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The COVID-19 vaccines were developed and rigorously evaluated
in randomized trials during 2020. However, important questions,
such as the magnitude and duration of protection, their effec-
tiveness against new virus variants, and the effectiveness of
booster vaccination, could not be answered by randomized
trials and have therefore been addressed in observational
studies. Analyses of observational data can be biased because
of confounding and because of inadequate design that does
not consider the evolution of the pandemic over time and the
rapid uptake of vaccination. Emulating a hypothetical “target
trial” using observational data assembled during vaccine roll-
outs can help manage such potential sources of bias. This arti-
cle describes 2 approaches to target trial emulation. In the
sequential approach, on each day, eligible persons who have
not yet been vaccinated are matched to a vaccinated person.
The single-trial approach sets a single baseline at the start of

the rollout and considers vaccination as a time-varying variable.
The nature of the confounding depends on the analysis strat-
egy: Estimating “per-protocol” effects (accounting for vac-
cination of initially unvaccinated persons after baseline)
may require adjustment for both baseline and “time-vary-
ing” confounders. These issues are illustrated by using
observational data from 2 780 931 persons in the United
Kingdom aged 70 years or older to estimate the effect of
a first dose of a COVID-19 vaccine. Addressing the issues
discussed in this article should help authors of observatio-
nal studies provide robust evidence to guide clinical and
policy decisions.
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T he COVID-19 vaccines were developed and rigor-
ously evaluated in randomized trials within a year of

the first reports of COVID-19. The availability of effective
vaccines has transformed the management of the pan-
demic. However, randomized trials were unable to address
important questions about vaccine effectiveness because
they were conducted before the Delta and Omicron var-
iants emerged and the length of follow-up was insufficient
to study the duration of protection or the benefit of booster
vaccination. Clinicians, policymakers, and the public must
therefore rely on evidence from observational studies.
Thus, it is important to understand the challenges of using
observational data to address these questions.

It is helpful to consider the hypothetical randomized
trial, also known as the “target trial,” that an observational
study aims to emulate (1). Consideration of the target
trial helps to identify potential sources of bias in observa-
tional analyses that estimate vaccine effectiveness and to
clarify analytic approaches to reduce bias. The lack of
random assignment to vaccination necessitates adjust-
ment for bias from confounding when factors influencing
the outcome also influence receipt of vaccination.

In this article, we describe analytic issues that arise
when data assembled during a rapid rollout of vaccines
are used to estimate vaccine effectiveness. We describe
2 approaches to specifying target trials of interest and
emulating them inobservational data: a sequential approach
based on matching vaccinated and unvaccinated per-
sons on each day of vaccination, and a single-trial
approach that splits follow-up time for each person
into vaccinated and unvaccinated periods. We com-
pare estimates of the effectiveness of a first dose of

the Pfizer–BioNTech BNT162b2 mRNA vaccine (BNT162b2)
and the Oxford–AstraZeneca ChAdOx1 nCoV-19 AZD1222
vaccine (ChAdOx1) among persons in the United Kingdom
aged 70 years or older using each approach.

OBSERVATIONAL DATA FROM THE U.K.
COVID-19 VACCINE ROLLOUT

The United Kingdom’s COVID-19 vaccination pro-
gram began in December 2020, with initial priority given
to persons aged 80 years or older, health care workers,
and care home residents, followed by persons aged 70
to 79 years and those with extreme clinical vulnerability
(2). The BNT162b2 and ChAdOx1 vaccines were admin-
istered free of charge beginning on 8 December 2020
and 4 January 2021, respectively. The interval between
the first and second doses was extended from 3 weeks
(the interval used in market approval) to 12 weeks to
expedite receipt of the first dose for more people.
Observational studies of vaccine effectiveness using elec-
tronic health record data soon followed (3–5). The analyses
reported here are based on primary care records linked to
hospital, death registry, vaccination, and coronavirus testing
surveillance data within the OpenSAFELY-TPP database
(www.opensafely.org), which includes 24 million persons
registered with English general practice primary care prac-
tices using TPP SystmOne software.

