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Abstract
The COVID-19 pandemic in 2020 has caused sudden shocks in transportation systems, specifically the subway ridership pat-
terns in New York City (NYC), U.S. Understanding the temporal pattern of subway ridership through statistical models is
crucial during such shocks. However, many existing statistical frameworks may not be a good fit to analyze the ridership data
sets during the pandemic, since some of the modeling assumptions might be violated during this time. In this paper, utilizing
change point detection procedures, a piecewise stationary time series model is proposed to capture the nonstationary struc-
ture of subway ridership. Specifically, the model consists of several independent station based autoregressive integrated mov-
ing average (ARIMA) models concatenated together at certain time points. Further, data-driven algorithms are utilized to
detect the changes of ridership patterns as well as to estimate the model parameters before and during the COVID-19 pan-
demic. The data sets of focus are daily ridership of subway stations in NYC for randomly selected stations. Fitting the pro-
posed model to these data sets enhances understanding of ridership changes during external shocks, both in relation to
mean (average) changes and the temporal correlations.
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During outbreaks caused by infectious diseases, provid-
ing an accurate and reliable subway station ridership
model is crucial for transit operators and passengers.
Subway ridership changes from time to time during a
year, and a statistical model that can capture this varia-
bility would enable transit authorities to plan for appro-
priate resource allocation, obtain up-to-date train service
frequencies for the expected ridership, and send required
information to passengers during unexpected events. At
the same time, with a good prediction of passenger rider-
ship, commuters can adjust their departure times and
choose other modes to reduce delays and improve their
comfort.

Unforeseen and abrupt changes in urban mobility
could happen for many reasons, such as crowding at the
time of special events, severe weather conditions, natural

disasters, infrastructure-related constructions, or global
health crises like the COVID-19 pandemic. The pan-
demic generally reduced the overall efficiency of human
mobility networks, which caused an exogenous shock to
the economy and is functioning similar to a natural disas-
ter (1).

The first case of the coronavirus in the State of New
York in New York City (NYC), U.S., was confirmed on
March 1, 2020, and from that date panic buying for food
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and household products was reported. On March 7, New
York Governor Andrew Cuomo declared a state of emer-
gency in the State of New York. A second case in the
state was announced on March 10, which was the first
known case in the state to be caused through community
spread. On March 16, Governor Cuomo issued an execu-
tive order to close all public and private schools through-
out the state, initially ordered to last until April 1, but
later extended. On March 22, the New York State stay-
at-home order took effect. The coronavirus cases in New
York increased tremendously to the point that on March
22, the New York Times reported that NYC became the
epicenter of the pandemic (2). As New Yorkers worked
together to flatten the curve, the reopening strategies
came into effect in June to let businesses to start reopen-
ing by phases. NYC entered Phase 1 of the reopening on
June 8 and Phase 2 on June 22, 2020.

The coronavirus pandemic drastically altered the
transportation choice behavior of all transportation
users. Many travelers preferred or were obliged to stay
home and work from home to comply with stay-at-home
orders enacted by government officials (3). Those with
essential tasks/jobs would have commuted to their work
location under some orders enacted to slow the spread of
the virus. To reduce the spread of the highly contagious
virus, health professionals encouraged only essential tra-
vels. As a result, vehicular traffic volumes on roadways
were very low. Thus, the vehicular speeds in highway
and corridors increased significantly, and vehicle travel
times and delays decreased when compared with pre-
COVID times.

Public transit ridership was severely affected by the
measures enacted to slow the spread of COVID-19. In
NYC, transit ridership dropped on all transit modes
operated by the Metropolitan Transportation Authority
(MTA) which include the Subway, New York City
Transit Bus, MTA Bus, Metro North Railroad, and
Long Island Railroad. Specifically, for the subway rider-
ship, the percentage change on March 12, March 16,
March 23, April 2, April 17, May 15, and June 30, 2020,
were reported at 19%, 60%, 87%, 92%, 93%, 90%, and
80% ridership declines, respectively, as compared with
similar dates in 2019 (4).

To accurately forecast transportation data, and, more
specifically, the subway ridership, such a drop in the
observed time series should be considered. Many of the
existing travel demand and transit ridership models are
not trained to include anomalies in their models.
Developing a rigorous model that can consider ridership
variability and be resilient enough to take care of anoma-
lies is the focus of this paper. In this research, an inter-
pretable time series model to formulate subway ridership
during the COVID-19 pandemic is developed. Then, sta-
tistically sound detection methods are utilized to detect

the anomalies of subway ridership time series data. It is a
common practice to model data with temporal index
using stationary time series models, and autoregressive
integrated moving average (ARIMA) models are among
the most well-known stationary time series models used
in different scientific fields, including civil engineering
and transportation. However, in the presence of struc-
tural breaks (shocks) in the temporal dynamical system
under consideration, the stationarity assumption may be
violated; thus, it is necessary to search for alternative
modeling frameworks. Piecewise stationary models are
interesting models which are easy to interpret since a
time point at which the dynamical system receives an
external shock can be called a ‘‘break point,’’ and its
location can be estimated using developed algorithms.
Such time points are essentially the discontinuity points
in the piecewise modeling framework.

