
Cue: a deep learning framework for structural variant discovery
and genotyping

Victoria Popic1,✉, Chris Rohlicek1, Fabio Cunial2, Iman Hajirasouliha3,4, Dmitry
Meleshko4,5, Kiran Garimella2, Anant Maheshwari1

1Broad Institute of MIT and Harvard, MA, USA

2Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

3Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell
Medicine, NY, USA

4Englander Institute for Precision Medicine, The Meyer Cancer Center, Weill Cornell Medicine,
NY, USA

5Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, NY, USA

Abstract

Structural variants (SV) are a major driver of genetic diversity and disease in the human genome

and their discovery is imperative to advances in precision medicine. Existing SV callers rely on

hand-engineered features and heuristics to model SVs, which cannot scale to the vast diversity

of SVs nor fully harness the information available in sequencing datasets. Here we propose an

extensible deep learning framework, Cue, to call and genotype SVs, which can learn complex

SV abstractions directly from the data. At a high level, Cue converts alignments to images that

encode SV-informative signals and uses a stacked hourglass convolutional neural network to

predict the type, genotype, and genomic locus of the SVs captured in each image. We show that

Cue outperforms the state of the art in the detection of several classes of SVs on synthetic and real

short-read data and that it can be easily extended to other sequencing platforms while achieving

competitive performance.

✉Corresponding author: vpopic@broadinstitute.org.
Author Contributions
V.P. conceived the study. V.P. implemented the framework, generated training data, trained the models, and performed the evaluation
across benchmarks. C.R. implemented scripts to annotate and visualize SV callsets and assisted with analysis. F.C. performed runtime
benchmarking, interval selection experiments, and evaluated SV candidate calls using long reads. V.P and I.H. selected datasets for
the benchmarks. I.H. provided access to GPU resources. D.M. produced callsets of existing tools on several benchmark datasets.
K.G. assisted with the interpretation of candidate SV calls. A.M. reviewed the methodology of existing approaches and assisted with
analysis. V.P. wrote the manuscript. All of the authors revised the manuscript. V.P. supervised the study.

Competing Interests
V.P. is a former employee and owns shares of Illumina, Inc. Illumina produces sequencing platforms that generate short-read data,
which was used in this work for structural variant detection. The remaining authors declare no competing interests.

Code availability
The Cue source code and documentation are available on GitHub under the MIT license at: https://github.com/PopicLab/cue. The code
is also archived in the Code Ocean capsule https://doi.org/10.24433/C0.8949236.v2 [42]

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2023 October 01.

Published in final edited form as:
Nat Methods. 2023 April ; 20(4): 559–568. doi:10.1038/s41592-023-01799-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PopicLab/cue

Introduction

Structural variants (SVs) are the exceptionally diverse set of all genome alterations larger

than 50 base pairs. SVs encompass mutations, such as deletions, insertions, inversions,

duplications, translocations, and any complex combination thereof, that can reach megabases

in size. As a result, SVs account for more base-pair differences across individuals than all

other variant types combined [1] and are a key driver of the genetic diversity and disease

of the human genome. To date, SVs have been linked to a wide spectrum of disorders, such

as cancer, autism, Huntington’s disease, Alzheimer’s, and schizophrenia [2, 3]. Although

fundamental to our understanding of human genetics and advances in precision medicine,

general SV discovery still remains a largely unsolved problem. This is due both to the

limitations of current sequencing technologies, and, more importantly, to the challenges of

effectively leveraging all the information available in the data to model and predict SVs in

software, while at the same time generalizing to the wide range of SV types and sizes.

Numerous tools have been developed to date to call SVs [4, 5, 6, 7, 8, 9]. These

methods typically extract hand-crafted features from the alignment of sequencing data

to the reference genome to model both the properties of the sequencing platforms (e.g.

molecule lengths and sequencing errors) and the types of SV events (e.g. mapping patterns

associated with each type of SV). In whole-genome short-read sequencing, read alignment

signals that are commonly used to model SVs include: read depth (the number of reads

that map to a genome region), discordant read pairs (pairs of reads from the same fragment

whose mapping deviates in distance or orientation from how a contiguous fragment should

map), and split reads (reads that have several partial alignments to the reference) [10].

These signals are usually combined into a sophisticated statistical model or a heuristic

rule-based pipeline to predict different SV classes and SV breakpoints. As a result,

existing tools heavily rely on developer expertise and are tightly coupled to the properties

of the sequencing data and the artifacts of preceding analysis steps (e.g. the alignment

algorithm). However, given the sheer vastness of the SV landscape and the complexity of

SV-informative signals, expert-driven SV detection is inherently intractable, especially for

complex SVs, rendering us blind to major classes of genetic drivers of disease.