See also:
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THE CHALLENGES OF ESTIMATING VACCINE

EFFECTIVENESS WITH OBSERVATIONAL DATA

Nonrandomized Assignment in Observational
Data

The trials that established the effectiveness of
COVID-19 vaccination randomly assigned persons
without a prior diagnosis of COVID-19 to a vaccine or
placebo and followed them until COVID-19 diagnosis,
death, or the end of the study period. Although recruit-
ment occurred across geographic locations with different
and rapidly changing COVID-19 incidence, randomization
balanced prognostic factors at the time of assignment
(“baseline,” or “time zero”) between persons assigned to
vaccination and those assigned to no vaccination. In the
real world, persons who receive vaccination are likely to
have different baseline prognostic factors for COVID-19
from those who do not. These potential baseline confound-
ers include demographic, clinical, and behavioral character-
istics that influence vaccine accessibility, acceptability, and
hesitancy, as well as region and calendar period. Thus,
in observational studies, unadjusted associations between
vaccination and outcomes are subject to confounding
bias.

As an example, consider the role of calendar period.
Incidence of COVID-19 has varied dramatically during
the pandemic. During December 2020 to April 2021, the
number of positive SARS-CoV-2 test results in the United
Kingdom peaked in early January 2021 and then
decreased steadily after the U.K. lockdown was announced
on 6 January 2021 (Supplement Figure 1, available at
Annals.org). Rapid changes in incidence require that obser-
vational analyses account precisely for calendar time.
Emulating a target trial using observational data requires
adequate adjustment for calendar period and other
potential baseline confounders through study design
or data analysis.

Sequential Target Trial Emulation
Estimating the Intention-to-Treat Effect

In addition to adequate adjustment for confounding,
emulating a target trial requires appropriate determina-
tion of time zero for each person. Time zero is easily
defined as the date of vaccination for vaccinated per-
sons, but unvaccinated persons are unvaccinated on a
sequence of days until either they are vaccinated or
follow-up ends. To ensure comparability of calendar
time at time zero, observational data can be conceptual-
ized as a sequence of target trials. In this sequence, on
each day and in each region, eligible persons who have
not yet been vaccinated are randomly assigned to
receive immediate vaccination or to remain unvacci-
nated throughout follow-up and are then followed until
COVID-19 diagnosis, death, or the end of the study pe-
riod, whichever occurs first. Thus, a new trial starts on every
day during the vaccination program. Each calendar day is
considered as time zero for a new emulated trial, with per-
sons who are determined to be eligible assigned to the
vaccination group if they were vaccinated on that day or to
the no-vaccination group if they were not vaccinated, then
followed until occurrence of the outcome or the end of the

study. The trial-specific estimates of the effect of vaccina-
tion from each sequential trial can then be combined to
estimate an observational analogue of the intention-to-
treat effect of assignment to the intervention or, in our
case, of receiving the first dose, ignoring whether a sec-
ond dose is also received. Some observational analyses
of the effect of COVID-19 vaccination have used this se-
quential-trial emulation approach (6).

There are various approaches to selecting unvacci-
nated persons to include in the comparison group. One
or more persons can be selected at random from all eli-
gible persons who were unvaccinated on that day and in
that region, with exclusion of unvaccinated persons
selected for a comparisonmade on a previous day. Another
approach matches the vaccinated and unvaccinated
person within each pair on baseline potential confound-
ers in order to balance confounders so that the analyses
need not adjust for them. It is desirable to closely match
the vaccinated person and the unvaccinated person on
characteristics that may reflect COVID-19 risk, such as
neighborhood of residence or sociodemographic and
clinical characteristics.

Estimating the Per-Protocol Effect
As vaccination programs roll out, the number of

unvaccinated persons can decrease rapidly over time.
This has 2 important implications for observational
analyses. First, the pool of eligible unvaccinated per-
sons will be smaller for comparisons that start later in
the rollout. Second, many persons included in the no-
vaccination group will be vaccinated soon afterward.
As a result, the observational analogue of the intention-to-
treat effect estimate may be uninformative because the
no-vaccination group is contaminated by initially unvacci-
nated persons who deviated from the target trial protocol
by being vaccinated.