An interesting fact about the proposed detection
method used in this paper is that it can handle detection
for second-order structure (autocorrelation). The differ-
ence between the fitted models before and after the
change/break points shows that the dependence structure
has changed significantly. Such changes need to be
accounted when forecasting ridership. This area of
research is relatively undeveloped with very little litera-
ture focused on the topic. In short, one of the main con-
tributions of this research is to introduce a piecewise
stationary time series model which can be utilized to
model sequential data experiencing external shocks. The
proposed modeling framework is applied to ridership
data during the COVID-19 pandemic, which, to the best
of the authors’ knowledge, has been introduced for the
first time to transportation datasets. To apply this mod-
eling framework, a novel statistical algorithm is devel-
oped and utilized to detect break/change points, and,
further, fitted models before and after each break point
are summarized. Certain goodness of fit tests are applied
to the residuals to confirm the satisfactory performance
of the proposed methodology. In the next section, a brief
review of the methods found in the literature is provided.

Literature Review

Subways play a crucial role in today’s urban mobility.
For many urban travelers, they are the convenient and
first choice of mobility in large metropolitan areas.
Developing a long-term transit ridership prediction is a
product that may result from conventional four-step
travel demand forecasting (5). One way to do this is to
fit regression models based on many contributing factors
such as transit attributes, geographic information, demo-
graphic, and economic factors (5). For example, using
regression models, Singhal et al. analyzed the impact of
weather on New York City Transit subway ridership
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based on day of week and time of day combinations (6).
They found that the impact of weather on transit rider-
ship varies based on the time period and the location of
subway stations.

Many machine learning algorithms were developed to
model transit ridership. Liu and Chen developed a deep
learning method to predict the ridership at four BRT sta-
tions in Xiamen, China (7). They used a three-stage
hybrid deep network model centered on hourly basis (7).
Also, Liu et al. proposed a multilayer deep-learning
architecture to predict metro inbound/outbound passen-
ger flow (8). Other machine learning models to predict
subway station ridership were also developed, including
gradient boosting decision trees, support vector
machines, network Kriging method, and more (9–11).
On the other hand, time series models have also been uti-
lized in transportation-related problems as well as to
model the subway ridership. For example, time series
ARIMA models have been applied to many areas of
transportation including traffic arrival demand model-
ing, seasonal variation of freeway traffic conditions, pre-
diction of actuated signal cycle length, traffic speed
modeling on a downstream link, and so forth (12–15).
Also, time series models have been applied to predict
transit ridership: for instance, Ding et al. presented an
ARIMA-generalized autoregressive conditional hetero-
scedasticity (GARCH) time series model to predict
short-term metro ridership, which is an ARIMA model
that takes care of the deterministic part and the non-
linear GARCH model for the stochastic part (16). Their
proposed ARIMA-GARCH model was applied on three
stations’ ridership in Beijing and the result showed that it
outperformed other proposed models (16).

Many of the existing time series models in the field of
transportation have focused on stationary or smoothly
varying models. However, these models cannot be used
when there is a dramatic change in the system that could
affect the time series model. For example, when Hurricane
Sandy occurred in NYC in 2012, a sudden change of 11%
decline happened in the number of trains in service on an
average day (17). This major disruptive event could affect
the future growth of transit ridership. Other disruptions
include transit strikes, bridge closures, special events like
the Olympic Games, and earthquakes—the impact of
these events on transit ridership and mode choice were
reviewed in the study by Zhu and Levinson (18). For
example, considering transit strikes, a study of 13 cases
between 1966 and 2000 in the U.S. and Europe showed
that they caused short-term and long-term losses on transit
ridership (19). Events like transit strikes provide a unique
opportunity to study the change in transit ridership and
travelers’ behaviors, both of which are significant for
drafting future transit policies. Stationary statistical mod-
els are not appropriate in the presence of anomalies caused

by an unforeseen event. A global pandemic can be consid-
ered as an unforeseen event that significantly violates the
stationary assumption of time series. Change point detec-
tion methods could be a remedy to unravel this issue in
time series models.

To find a change point detection, it is possible to
heuristically approximate locations of break points and
estimate parameters within each (heuristically) estimated
stationary segment. However, there are three main
advantages in using a data-driven method to perform
break point detection. First, in general, it is not clear
whether an external shock would necessarily yield to a
discontinuity point in the model. Therefore, it is possible
to think that a time point should be considered as a
break point while there are no break points in the data.
Second, an important assumption in change point detec-
tion analysis is that the total number of break points is
unknown and must be estimated from data. Therefore,
an estimate on the number of change points in the data
should first be obtained, and then an attempt should be
made to approximate location of break point(s) using
either heuristic methods or data-driven ones. However,
estimating the number of change points in the data is a
complicated task and there is no clear way how to per-
form it heuristically. Third, estimating the location of
break points is a complicated task for heuristic methods,
since there may be a delay from the time of external
shock to real changes in the parameters in the data, or it
may be the case that model parameters start to change
before the external shock is known to humans. As a
result, heuristic methods may estimate the location of
break points with a certain error, which may yield to
inaccurate estimation of model parameters. Therefore,
data-driven methods can estimate the number of change
points and their locations more accurately than heuristic
methods.