Deep learning offers the ability to learn complex abstractions directly from large labeled

datasets without expert guidance and is hence a promising avenue for general SV discovery.

Recently, DeepVariant [11] pioneered the use of deep learning for SNP and small indel

calling. At its core, DeepVariant uses a convolutional neural network to classify read pileup

images constructed around candidate variant sites into three possible diploid genotypes. This

strategy has also been recently applied to the analysis of SVs, primarily for SV genotyping

and filtering [12, 13, 14] and deletion detection [15]. However, while a great fit for capturing

small events (that can fully fit within some standardized image size), read pileup images

are not well suited for detecting complex types and larger sizes of SVs due to the loss of

relevant cross-breakpoint information and the added complexity needed to reconstruct one

SV call from multiple separate images. Moreover, since SVs are often nested or tightly

clustered, and hence multiple SVs can appear in the same image, SV detection cannot be

robustly formulated as an image classification task. This motivates the need to develop

Popic et al. Page 2

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

methodology designed specifically for the problem of general SV discovery using deep

learning.

In this work, we propose an extensible framework, Cue, for SV calling and genotyping,

which can effectively leverage deep learning to automatically discover the underlying salient

features of different SVs, including complex and somatic subclonal SVs. In particular,

we formulate SV discovery as a multi-class keypoint localization task, where keypoints

correspond to breakpoints of different SV type in multi-channel images. We generate input

images for this task by juxtaposing two genome intervals, which can capture both SV

breakpoints regardless of SV size, and simultaneously represent multiple read alignment

signals as separate image channels. To perform keypoint localization, our approach employs

confidence map regression using a stacked hourglass network [16, 17] trained to predict

pixels that correspond to SV breakpoints, allowing for multiple clustered SVs of any type to

be present in the same image.

To date, we have trained Cue to detect and genotype deletions (DEL), tandem duplications

(DUP), inversions (INV), inverted duplications (INVDUP), and inversions flanked by

deletions (INVDEL) larger than 5kbp; the latter two are examples of complex SVs,

which have been linked to several genomic disorders [8]. To investigate the feasibility

of our approach for the analysis of cancer datasets, we have also trained Cue to detect

lower-frequency subclonal DELs, DUPs, and INVs. Since high-quality labeled SV callsets

in real genomes are still scarce, we have trained our current models entirely on SVs

modeled in silico. We show that Cue outperforms state-of-the-art methods in simulation

and in the HG002 GIAB benchmark [18]. To further analyze Cue’s performance on

real data, we compared its results to short-read and long-read methods on the CHM1

and CHM13 genome mix using short-read Illumina [19] and long-read PacBio [20]

datasets. We show that Cue achieved the highest concordance with long-read methods

for DELs, while lower concordance was generally observed across technologies for the

INV and DUP callsets. Finally, we show a proof-of-concept extension of Cue to long-

read and linked-read sequencing platforms. We remark that the variant types, sequencing

technologies, and training data we worked with to date are an initial set: our framework can

naturally be extended to support more complex variants, additional technologies, and even

combinations of technologies, which we will pursue in subsequent framework releases. The

implementation of the Cue platform and the pretrained models are freely available under the

MIT license at https://github.com/PopicLab/cue.

Results

Overview of the Cue framework.

At a high-level, Cue operates in three steps: (1) read alignments are converted into

images that capture multiple alignment signals across two genome intervals, (2) a trained

neural network is used to generate Gaussian response confidence maps for each image,

which encode the location, type, and genotype of the SVs in this image, and (3) the high-

confidence SV predictions are refined and mapped back from image to genome coordinates.

Popic et al. Page 3

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PopicLab/cue

To encode multiple alignment properties, we construct an n-channel image from alignments

to two genome intervals, where n is the number of extracted alignment signal types. The

x-axis and y-axis of this image correspond to the two genome intervals, such that a pixel

maps to some range of base pairs (a locus) in each interval, and the pixel value in each

channel encodes the corresponding signal extracted from the reads that map to both pixel

loci (see Fig. 1a). Such images capture both the local and long-range genome structure

information and can uniquely characterize the type, genotype, and genomic breakpoints of

an SV. Note that the pixel corresponding to the start of the SV on the x-axis and the end

of the SV on the y-axis simultaneously encodes both breakpoints (we refer to such pixels

as breakpoint keypoints). Therefore, by juxtaposing intervals that are close-by and distant

on the genome, we can depict breakpoints of both small and large SVs in the same image.