To address vaccination during follow-up of persons
included in the no-vaccination group, it is necessary to
estimate the observational analogue of the “per-protocol
effect” (the effect of receiving vaccination or no vaccina-
tion in accordance with the protocol of the target trial).
This can be done by censoring persons in the no-vaccination
group at the time they are vaccinated (7). Such censoring
will be informative if factors that vary after baseline affect the
rate at which persons in the no-vaccination group are vacci-
nated. In practice, however, over short timescales (weeks),
the baseline and postbaseline values of most variables
will be the same (8). Nonetheless, unmeasured time-
varying factors (for example, respiratory symptoms) that
influence both the probability of unvaccinated persons
getting vaccinated and the risk of the outcome may intro-
duce bias. Furthermore, when the time-varying confound-
ers are themselves affected by vaccination, standard
adjustment methods (for example, including the time-
varying confounders in regression models) are inadequate
and g methods, such as inverse probability weighting, are
necessary (9, 10).

Censoring unvaccinated persons when they are vac-
cinated can lead to the follow-up time of vaccinated per-
sons being longer and occurring in a different calendar
period than for unvaccinated persons. Identifying pairs
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of vaccinated and unvaccinated persons in each region
and on each day and censoring follow-up of the vacci-
nated person on the day that the unvaccinated person in
the pair is vaccinated can address this problem.

Single Target Trial Emulation
Rather than emulating a sequence of target trials,

some observational studies have used a single-cohort
approach, with follow-up starting at the beginning of the
vaccine rollout and vaccination coded as a time-varying
variable that switches from 0 (no vaccination) to 1 (vacci-
nation) on the day of vaccination and stays as 1 thereafter
(3, 5). Cox or Poisson models are then used to estimate a
time-averaged hazard ratio for ever-vaccination versus
no vaccination. This estimated hazard ratio approximates
the per-protocol hazard ratio obtained by pooling se-
quential trials with censoring if there were no time-varying
confounders and people remained eligible for all trials
unless they developed COVID-19 or died. This approach
can be seen as an attempt to emulate a target trial in
which eligible persons are recruited at the start of the roll-
out (for example, 8 December 2020 for persons aged ≥80
years in the United Kingdom) and are randomly assigned
to vaccination at different times during follow-up if they
remain eligible at those times. However, this “single-trial”
approach has significant disadvantages compared with
the “sequential target trials” approach.

First, time-varying risk factors that are associated
with vaccination after the start of rollout are “time-varying
confounders” andmust be adjusted for using gmethods,
such as inverse probability weighting of marginal structural
models (as described later). In contrast, when sequential
target trials are emulated, these factors are time-fixed con-
founders at each trial’s baseline. Many published analyses
of observational data that used a single cohort with time-
varying vaccination did not appear to address potential
time-varying confounders (3, 5). Second, because vacci-
nation starts at different times for different people, this
approach does not naturally lead to estimation of abso-
lute risks and cumulative incidence curves, so causal
inferences are based on the time-averaged hazard ratio.
Third, people may become ineligible for vaccination af-
ter the start of follow-up if, for example, they test positive
for SARS-CoV-2. When sequential trials are emulated, per-
sons with a prior positive test result are excluded at base-
line. In the single-trial approach, however, persons who
are vaccinated and those who are unvaccinated at a given
time during follow-up can become increasingly noncom-
parable in terms of prior infection when the effect of vacci-
nation on postinfection outcomes (such as hospitalization)
is being estimated, and statistical methods cannot
adequately adjust for this imbalance. Technically, we say
that there is no “positivity” because the probability of vac-
cination soon after a documented infection is essentially
zero, except in cases of data errors and in highly unusual
circumstances. A way to manage this problem, at the
expense of altering the original causal question, is to
stop updating the time-varying vaccination variable and
the time-varying weights after a positive test result.

ESTIMATING THE EFFECTIVENESS OF A FIRST

DOSE OF BNT162B2 AND CHADOX1 AMONG

PERSONS IN ENGLAND AGED 70 YEARS OR

OLDER

To illustrate the aforementioned issues, we applied
both the sequential approach and the single-trial approach
to estimate the effectiveness of a first vaccine dose among
persons aged 70 years or older, using the U.K. data
described earlier.