Data-driven methods to perform change point detec-
tion have recently been applied to the transportation
research domain. Tang and Gao developed a nonpara-
metric model for traffic flow prediction utilizing anomaly
detection, while Tsiligkaridis and Paschalidis applied
anomaly detection to detect traffic jams (20, 21).
Margarieter leveraged anomaly detection methods in her
research to detect incidents (22). Riverio et al. presented
an analytical framework to detect anomalous events to a
large real road traffic dataset collected from various
areas in Europe (23). An anomaly-detection-based analy-
tical module was developed by Zhang et al. to visualize
abnormal passenger traffic flow on an urban network
(24). In this paper, the authors model the subway station
ridership during the COVID-19 pandemic by considering
specific time series models combined with possible
change points. Next, this rich family of time series mod-
els is introduced.
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Time Series Models

Time series models are very well-known statistical models
designed for data sets indexed by time. Time series mod-
els have been employed in different disciplines, including
finance, water resources, climate change, transportation,
and so forth. (14, 25, 26). The main objective of time
series models is to grasp the underlying behavior of the
dataset over time, and then to detect the dependence
among such data points to forecast the future. More spe-
cifically, in these models, the hope is to find the linear
dependency structure among the data points over time,
and then use that dependency to predict the new points
in the future. This research focuses on applying autore-
gressive integrated moving average (ARIMA) models.
The ARIMA model is a well-established yet simple statis-
tical tool to deal with data indexed by time (27). In the
next section, a short introduction of this family of models
is provided.

ARIMA Model

The ARIMA model is a powerful statistical tool when
univariate time series or one data set are being dealt
with. Suppose there is a data set X1, X2, ., Xn, which is
observed through time. For example, X1 is the observa-
tion at the first time point, X2 is the observation at the
second time point, and so on. The autoregressive moving
average (ARMA) model assumes that the present value
of a time series is a linear combination of its past obser-
vations together with a linear combination of noises in
the past observations. Thus, the time series Xt is called
ARMA(p, q) as follows:

Xt � f1Xt�1 � . . .� fpXt�p = Zt + u1Zt�1 + . . . + uqZt�q

ð1Þ

where
f1, f2, ., fp = AR constants,
u1, u2, ., uq =moving average or MA constants, and
Zt = white noise (WN) with mean 0 and variance

s2(WN 0, s2ð Þ).
In the stated model, the current value of a data point

stems from the past p observations through fi’s and the
past q observation noises through ui’s. ARMA models
are stationary models. In stationary models, the covar-
iance between two observations Xt and Xt + h depends only
on the lag h and not on the time t. To put it simply, in a
stationary model, the dependence structure of points exits
on their distances and not on their locations (27). ARIMA
models are an extension of ARMA models to capture the
non-stationary behavior in the model. ARMA models are
generally denoted by ARIMA(p, d, q), where p is the order
(number of time lags) of the autoregressive part, d is the

degree of differencing (the difference between the current
observations and d time lags in the past is calculated as the
new data set), and q is the order for the moving-average
part. Note, ARIMA p, 0, qð Þ is also an ARMA(p, q) model;
ARIMA(p, d, q) will be non-stationary when d 6¼ 0.

To measure the degrees of dependency among data
points at different times, an autocorrelation function
(ACF) is used. ACF at lag h is calculated as

r hð Þ= g hð Þ
g 0ð Þ ð2Þ

where
g hð Þ= the autocovariance function (ACVF) at lag h and
is defined as:

g hð Þ=Cov Xt, Xt + hð Þ, ð3Þ

where
Cov = the covariance of two datasets.
The ACF at lag h is the normalization version of

ACVF. The partial auto-correlation function (PACF)
provides the partial correlation of a time series with its
own lagged values, controlling for the values of the time
series in between them. For the time series Xt, the PACF

at lag h denoted by a(h) is the auto-correlation between
Xt and Xt + h given the points Xt+ 1,., Xt + h�1. ACF and
PACF are important factors in estimating the ARIMA
model’s parameters, p, d, q, which will be used to predict
the future values.

The main assumption for parameters in ARIMA
models is that the roots of the auto-regressive polyno-
mial should not be on the unit circle, that is, should not
have a complex norm of one. Indeed, all estimated
ARIMA models satisfy this property. This ensures that
each model is stationary/stable. Moreover, to ensure the
model is causal (invertible), all roots of the auto-
regressive polynomial (moving average polynomial)
should be outside of the unit disc, that is, should have a
complex norm greater than one (see more details in
Brockwell and Davis) (27). This assumption for the case
of p=1 or q=1, that is, Autoregressive (AR) (1) or
moving average (MA) (1) model, is equivalent to the phi/
theta parameter being less than one. However, for higher
lags (p or q more than 1), it is possible to have phi or
theta parameters which have magnitudes more than one.

A piecewise stationary ARIMA consists of several dif-
ferent and independent ARIMA models concatenated at
certain time points called change points (or break
points). In general, the number of change points and
their locations is unknown and they need to be estimated
using statistical techniques. In the next section, a brief
description of one such procedure to detect change
points is provided.

466 Transportation Research Record 2677(4)



Change Point Detection

Change point detection is an active line of research in sta-
tistics, specifically in the field of time series analysis, with
applications in many scientific fields such as economics
and health sciences. The main objective of this line of
research is to find time point(s) at which the parameters
of the data generating process have changed. This change
may be in the mean, variance, covariance structure, or
spectral density of the time series. In this paper, the pro-
cedure developed in Safikhani and Shojaie is leveraged to
detect the time when the change or break point occurs in
the data sets under investigation (28).