Using a streaming sliding-window approach to scan the genome, we produce candidate

genome interval pairs and the corresponding images on the fly.

We encode the following alignment signals from short reads: read depth, split reads, read

pairs, and the discordant read-pair orientations – namely, left-left (LL), right-right (RR), and

right-left (RL). We use different functions to represent these signals (or their combination)

in each corresponding channel as described in the Methods section. For example, the read-

depth signal is computed as the difference in depth between two loci. Fig. 1b shows several

image channels, visualized as heatmaps, generated from read alignments to a genome

interval. We stack the resulting channels into an n-channel image and use it as input to

our deep learning model.

Since the resulting images can contain multiple SVs of different type and size, as well

as partially visible SVs, we formulate SV detection as a multi-class keypoint localization
task, wherein the objective is to detect the image coordinates corresponding to the two

breakpoints of each SV (i.e. the breakpoint keypoints), categorized by SV type and

genotype. We solve this task using confidence map regression by training our network

to predict a set of confidence maps for each image, such that each map corresponds to an

SV type and genotype combination supported by the model (e.g. heterozygous deletion or

homozygous inversion) and encodes the location of the breakpoints of all SVs of this type

in the input image. Fig. 1c shows the set of six predicted confidence maps, used to detect

deletions, inversions, and duplications (split by genotype).

To generate accurate confidence maps, our neural network needs to leverage features at both

local and global scale to learn the structural complexity of SV signatures and multi-SV

interplay patterns. To this end, Cue uses a fourth-order stacked hourglass convolutional

neural network (HN) based on [16, 17], which can consolidate information at multiple scales

by repeated bottom-up (pooling) and top-down (upsampling) processing and intermediate

supervision. Fig. 1d depicts the high-level network architecture of the HN model used

by Cue. The network takes an n-channel image as input and outputs a set of confidence

maps, encoding the breakpoint keypoints of all SVs in the image. The mean squared

error or L2 loss is commonly used to measure the distance between the predicted and the

ground truth confidence maps. However, confidence maps encoding a few keypoints using

Gaussian kernels mostly consist of background pixels (of value zero), which creates a severe

Popic et al. Page 4

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

imbalance between foreground and background classes. To address this imbalance, we use

focal L2 loss adapted from [21], which allows us to scale down the contribution of easy

background and easy foreground pixels when training Cue (see Methods).

Finally, given the confidence maps regressed by the network, we produce the set of output

SV calls as follows: (1) we detect all local peaks in each confidence map, (2) refine the

keypoint positions, and (3) convert the refined keypoints to genome space to obtain the

genome SV breakpoint coordinates. Note that the type and genotype of each SV are directly

given by the respective confidence map indices. In addition, non-maximum suppression

(NMS) filtering of lower-confidence conflicting calls is performed in both image (2D) and

genome (1D) space. Details about each step of the Cue framework are provided in the

Methods section.

DEL, DUP, and INV discovery from short-read synthetic data.

To benchmark Cue in single event detection, we simulated a human genome using

SURVIVOR [22] based on the GRCh38 reference with a total of 13,504 SVs of size 5–

250kbp, with the following breakdown by type: 4,500 DELs, 4,461 tandem DUPs, and 4,543

INVs. Since SURVIVOR places SVs at random positions along the genome, we simulated

a large number of SVs, such that some SVs are placed into difficult regions of the genome

(e.g. segmental duplications) and clustered near each other.

We compare the performance of Cue in calling and genotyping the simulated events above

to four popular state-of-the-art SV callers: Manta [4], LUMPY [6], DELLY [5], and SvABA

[7]. Fig. 2a shows the precision, recall, and F1 score of each method at 30x genome

coverage computed using the benchmarking tool Truvari [23] (see Supplementary Note 1 for

more details on evaluation metrics and Supplementary Notes 4–5 for tool execution details).

As shown in Fig. 2a and Extended Data Fig. 1a, Cue consistently achieves the highest scores

in the three reported metrics when calling SVs, leading by 1–15% in F1 score and 2–13% in

recall. Manta and LUMPY achieve equally high precision across all SV types, with a 2–8%

loss in recall. When genotyping SVs, Cue achieves the highest scores in all the metrics

on average across all SV types, with a gain in F1 of 5–56%. The biggest increase in F1

score is seen for genotyping DUPs, where Cue leads by 16–45%. On the other hand, Manta

and LUMPY outperform Cue by 2–3% in F1 when genotyping INVs, respectively. The

Recall-Precision curves in Extended Data Fig. 1b, additionally show the performance profile

(i.e. the precision vs recall trade off) of each tool under different SV quality thresholds.