There were 3327255 potentially eligible persons
who were aged 70 years or older on 31 March 2020 (the
date used to calculate priority group membership) and
were alive on 8 December 2020. After exclusion of per-
sons with unreliable vaccination data (0.9%), those with
less than 1 year of continuous registration (3.3%), health
or social care workers (0.1%), care or nursing home resi-
dents or persons who were housebound for medical rea-
sons (5.1%), those receiving end-of-life care (1.7%), those
with missing information on key demographic variables
(5.1%), and those with evidence of prior SARS-CoV-2
infection (1.4%), 2 780931 (83.6%) met eligibility criteria
for subsequent analyses (Supplement Figure 2, available
at Annals.org).

We estimated per-protocol effects of a single dose
of either BNT162b2 or ChAdOx1 compared with no vac-
cination on 3 outcomes: positive test result for SARS-
CoV-2, COVID-19 hospitalization, and all-cause mortality.
We estimated the effectiveness of the vaccines sepa-
rately. Follow-up was censored if unvaccinated persons
were vaccinated with the other vaccine and if vaccinated
persons received a second dose. We conducted a sensi-
tivity analysis in which vaccinated persons were not cen-
sored when they received a second dose. Follow-up
ended on 12 April 2021, or earlier if the outcome occurred
or participants de-registered from their primary care
practice. During the study period, daily incidence rates
of COVID-19were 10 to 100 cases per 10000 persons (11).

We identified potential confounders from varia-
bles used to define U.K. vaccination priority groups,
government shielding guidance (12), and clinical ex-
pertise (Supplement Table 1, available at Annals.org).
We also considered 2 potential confounders that could
vary after eligibility for vaccination: unplanned hospital-
izations for infectious or noninfectious conditions (each
categorized as not in the hospital, in the hospital, 1 to 21
days after discharge, and 22 to 28 days after discharge).

For each approach, we estimated hazard ratios for
vaccination 1 to 3, 4 to 7, 8 to 14, 15 to 21, 22 to 28, 29
to 35, and 36 to 70 days after receipt of the first vaccine
dose. Vaccine effectiveness was estimated as 100 � (1
minus the hazard ratio). The Supplement (available at
Annals.org) contains additional details on the OpenSAFELY
data analytics platform, exclusion criteria, derivation of
confounders and outcomes, the approach to dealing
with missing data, and the analyses.

Characteristics of the Cohort
Vaccine coverage increased rapidly starting on 14

December 2020, initially with BNT162b2 and then with
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ChAdOx1 starting in early January 2021 (Figure 1).
Second vaccinations with BNT162b2 began 3 weeks
later, but on 31 December 2020, the U.K. Chief Medical
Officers announced that the dosing interval would be
increased to 12 weeks. Therefore, few second doses of
ChAdOx1 were administered before March 2021. A total
of 2656062 (96%) persons were vaccinated by the end of
follow-up (1406637 [51%] with BNT162b2 and 1249425
[45%] with ChAdOx1). In the single-trial cohort, 54.0%
were female, 95.7% wereWhite, and 12.8% lived in one of
the top 20% most deprived areas in England. Of 530685
person-years of follow-up, 163 515 (30.8%) were after
vaccination.

The Table shows the distribution of selected poten-
tial confounding factors together with hazard ratios for
their association with vaccination, estimated using pooled
logistic regression models (13–15). Supplement Table 1
shows the distribution of the full set of confounders consid-
ered in both the single- and sequential-trial cohorts. There
were clear associations with vaccination, and many associa-
tions varied between BNT162b2 andChAdOx1.

For both vaccines, vaccination rates were higher for
persons in less deprived areas and lower for persons of
non-White ethnicity and those with learning disabilities or
a history of serious mental illness. Vaccination rates were
markedly higher in persons who had received influenza
vaccination in the previous 5 years.