The detection algorithm developed in Safikhani and
Shojaie has three main steps—the first two are for detec-
tion purposes and the last step is for model parameter
estimation within each stationary segment (28). The first
step assumes every time point is a (potential) break
point. This is done by expanding the model parameter
space. Then, the fused lasso penalty combined with the
least squares objective function is utilized to find a set of
candidate change points by reformulating the detection
problem as a variable selection problem in a high-
dimensional regression model. This step ensures that no
true break point remains isolated, that is, there will be at
least one estimated break point close to any true break
point with high probability (under certain regularity con-
ditions). On the other hand, the total number of candi-
date change points selected in the first step may be larger
than the true number of break points. To that end, a
screening step is added (step 2) to search over all candi-
date change points and only keep the ones which would
reduce the combined mean squared error (MSE) on the
left- and right-hand side of the estimated break point sig-
nificantly compared with MSE by ignoring the estimated
break point. This screening step is shown to remove the
redundant break points estimated in the first step with
high probability, therefore the final estimated change
points are consistent estimates for location of break
points and the number of estimated change points is a
consistent estimate for the true number of change points
asymptotically. Finally, the third step estimates the
model parameters in all stationary segments by applying
penalized estimation techniques using lasso in high
dimensions (or the simple least squares method in low
dimensions).

The developed algorithm in Safikhani and Shojaie
works for general multivariate vector auto-regressive
models, and thus is a perfect fit to this modeling frame-
work (28). This algorithm can handle detection for auto-
correlation (the second-order structure). The basic idea is
to first assume every time point could potentially be a
break point and fit a smooth version of time-varying
parameters to the data. This step is performed using the
fused lasso technique by Rinaldo (29). Specifically, the

time series model can be written as a linear regression
model with a very large design matrix, as:

Y =XB+E, ð4Þ

where
Y = vector of currently observed data points,
X = a lower-triangular design matrix consisting of

past values of time series (up to p lags), and
E = the usual measurement error, which is generally

assumed to be independent and identically distributed
(i.i.d) while this assumption can be relaxed (see e.g.,
Safikhani and Shojaie [28]).

The unknown parameter vector B can be estimated by
minimizing a double-regularized least squares:

B̂= argminB
1

n
Y� ZBk k2

2 +l1, n Bk k1 +l2, n

Xn

k = 1

Xk

j= 1

bj

�����

�����
1

:

ð5Þ

where
k k2 = the Euclidean norm of a vector,
k k1 = the sum of absolute values of elements in a

vector,
n = the number of time points in the data,
bj = the jump parameter at time point j,

Pk

j= 1

bj = the model parameter at time point k, and

l1, n and l2, n = tuning parameters, and are non-
negative sequences of real numbers which are selected
using data-driven techniques.

The first term in the objective function in Equation 5
is the MSE term, followed by two l1 penalties controlling
the number of break points and the sparsity of the auto-
regressive parameters. The first one (i.e., l1, n Bk k1) is the
main component, since it fuses the differences between
estimated parameters to ensure smoothly estimated para-
meters over time, and it is called fused lasso (30, 31,

32).The second one (i.e., l2, n

Pn

k = 1

Pk

j= 1

bj

�����

�����
1

) is needed

only in the high-dimensional regime where the number
of time series components is much larger than the num-
ber of time points at which the data was observed. The
two tuning parameters l1, n and l2, n can be approxi-
mated using rolling-window-type cross-validations (24).
Specifically, since the focus is on univariate modeling in
this paper, it is simple to put l2, n =0 which does not
violate the assumptions in Safikhani and Shojaie (28).
The optimization problem (5) is convex and can be
solved efficiently. In fact, by Proposition 1 of the
Friedman et al. problem (5) can be solved by first finding

a solution B̂
(0)

for l2, n = 0 and then applying element-

wise soft-thresholding to B̂
(0)

to obtain the final estimate
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B̂ for l2, n 6¼ 0 (32). Refer to Safikhani and Shojaie for
more details on the optimization problem (5) and how to
select the tuning parameters in finite sample (28).

An interesting fact about the first step (fused lasso) is
that this step might lead to over-estimation of number of
break/change points in the model. Thus, in the second
step, the redundant candidate change points detected in
the first step are removed through a careful screening
step. The details are omitted in the second step. Refer to
Safikhani and Shojaie, Section 4, Equations 9–12, for
more details on the screening step (28). Under basic reg-
ularity conditions and enough jumps in the parameters,
this procedure is proved to consistently estimate the
number of change points and their locations (29). In the
third and final step, model parameter estimates in each
segment in which there are no more change points are
estimated using the least squares ideas combined with
penalization in the high-dimensional regime (similar to
the estimation procedure) (5).

Data Preparation

The data used for the model is the subway station rider-
ship from January 2019 to July 2020, retrieved from the
New York City Transit open data system. New York
City Subway system is operated by the MTA. It includes
472 stations in operation and approximately 4,600 turn-
stiles. The subway station turnstile ridership, either
entries or exits, are provided on a 4 h increment by the
MTA. In this research, the authors picked some subway
stations in different boroughs in NYC. The selection of
subway station was made randomly while making sure
that there are no inconsistencies in the data during the
study period. The busiest subway stations functioning as
transport hubs were of limited use for the purpose of this
research because they include many subway lines that
might not work all the time, as they do not follow the
data continuity of the time series.