To examine the performance of each tool further, Fig. 2b breaks down false negative (FN)

calls by size, type, and genome context. We used the RepeatMasker [24] and segmental

duplication tracks from the UCSC genome browser [25] to assign SVs to the following four

genome context types (as defined in [26]): segmental duplication (SD), simple repeat (SR),

repeat masked (RM; all other repeats excluding SD and SR), and unique. We can see that

tool performance can vary significantly depending on each SV feature. For example, most

tools miss events of smaller size that fall into SD and SR regions of the genome. Cue misses

the fewest events in such regions – for example, 195 vs 436 (second lowest) SD events

missed by Cue and LUMPY, respectively.

Popic et al. Page 5

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally, to evaluate Cue’s ability to generalize across sequencing depths, we generated

datasets with a coverage of 10x, 15x, 30x, 45x, and 60x for chr1 of this genome. As seen

in Extended Data Fig. 2, Cue produces consistently high-accuracy calls (F1 score of 99%)

for depths in the range of 15x-60x. At 10x, Cue’s performance drops to an F1 score of

85%. Since the current model was trained only on a mix of high-coverage images (namely,

30x and 60x), a drop in performance at low depths is expected. Cue can be adapted to

low-coverage samples by training the model directly on such examples.

Complex SV discovery from short-read synthetic data.

Since our deep learning framework is designed to detect the breakpoints of any number of

SVs in the same image, it can be naturally used to detect clustered and complex SVs. To

that end, we trained Cue to detect the following two complex SV types: deletion-flanked

inversions (INVDEL) and inverted duplications (INVDUP). We represented INVDUPs in

Cue as a separate SV type, while detecting INVDELs as three separate SVs (two DELs and

one INV). For this benchmark, we simulated a human genome using SURVIVOR with 7,240

SVs of size 5–250kbp in total, of which 1,041 were INVDELs and 704 were INVDUPs.

When simulating INVDELs, SURVIVOR chooses the size of the DEL to be a fraction of

the size of the INV, resulting in only 1,496 DELs above the 5kbp threshold. We configured

Truvari to count a variant as a true positive regardless of its reported type so as not to

penalize tools that do not specifically detect or label complex subtypes. Fig. 2c shows the

recall of complex SVs broken down by type. Cue discovered a significantly higher number

of complex events in this benchmark; in particular, it found 79% of INVDELs, which is

>40% greater than the next best result (39% found by DELLY), and 95% of INVDUPs.

Of the discovered INVDUPs, Cue labeled over 98.7% events correctly as INVDUPs (with

7 events called as DUPs and 2 events as INV). Manta, SvABA, and DELLY reported all

recovered INVDUPs as INVs and LUMPY detected only 4 INVDUP events reported as

a DEL, INV, and two breakends (BNDs). For INVDELs, Manta, SvABA, and DELLY

did not call any flanking deletions, while LUMPY called all matching events as BNDs.

Supplementary Table 1 additionally shows the percentage of recalled variants with a correct

genotype for each tool. Cue assigned the correct genotype to >96% of all discovered events.

Finally, since Cue reports INVDUPs directly, we could evaluate its precision and found

that Cue reports only 1 false positive INVDUP for the entire callset, achieving near-perfect

precision for calling INVDUPs in this benchmark.

Subclonal SV discovery from short-read synthetic data.

Somatic SV discovery in cancer genomes is complicated by tumor heterogeneity, wherein

some SVs may be present only in certain tumor subclones corresponding to a fraction of the

reads in the dataset. As a result, such SVs will have lower variant frequencies (VAFs) and

can be challenging to distinguish from noise using manually-designed heuristics. Here we

investigate the ability of our method to automatically learn to detect lower VAF subclonal

SVs, which will produce fainter signals in our images.

In order to generate WGS data with subclonal SVs, we first simulated two human genome

haplotypes using SURVIVOR based on the GRCh38 reference. We then inserted three

additional copies of one of the haplotypes and simulated a 60x paired-end short-read dataset

Popic et al. Page 6

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from this genome. This resulted in a 20% VAF for SVs from the single-copy haplotype. We

used half of the chromosomes of this genome to train Cue, and the other half for evaluation.

The evaluation SV callset had a total of 6,266 SVs, with 2,068 subclonal SVs. Fig. 2d shows

subclonal SV recall results broken down by SV type, as well as the F1 score achieved by

each method on the full evaluation dataset. Cue recovered 97% of all subclonal SVs (96%

of deletions, 96% of duplications, and 98% of inversions) while maintaining the highest F1

score. While DELLY recovered the most DEL and DUP events, it also achieved the lowest

F1 score (12% lower than Cue) in this benchmark.