Methods and Patient Characteristics
Sequential-Trial Approach

For the sequential approach, the first trial included
persons vaccinated on the first day on which they were

eligible for vaccination. Variables used to apply the inclu-
sion and exclusion criteria, matching variables, and base-
line covariates were redefined on each trial start date, and
the inclusion and exclusion criteria were reapplied on
each trial start date. Matching was conducted independ-
ently for persons who received BNT162b2 and ChAdOx1,
with the same unvaccinated persons available for match-
ing in the BNT162b2 and ChAdOx1 analyses. Vaccinated
persons were matched in a 1:1 ratio with persons who
were not vaccinated on that day, using the following varia-
bles: age (within 3 years), Joint Committee on Vaccination
and Immunisation age band (70 to 74, 75 to 79, and ≥80
years), sex, geographic region, and clinical vulnerability
indicator. This matching was repeated on each subse-
quent day: Unvaccinated persons who had already been
matched were no longer eligible to be unvaccinated con-
trols on subsequent days, although they were eligible for
subsequent inclusion in the vaccinated group. Time zero
for each matched pair was the day of vaccination. Follow-
up for each matched pair was censored if the unvaccinated
person became vaccinated. We derived Kaplan–Meier esti-
mates of the cumulative incidence of each outcome in
vaccinated and unvaccinated persons included in the se-
quential-trials analysis. We fitted adjusted Cox models to
estimate period-specific hazard ratios.

Matches were identified for 2 178 168 (82%) of
2 656 062 eligible vaccinations (1 245 267 [89%] of
1406637 for BNT162b2 and 932901 [75%] of 1249425
for ChAdOx1) (Supplement Figure 2). Supplement Figure 3
(available at Annals.org) shows the cumulative number
of matches over time. Almost all persons vaccinated
with BNT162b2 before mid-January 2021 were matched,
but from mid-February 2021 there were few additional
eligible vaccinations. Almost all persons vaccinated
with ChAdOx1 by the end of January 2021 werematched,
but few additional matches were identified after mid-
February 2021.

In the BNT162b2 trials, there were 111165 person-
years of follow-up (57045 in the unvaccinated group);
during this time, there were 8337 positive test results
(6297 in the unvaccinated group), 5235 COVID-19 hospi-
talizations (4101 in the unvaccinated group), and 5637
deaths (4731 in the unvaccinated group). In the ChAdOx1
trials, there were 71 121 person-years of follow-up
(35 319 in the unvaccinated group); during this time,
there were 3141 positive test results (2253 in the
unvaccinated group), 1875 COVID-19 hospitalizations
(1431 in the unvaccinated group), and 2703 deaths
(2067 in the unvaccinated group). Supplement Table 1
shows baseline (day of vaccination) characteristics of the
vaccinated and matched unvaccinated groups for each
vaccine brand. As expected, the distributions of character-
istics used for matching were identical in the vaccinated
and unvaccinated groups. Other characteristics were also
similar in the vaccinated and unvaccinated groups. The cu-
mulative incidence of each outcome was markedly lower in
vaccinated than unvaccinated persons for each vaccine
brand (Supplement Figure 4, available at Annals.org).

Figure 1. Coverage of first and second dose of BNT162b2 and
ChAdOx1 vaccination.
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Coverage on each day was calculated as 10 000 times the number of
persons in each status, divided by the number of persons alive and
registered. BNT162b2=Pfizer–BioNTech BNT162b2 mRNA vaccine;
ChAdOx1=Oxford–AstraZeneca ChAdOx1 nCoV-19 AZD1222 vaccine.
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Single-Trial Approach
For the single-trial approach, follow-up started on 8

December 2020, and the baseline confounders were
defined on that date. The data set had a row for each day
of follow-up for each person. The time-varying vaccina-
tion status was not updated after a positive SARS-CoV-2
test result. To make computations feasible, we selected a
random sample of 50000 of the persons who did not ex-
perience the outcome and upweighted them by the recip-
rocal of their probability of being sampled in the analyses.