To perform statistical analysis as well as anomaly
detection, data preparation is done on some subway sta-
tions in NYC. The authors look first at the data for
South Ferry Subway station located in Lower
Manhattan. It is located close to the ferry station from
the borough of Manhattan to the borough of Staten
Island, and it is also near the City’s financial district,
home to Wall Street and skyscrapers. The data was
aggregated to a daily basis from subway turnstile entries.
During data processing and cleaning, some errors were
noticed concerning turnstile records.

In the preprocessing part of calculating the entry rider-
ship, a data warehouse was created using the MTA turn-
stile data. In that process, three categories were created:
(i) subunit channel position, which represents a specific
address of the used device; (ii) date of the associated data

point; and (iii) time of the associated datapoint. There is
a metric that shows the cumulative entry of registered
value of an associated device. These cumulative entries
were subtracted from the ones of the previous days, to
give the daily ‘‘entries.’’ The MTA records subway rider-
ship at every turnstile, which basically report both entry
and exit. The number of ridership reported, either entries
or exits, are turnstile counter values. When the counter
reaches its maximum limit, the counter is reset. A drastic
shift in the absolute (cumulative) number reported in the
data is noticed during the time period when the reset hap-
pens. This issue is accounted for in the data cleaning pro-
cess. To do this, when the cumulative sequence value
changed significantly, the rolling average of the ‘‘entries’’
subway values was calculated.

To understand the trends of subway ridership, the
ridership data over time at the South Ferry Subway sta-
tion is used for illustration. Figure 1 shows the daily turn-
stile entries and moving average of the mean over a 7-day
rolling window at the South Ferry Subway station, from
January 1, 2020, to June 19, 2020. This ridership includes
all turnstile entries of the South Ferry Subway station.
The rolling average method reduces noise in time series
data, giving the ability to look at obvious trends. The
subway ridership decreased gradually, then plunged sud-
denly in March 2020, and continued to perform with a
very low ridership during April 2020 as shelter-in-place
orders were mandated by state officials.

In the following, more descriptive analyses of this sub-
way ridership are provided. Figure 2 shows the histo-
gram, ACF, and PACF of the raw ridership at the South
Ferry Subway station. The histogram is skewed to the
left, as a portion of the dataset includes a time period
during the COVID-19 pandemic which imposed a low
ridership on the subway. From the ACF and PACF
plots, it is noticeable that there is a seasonal pattern in
the data. This seasonality is mostly because of the weekly
mobility of commuters utilizing subway for work pur-
poses on weekdays.

To better understand the patterns between different
data points in time series, the time series’ trend and sea-
sonality are removed from the dataset. Then, the focus
will just be on the time series of the residuals to decipher
any temporal dependencies among them. First, a linear
regression was applied to incorporate the imbalance
between weekdays and weekends ridership. To do so,
Saturday and Sunday (weekend) are labeled as 1, other
days (weekdays) are considered as 0. In the linear regres-
sion model, the dummy categorial weekday/weekend indi-
cator, being 0 as weekday and 1 as weekend, is defined as
the independent variable. After applying the linear regres-
sion, the residual from the regression model is left.
Second, to remove seasonality in the dataset, a seasonal
autoregressive moving average model (SARIMA) was
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applied with periodic operator of 7. It treats the dataset
as if there is a weekly seasonal trend. Finally, the residual
from the SARIMA model, which is the absolute error of

the ridership, is the output to be analyzed for the rest of
this paper. It is worth noting that no transformation—
that is, log-transform—was applied to the raw dataset.

Figure 1. Daily entries and 7-day rolling average of the mean of South Ferry Subway station.

Figure 2. Histogram, autocorrelation function (ACF), and partial autocorrelation function (PACF) of the turnstile entries raw data at
South Ferry Subway station, from Jan 2019 to April 17, 2020.
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Figure 3 shows the time series of residual after removing
the trend and seasonality. The vertical green, blue, and

red lines in the graph correspond to January 1, March 22
(the day the state-at-home order was announced), and
June 8 (the day for reopening of Phase 1), 2020, respec-
tively. Also, Figure 4 displays time series trends of all
seven subway stations after removing the trend and
seasonality.

Figure 5 illustrates the ACFs of the residuals at every
season from the beginning of 2019 to June 2020. It shows
how the autocorrelation changes from one season to
another. All four ACF plots in 2019 have the same shape,
mostly significant at lag 1 and lag 7 with a different mag-
nitude. However, the ACF for the winter season in 2020
shows a different pattern when it is compared with other
seasons, specifically to the corresponding season in 2019.
Specifically, there is a strong autocorrelation among data
points in the winter season 2020 compared with the same
time in 2019. Such extreme temporal correlations resem-
ble the existence of change points in the data which
appear as long-range dependence (30). A similar pattern
has been observed for other subway stations considered
here. This observation justifies the use of piecewise sta-
tionary time series modeling framework for the data sets
focused on in this project.

Figure 3. Residuals of the seasonal autoregressive moving
average model (SARIMA) model (South Ferry Subway station).

Figure 4. Residuals of the seasonal autoregressive moving average model (SARIMA) model for all seven subway stations.
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Since the ACF of the winter season in 2020 is differ-
ent, this season has been divided into three segments
resembling the three months of winter. Figure 6 displays
the ACFs of the first three months of 2020 (January,
February, and March) which illustrates how the autocor-
relation changes from one to another. It is possible to
observe that the ACF in March has a different behavior.
March 2020 corresponds to the time when the positive
coronavirus cases emerged, and increased to the point
when New York state officials announced the state of
emergency, then the New York State’s stay-at-home
order took effect (3).

One of the main goals of this paper is to understand
the subway’s demand variability during unexpected
events, in the face of the COVID-19 pandemic. As
explained before, the approach is to consider the exis-
tence of anomalies at the points at which the subway
demand suddenly changed—either surged or plunged.
The existence of such anomalies in subway ridership
would violate the assumption of stationarity in the time
series models which is an underlying assumption in many
non-stationary times series models in the literature.

In the first attempt at modeling, the existence of
change points is ignored and ARIMA models are simply
applied by applying the function ‘‘auto.arima’’ in the R
programming language to the processed data. Table 1
illustrates the model summary of applying ARIMA
models to the processed data. The table includes the
model’s name and its estimated parameters and the mod-
el’s performance errors by Akaike information criterion
(AIC), corrected AIC (AICC), and Bayesian information
criterion (BIC), as well as the p-values from the white
noise Li-McLeod’s test (27). The first row in the table
describes the summary of the fitted ARIMA model to
the whole data. The fitted model for the whole data is
ARIMA (0,1,2), which gives the best ARIMA model
based on AICC. However, it turns out that this model is
not a good fit for the data, since the residuals turn out
not to be white noise.

The white noise test was performed using the
Li-McLeod test method (see Brockwell and Davis for
further information about the white noise test) (27). The
p-value of the white noise test for the fitted mode was
equal to 0.012, which indicates that there are still some

Figure 5. Autocorrelation functions (ACFs) of each season from beginning of 2019 until June 2020 (South Ferry Subway station).
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dependencies existing among lagged data points, so fur-
ther modeling and modification are required.

The same simple analysis was performed on the sub-
way ridership for other randomly selected subway sta-
tions in NYC. Specifically, seven subway stations that
have been chosen randomly across different boroughs
are: South Ferry Subway station in lower Manhattan,
Crescent Street in Brooklyn, Bronx Park East station in
Bronx, 137 Street (City College) station in Upper
Manhattan, Hunts Point Avenue station in Bronx,
President Street station in Brooklyn, and Grand Avenue-
Newtown station in Queens. The subway stations were
selected so that each time series of ridership does not
have any missing data. Table 2 shows the fitted ARIMA

models at all seven selected subway stations, with their
coefficient values.

The existence of long-range dependence in the data
together with failing to model the processed data sets as a
stationary ARIMA model motivated the use of ARIMA
modeling with change points. The first step to develop
such a model is to find change points in each data set.

After running the change point detection algorithm
developed in Safikhani and Shojaie, the results of each
subway station data are reported in Table 3 (28). The
change point for the 137 Street station (City College) in
Upper Manhattan is March 13, 2020, while the change
point for Bronx East Park station is March 12, 2020.
Further, the change point for Crescent Street station in

Figure 6. Autocorrelation functions (ACFs) of three months: January, February, and March, 2020 (South Ferry station).

Table 1. Time Series Models for the Whole Data of the South Ferry Subway Station Ridership

Data Fitted model Estimated parameters Performance errors Li-McLeod’s test p-values

Whole data: January 2019 to June 2020 ARIMA (0,1,2) u1 = 20.6368 AIC = 653.81 0.012 (less than 0.05)
AICC = 653.85

u2 = 20.2590 BIC = 666.65

Note: AIC = Akaike information criterion; AICC = corrected AIC; ARIMA = autoregressive integrated moving average; BIC = Bayesian information

criterion.
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Brooklyn is March 13, 2020, and the change point for
South Ferry Subway station in Lower Manhattan is
March 13, 2020. Two change points detected for Hunts
Point station are June 28, 2019, and March 12, 2020. The
change points for President Station and Grand Newton
station are detected to be March 13, 2020.

Understandably, all change points detected for the
subway station ridership considered are within almost a
week from the state of emergency reported in the state of
New York. Detecting another change point for the
Hunts Point station around June 28, 2019, is related to
maintenance and partial closure of this subway station
which caused a significant drop in its ridership. Such a
consistent performance of the detection algorithm on all

subway stations considered here is an indication that the
piecewise stationary time series model focused on this
project is a reasonable choice. Next, ARIMA models are
applied to each stationary segment estimated by this
method to further investigate the goodness of fit for the
proposed model.

With change points values being found, instead of
decomposing the data through an eyeballing procedure,
the subway ridership data at each station has been sepa-
rated into before and after the change point(s). Table 4
shows the fitted ARIMA model (again, applying the
function ‘‘auto.arima’’ in the R programming language)
for each subway station before and after the change
point(s). It should be noted again that, before running
the change points algorithm, the seasonality and trend of
each dataset were already considered.