We fitted pooled logistic models (equivalent to Cox
models [15]) with an indicator for vaccination and the
baseline covariates shown in Supplement Table 1. We
modeled calendar time using region-specific restricted
cubic splines to account for rapid changes in outcome
incidence rates over time and by geographic region. We
accounted for time-varying confounding by the meas-
ured factors that varied after baseline by using stabilized
inverse probability weights (9), which were derived from
models predicting vaccination using measured baseline

Table. Selected Baseline and Time-Varying Covariates for the Single-Trial Cohort, With Hazard Ratios (Estimated Using Pooled
Logistic Regression) for Vaccination With BNT162b2 and ChAdOx1*

Characteristic Participants, n (%) Hazard Ratio (95% CI)

BNT162b2 ChAdOx1

Age
Age Median, 76 y 3.53 (3.42–3.65) 2.21 (2.12–2.30)
Age squared (IQR, 73–82 y) 0.99 (0.99–0.99) 1.00 (1.00–1.00)

Sex
Female 1 501 071 (54.0) 1 (reference) 1 (reference)
Male 1 279 863 (46.0) 1.06 (1.05–1.08) 0.99 (0.97–1.00)

Clinical vulnerability
Not at risk 1 081 155 (38.9) 1 (reference) 1 (reference)
At risk 1 378 839 (49.6) 1.04 (0.99–1.09) 1.03 (0.98–1.08)
Extremely vulnerable 320 937 (11.5) 1.06 (1.01–1.12) 1.09 (1.04–1.15)

Deprivation
1 (most deprived) 355 413 (12.8) 1 (reference) 1 (reference)
2 469 863 (16.9) 1.15 (1.12–1.18) 1.13 (1.10–1.16)
3 639 765 (23.0) 1.17 (1.14–1.20) 1.20 (1.17–1.24)
4 658 845 (23.7) 1.25 (1.22–1.28) 1.21 (1.18–1.24)
5 (least deprived) 657 045 (23.6) 1.41 (1.37–1.45) 1.21 (1.18–1.25)

Ethnicity
White 2 660 415 (95.7) 1 (reference) 1 (reference)
Black 22 653 (0.8) 0.51 (0.44–0.58) 0.47 (0.41–0.54)
South Asian 69 393 (2.5) 0.50 (0.47–0.53) 0.54 (0.51–0.56)
Mixed 8661 (0.3) 0.63 (0.52–0.76) 0.66 (0.55–0.78)
Other 19 815 (0.7) 0.76 (0.67–0.86) 0.68 (0.60–0.76)

Morbidity count
0 1 146 813 (41.2) 1 (reference) 1 (reference)
1 904 317 (32.5) 0.99 (0.94–1.05) 1.00 (0.95–1.06)
≥2 729 801 (26.2) 0.98 (0.91–1.05) 0.99 (0.92–1.07)

Immunosuppressed 133 599 (4.8) 1.03 (1.00–1.08) 1.05 (1.01–1.10)

Learning disabilities 2745 (0.1) 0.61 (0.48–0.78) 0.60 (0.48–0.74)

Serious mental illness 17 523 (0.6) 0.75 (0.67–0.84) 0.83 (0.76–0.92)

Influenza vaccination in previous 5 y 2 463 543 (88.6) 2.23 (2.16–2.29) 2.37 (2.30–2.43)

Time since discharge from hospitalization for infectious cause
Not in hospital NA (time-varying) 1 (reference) 1 (reference)
In hospital NA (time-varying) 0.84 (0.81–0.87) 0.12 (0.10–0.16)
1–21 d NA (time-varying) 0.40 (0.36–0.45) 0.66 (0.61–0.72)
22–28 d NA (time-varying) 0.64 (0.53–0.78) 0.88 (0.75–1.03)

Time since discharge from hospitalization for noninfectious cause
Not in hospital NA (time-varying) 1 (reference) 1 (reference)
In hospital NA (time-varying) 0.94 (0.90–0.98) 0.41 (0.31–0.55)
1–21 d NA (time-varying) 0.43 (0.34–0.55) 0.87 (0.73–1.05)
22–28 d NA (time-varying) 0.75 (0.54–1.05) 0.91 (0.66–1.27)

BNT162b2 = Pfizer–BioNTech BNT162b2 mRNA vaccine; ChAdOx1 = Oxford–AstraZeneca ChAdOx1 nCoV-19 AZD1222 vaccine; NA = not applicable.
* Follow-up was censored on receipt of the other vaccine. Each pooled logistic regression model was based on a random sample of 150 000 per-
sons because the data set contains a row for each day of follow-up for each person.
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and time-varying confounders. Inverse probability weights
for censoring at the time of vaccination with the other
brand were also derived. The probability of ChAdOx1 vac-
cination was zero until its first administration on 4 January
2021. The probability of vaccination in persons aged 70 to
79 years was zero until 5 January 2021, as this was the date
on which they became eligible. Confidence intervals were
derived using robust standard errors. Additional details
on the analysis are provided on pages 2 to 4 of the
Supplement.