The results indicate that with the analyzed data, there
are two models (before and after the change point) that
could be very well developed to represent the variability
in the data set. The two models (or three with multiple
change points) have performed better compared with
using only one model. To perform a goodness of fit, all
residuals are tested using the same procedure as before,
that is, the Li-McLeod test method (27). Most of the
computed p-values are greater than 5% which indicates
that the new residuals don not resemble any additional

Table 2. Time Series Model for all Seven Subway Stations

Subway station Fitted model Estimated parameters Performance errors Li-McLeod’s test p-values

South Ferry station ARIMA (0,1,2) u1 = 20.6368 AIC = 653.81 \0.05
u2 = 20.2590 AICC = 653.85

BIC = 666.65
137 Street, City College ARIMA (1,0,2) f1 = 0.886 AIC = 610.36 \0.05

u1 = 20.342 AICC = 610.44
u2 = 20.299 BIC = 627.42

Bronx East Park station ARIMA (1,1,1) f1 = 0.219 AIC = 587.61 \0.05
u1 = 20.871 AICC = 587.65

BIC = 600.45
Crescent Street, Brooklyn ARIMA (1,0,1) f1 = 0.435 AIC = 754.63 \0.05

u1 = 0.148 AICC = 754.58
BIC = 767.54

Hunts Point station ARIMA (1, 0, 2) f1 = 0.819 AIC = 527.04 \0.05
u1 = 20.397 AICC = 527.12
u2 = 20.145 BIC = 544.18

President Station ARIMA (1, 0, 0) f1 = 0.682 AIC = 390.7 \0.05
AICC = 390.72

BIC = 399.27
Grand Newton station ARIMA (2, 1, 4) f1 = 20.4081 AIC = 311.76 \0.05

f2 = 20.7528
u1 = 20.1235 AICC = 311.97

u2 = 0.3702 BIC = 341.74
u3 = 20.6168
u4 = 20.2732

Note: AIC = Akaike information criterion; AICC = corrected AIC; ARIMA = autoregressive integrated moving average; BIC = Bayesian information

criterion.

Table 3. Change Point of Subway Station Ridership

Subway station Change point (time)

137 Street, City College March 13, 2020
Bronx East Park station March 12, 2020
Crescent Street, Brooklyn March 13, 2020
South Ferry station March 13, 2020
Hunts Point station June 28, 2019, and March 12, 2020
President station March 13, 2020
Grand Newton station March 13, 2020
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Table 4. Time Series Model for all Four Subway Stations before and after Change Points

Subway station Fitted model Estimated parameters Performance errors
Li-McLeod’s
test p-values

South Ferry station (before change point) ARIMA (0,0,1) u2 = 0.2677 AIC = 563.07 .=0.05
AICC = 563.1

BIC = 571.23
South Ferry station (after change point) ARIMA (3,1,3) f1 = 1.3867 AIC = 234.28 .=0.05

AICC = 233.03
f2 = 21.0280 BIC = 216.26

f3 = 0.0795
u1 = 21.9053

u2 = 1.5240
u3 = 20.370

137 Street, City College (before change point) ARIMA (1,0,1) f1 = 0.310 AIC = 486.4 \0.05
u1 = 0.492 AICC = 486.5

BIC = 498.7
137 Street, City College (after change point) ARIMA (5,0,1) f1 = 0.0536 AIC = 531.2 .=0.05

AICC = 531.53
f2 = 20.8238 BIC = 563.84

f3 = 0.4975
f4 = 20.1208

f5 = 0.2307
u1 = 0.4355

Bronx East Park station (before change point) ARIMA (0,0,2) u1 = 0.1761 AIC = 491.35 .=0.05
AICC = 491.4

u2 = 0.1947 BIC = 503.58
Bronx East Park station (after change point) ARIMA (2,1,1) f1 = 0.7612 AIC = 215.55 .=0.05

f2 = 20.1742 AICC = 215.12
u1 = 20.8191 BIC = 25.25

Crescent Street, Brooklyn (before change point) ARIMA (0,0,2) u1 = 0.5124 AIC = 659.27 .=0.05
AICC = 659.32

u2 = 0.1316 BIC = 671.58
Crescent Street, Brooklyn (after change point) ARIMA (0,1,0) AIC = 4.83 .=0.05

AICC = 4.87
BIC = 7.42

Hunts Point (before change point) ARIMA (0,0,1) u1 = 0.2199 AIC = 178.2 .=0.05
AICC = 178.27

BIC = 184.57
Hunts Point (after change point, 2 models) ARIMA (3,0,0) f1 = 0.4740 AIC = 262.91 .=0.05

ARIMA (2,1,1) f2 = 20.0671 AICC = 263.07 .=0.05
f3 = 0.0522 BIC = 277.14
f1 = 0.3942 AIC = 64.67
f2 = 0.2132 AICC = 65.1

u1 = 20.9014 BIC = 74.96
President station (before change point) ARIMA (1,0,0) u1 = 0.6636 AIC = 394.15 .=0.05

AICC = 394.18
BIC = 402.31

President station (after change point) ARIMA (6,1,0) f1 = 0.1121 AIC = 2140.1 .=0.05
f2 = 20.6223 AICC = 2138.48
f3 = 20.3153 BIC = 2119.42
f4 = 20.1176
f5 = 20.5350

f6 = 0.3523
Grand Newton station (before change point) ARIMA (1,0,0) f1 = 0.3244 AIC = 270.06 \0.05

AICC = 270.09
BIC = 278.23

Grand Newton station (after change point) ARIMA (2,1,2) f1 = 1.3181 AIC = 252.96 \0.05
AICC = 252.3

f2 = 20.9618 BIC = 240.09
u1 = 21.4192

u2 = 0.8813

Note: AIC = Akaike information criterion; AICC = corrected AIC; ARIMA = autoregressive integrated moving average; BIC = Bayesian information

criterion.
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temporal dependence, therefore the piecewise ARIMA
model fitted to the data is a reasonable fit. It should be
noted that, in ARIMA models, for higher lags (p or q
more than 1), it is possible to have phi or theta para-
meters with magnitudes more than one, which is the case
for models in the stations at South Ferry and at Grand
Newton.