In the single-trial approach, factors that varied after
the vaccine eligibility date were considered as time-varying
confounders. The Table shows associations of these factors
with vaccination. Vaccination after a positive SARS-CoV-2
test result was rare, occurring in 4479 of 1406637 per-
sons who received BNT162b2 and 10713 of 1249425
who received ChAdOx1 (and in only 1437 and 2649,
respectively, within 28 days after a positive result). Persons
in or recently discharged from an unplanned hospitaliza-
tion were less likely to be vaccinated (Table).

In the single-trial cohort, there were 530682 person-
years of follow-up (367168 while unvaccinated); during
this time, there were 38853 positive SARS-CoV-2 test
results (32265 while unvaccinated), 19821 COVID-19
hospitalizations (16071 while unvaccinated), and 19527
deaths (15591 while unvaccinated).

Comparison of Estimated Vaccine Effectiveness
Using Each Approach

Figure 2 and Supplement Table 2 (available at
Annals.org) show estimated adjusted hazard ratios for
vaccine effectiveness after 1 dose of BNT162b2 or ChAdOx1,
within periods since vaccination and comparing results
from the sequential- and single-trial approaches. In gen-
eral, estimated vaccine effectiveness was greater with the
sequential-trials approach than the single-trial approach.
Hazard ratios were estimated less precisely for the sequential-
trials approach because unmatched persons were
excluded, and follow-up of each matched pair was cen-
sored when the unvaccinated control was vaccinated.
Results from the sensitivity analysis without censoring of
vaccinated follow-up time at the second dose were almost
identical.

Vaccine effectiveness against a positive SARS-CoV-2
test result was estimated to be substantial immediately
after vaccination and less substantial during the second
week after vaccination; the respective adjusted hazard
ratios during the second week after vaccination for the
sequential- and single-trial approaches were 0.50 (95%
CI, 0.45 to 0.54) and 0.56 (CI, 0.52 to 0.60) for BNT162b2
and 0.50 (CI, 0.43 to 0.58) and 0.83 (CI, 0.75 to 0.92) for
ChAdOx1. Estimated vaccine effectiveness then increased
over time: the respective adjusted hazard ratios 36 to 70
days after vaccination for the sequential- and single-trial

Figure 2. Estimated vaccine effectiveness after ≥1 dose of BNT162b2 or ChAdOx1.
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BNT162b2 = Pfizer–BioNTech BNT162b2mRNA vaccine; ChAdOx1 =Oxford–AstraZeneca ChAdOx1 nCoV-19 AZD1222 vaccine.
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approaches were 0.14 (CI, 0.11 to 0.17) and 0.43 (CI, 0.37
to 0.49) for BNT162b2 and 0.29 (CI, 0.22 to 0.39) and 0.59
(CI, 0.49 to 0.71) for ChAdOx1.

Vaccine effectiveness against COVID-19 hospitaliza-
tion was estimated to be greater than effectiveness
against a positive SARS-CoV-2 test result and greater for
BNT162b2 than for ChAdOx1. Thirty-six to 70 days after
vaccination, the respective adjusted hazard ratios for the
sequential- and single-trial approaches were 0.10 (CI,
0.07 to 0.14) and 0.24 (CI, 0.20 to 0.28) for BNT162b2
and 0.28 (CI, 0.20 to 0.41) and 0.29 (CI, 0.23 to 0.37) for
ChAdOx1. Estimated vaccine effectiveness against death
from any cause was estimated to be substantial through-
out follow-up.