Another interesting finding is that the changes which
occurred in the ridership data are not only on means
(average of ridership), but the second-order statistics are
changed as well. Reviewing the fitted models in Tables 2
and 4 shows that the order of ARIMA models (selected
p, d, q) and the estimated auto-regressive and moving
average parameters in different segments for each subway
station are different. For example, the selected model for
South Ferry data before the break point is a simple
MA(1) while after the break point is an ARIMA(3,1,3).
The former is a very simple model with minor correla-
tions among data points with one time-lag apart from
each other, while the latter is a more complicated model
with six parameters, and the temporal dependence is
much stronger than the first model. Therefore, the corre-
lations among time-lagged ridership have changed during
the pandemic. Such second-order changes are not easy to
detect by eyeballing or just plotting the data as a time
series. This shows the necessity of developing statistical
modeling frameworks which would include anomalies in
the data to analyze and understand better the behavior of
subway ridership over time during such extreme times
(e.g., pandemic).

Finally, looking at the results in the Grand Newton
station, the white noise test p-values are relatively low
which means the current model may not be a good fit for
this data. A non-linear time series model be a better
choice for this specific station.

Conclusion

In this paper, a linear and non-stationary ARIMA-based
time series model is developed to understand the tem-
poral pattern of station-based subway ridership during
the COVID-19 pandemic. The main objective of the
paper is to propose an interpretable modeling framework
to characterize the temporal pattern of subway ridership
during the COVID-19 pandemic.

Interpretability lies in the modeling framework uti-
lized in this paper. It is a common practice to model data
with temporal index using stationary time series models,
and ARIMA models are among the most well-known
stationary time series models used in different scientific
fields including civil engineering and transportation.
However, in the presence of structural breaks (shocks) in
the temporal dynamical system under consideration, the

stationarity assumption may be violated; thus, it is neces-
sary to search for alternative modeling frameworks.
Nonparametric statistical models using B-splines and
wavelet basis functions are models which may be able to
handle the changes in the dynamical system. However,
they are not easy to interpret. This is one of the draw-
backs of nonparametric methods, while they are useful
in practice. Piecewise stationary models, on the other
hand, are interesting models which are easier to inter-
pret, since a time point at which the dynamical system
receives an external shock can be called a ‘‘break point,’’
and its location can be estimated using developed algo-
rithms. Such time points are essentially the discontinuity
points in the piecewise modeling framework; this is why
the modeling framework is called an interpretable one.
For example, the developed algorithm detects a break
point in the ridership of South Ferry Station on March
13, 2020. This date could be linked to an external shock
in the dynamical system of ridership at this station, and
is indeed close to the date of the stay-at-home order at
the state level in NYC. Note that it is almost impossible
to make such connections to real events using nonpara-
metric models.

To that end, a simple yet powerful family of time
series models are utilized (ARIMA models) while
the inclusion of the sudden changes (break points) in the
model accounts for discontinuity/anomalous behavior
of subway ridership. A unique feature of the developed
model is that it balances between model complexity
and model interpretability. In other words, the statistical
model designed for the time series data under investiga-
tion is deliberately selected to be simple and interpretable
while it is a valid model (i.e., fits very well to the data). It
is possible to note not only that the detected break points
found by the algorithm are near the date of the ‘‘stay-at-
home’’ order in NYC, which validates the proposed
modeling framework, but also that the model shows the
‘‘covariance structure’’ of the time series have changed
before and after the pandemic.

In summary, the main contributions of the paper
include (a) developing a simple and interpretable statisti-
cal modeling framework to analyze the subway ridership
in NYC during the COVD-19 pandemic; (b) utilizing
novel machine learning algorithms from the statistical lit-
erature to detect the location of change/break points
while the number of such break points are assumed to
unknown; and (c) enhancing the scientific community’s
understanding of changes in the subway ridership during
such pandemics by shedding some light on the second-
order changes of subway ridership, a topic worth of fur-
ther investigation.

It is worth noting that there are two different
approaches to change point detection in the statistical
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and engineering literature: (1) online detection and (2)
off-line detection (33). In the latter, the whole time series
data is given to the modeler and the objective is to find
the set of break/change points, while in the former, a
streaming data is observed (new data points are observed
continuously) and the objective is to raise an alarm as
soon as an anomalous pattern is observed in the data.
The change point model developed in this paper is off-
line, since the whole observed data was used and then
novel algorithms were used to locate all break points.
Developing online detection algorithms needs different
statistical treatments (mainly, likelihood ratio tests), dif-
ferent modeling frameworks (distributional assumption
on the time series), and different algorithms. Further,
certain assumptions must be made to define identifiable
break/change points, which may not hold for the subway
ridership data in NYC during the COVID-19 pandemic.
For these reasons, the authors focused on off-line change
point detection and leave the online detection as a fruit-
ful future research direction. Moreover, analyzing and
comparing the effect of COVID-19 on transit ridership
of other metropolitan cities would be in the continuation
of the author’s research to better justify the need for ela-
borated time series models. Also, how the transit rider-
ship reacted during this pandemic with reopening
strategies or how the subway ridership returned in the
aftermath of the COVID-19 crisis could add other
anomalies to this time series modeling. These questions
are a few important research directions that the authors
plan to pursue in the near future.
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