DISCUSSION

Observational studies of the effectiveness of COVID-19
vaccination were of crucial importance in documenting early
evidence of substantial efficacy, informing policy on non-
pharmaceutical interventions to reduce transmission of
SARS-CoV-2, and addressing vaccine hesitancy by pro-
viding clear evidence that the benefits of vaccination
outweigh its rare harms. They are now essential for under-
standing long-term effectiveness against emerging variants,
examining evidence for waning efficacy, and studying the
effectiveness of booster vaccination and novel vaccines.
Potential biases can be identified and addressed through
conceptualization of the target trial whose results an
observational study aims to emulate.

The single-trial approach includes all persons eligi-
ble for vaccination at the start of the rollout for their eligi-
bility group. Variables that change during follow-up and
that predict both vaccination and outcomes (time-vary-
ing confounders) should be controlled for by, for exam-
ple, using inverse probability weighting. However, very
few persons were vaccinated in the week after a positive
SARS-CoV-2 test result, so it was not possible to fully control
for recent positive test results in the single-trial approach.
We addressed this by changing the comparison to that
being implicitly made in the context of the U.K. rollout by
including all follow-up after a positive test result in the unvac-
cinated group (such vaccinations were not consistent with
U.K. policy). In such an analysis, the causal contrast is
being vaccinated without a positive test result versus
being unvaccinated or vaccinated after a positive result.
This issue is easily dealt with in the sequential-trials
approach by excluding persons with a prior positive test
result within a specified period before the trial start date
from the matching process.

The substantial estimated vaccine effectiveness im-
mediately after vaccination that was observed here and
in other observational studies is inconsistent with the
results of randomized trials (16–18) and is unexpected
given the time required to develop an immune response
to vaccination and the latent period for developing
symptomatic COVID-19. This suggests that estimated
effectiveness immediately after vaccination was biased
due to unmeasured confounding (for example, post-
ponement of vaccination when people presented with
respiratory symptoms). Cancellation or postponement of

scheduled vaccination was not recorded, and symptoms
consistent with COVID-19 were not recorded unless they
led to a primary or secondary care consultation. Differential
depletion of susceptible persons in the unvaccinated group
over time may lead to attenuation of hazard ratios within
periods defined by time since vaccination, even when true
vaccine effectiveness does not change. However, such bias
is likely to beminimal when effectiveness is high (19).

Electronic health records are designed to facilitate care
and reimbursement; they are not designed for research.
Important confounders may be incompletely recorded or
not recorded. For example, mild respiratory symptoms
may not be recorded, so observational analyses can only
adjust for proxies, such as a recent contact with the health
care system, or include sensitivity analyses that explore
the potential magnitude of the bias, such as by censoring
unvaccinated persons 7 days after vaccination instead of
the day of vaccination (6). Interpretation of observational
studies should carefully consider the potential for bias due
to unmeasured confounders.

“Test-negative” designs are an alternative approach
that was widely used to estimate vaccine effectiveness
during the pandemic (4, 20). Studies using this design
compare vaccine status between persons testing positive
for the condition of interest and those testing negative,
typically with additional adjustment for measured con-
founders. The test-negative approach is attractive because
it depends less on identifying and controlling for or match-
ing on potential confounding factors than the approaches
described here (21). Although test-negative designs aim to
reduce confounding due to health care access and seeking
behavior, they are subject to selection biases (21–23) if
characteristics that predispose people to be tested also
affect the outcome. Other biases can arise; examples
include if vaccination affects other conditions causing sim-
ilar symptoms or if there is misclassification of vaccination
or the outcome.

Policy-level and individual decisions about COVID-19
vaccination should be informed by evidence about the
comparative effectiveness of different vaccination strategies.
Specification of a target trial requires explicit description of
the strategies being compared, which should assist deci-
sions based on observational data analyses. The sequential
approach described in this article can control for confound-
ing factors, including those that vary during vaccine rollout,
and address other biases that arise in observational data
analyses. Further comparisons of estimated vaccine effec-
tiveness based on different approaches to observational
analyses may clarify the advantages and disadvantages of
these approaches and facilitate rapid, robust analyses
during future public health emergencies.
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