HG002 GIAB DEL benchmark.

To evaluate Cue on real data, we used the HG002 genome and its hg19 GIAB NIST Tier1

v.06 benchmarking callset [18] available from the Genome in a Bottle (GIAB) Consortium.

This callset contains curated deletion and insertion calls obtained by consensus calling with

multiple sequencing technologies; we used only calls from the high-confidence regions

provided in this release, which span 2.51 Gbp of the genome. We obtained the 60x Illumina

HiSeq reads from GIAB and evaluated Cue and other tools using this dataset. Fig. 3a shows

the performance in SV calling obtained by the five methods computed using Truvari for

DELs greater than 5kbp (a total of 138 events). In this benchmark, Cue outperformed other

methods by 3–22% in F1 score. Manta achieved the highest precision (1% greater than

Cue); however, its recall was 10% lower than Cue. On the other hand, LUMPY achieved

the highest recall (2% greater than Cue) with a precision drop of 7% compared to Cue.

Fig. 3b shows the false negative (FN), false positive (FP), and true positive (TP) DEL calls

broken down by size and genome context, and Extended Data Fig. 3a–b show the FN and TP

calls broken down by their frequency in the population (computed by matching the HG002

truthset to the gnomAD-SV [27] database using Truvari). The Recall-Precision curves in

Extended Data Fig. 3c–d show that Cue achieves a strong balance between precision and

recall as compared to other tools. We highlighted several events in Fig. 3b for which IGV

plots and Cue-generated image channels are shown in Fig. 3c and Extended Data Fig. 4a–b.

In particular: (1) is a TP LINE-1 (L1HS) deletion event detected only by Cue, (2) is a FP

event called by DELLY, LUMPY, and Manta, and not called by Cue, and (3) is a FP event

called by DELLY, LUMPY, Manta, and SvABA, and not called by Cue. We found that the

mapping signature observed for the FP events (2) and (3), along with several variations,

is commonly reported as a DEL by short-read SV callers. However, additional properties

of this mapping signature reveal that it is often the result of either a dispersed DUP or

a divergent reference repeat (defined as the presence of two inexact copies of a locus in

the reference sequence) as illustrated in Extended Data Fig. 5. An in-depth analysis at the

breakpoints of events (2) and (3) using PacBio CCS reads obtained from GIAB revealed

event(2) to be a divergent repeat in the reference (see Supplementary Note 2), while event

(3) to be induced by two dispersed DUPs and one inverted dispersed DUP (Extended Data

Fig. 4c). Since Cue leverages the information across all the channels jointly, it makes

accurate predictions for these events.

CHM1 and CHM13 diploid mix benchmark.

We further evaluated Cue using the haploid hydatidiform mole CHM1 and CHM13 cell

line samples. We obtained the 40x Illumina WGS reads for each sample, merged the

Popic et al. Page 7

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reads to create a diploid 80x mix in silico, and mapped the resulting dataset against the

GRCh38 reference using BWA-MEM. Since a high-confidence truthset is not available

for these two genomes, we used three callsets derived from PacBio CLR long reads for

orthogonal validation. In particular, we used the published Huddleston et al. callset [20],

along with Sniffles [8] and PBSV [9] calls obtained from the PacBio CHM1 and CHM13

long reads published by [20]. Fig. 4a is an upset plot depicting the agreement across all

evaluated callsets for DEL events larger than 5kbp. Tool callset overlaps were computed

using SURVIVOR (see the Supplementary Note 1 for details). All callers discovered the

same 80 DEL events, with an additional 33 events found by everyone except SvABA. Of

the short-read callers, DELLY and LUMPY produced the largest set of unique calls (264

and 105, respectively). Cue has produced 20 unique calls and Manta has produced only

9 unique calls. Since these events are likely to be FPs, we can estimate that DELLY and

Manta achieved the lowest and highest precision, respectively, which is consistent with the

HG002 benchmark. Next we looked at how many short-read calls were found by at least

one long-read caller. As seen in Fig. 4b, the significant majority of Cue calls (172 out

of 195) were found by at least one long-read method – the largest fraction of calls of all

short-read methods. Supplementary Fig. 1 shows an example of a true LINE-1 DEL event

found only by Cue and all the long-read methods. Next we manually examined the groups of

events found by multiple short-read callers only. For example, 42 events were reported by all

short-read callers except Cue. Even though tool consensus is high for these events, we found

that a large fraction of them are likely FP calls caused by a dispersed DUP or a divergent

repeat in the reference, similar to FP DEL calls found in HG002. For example, 12 of the 42

events had a DUP call reported by at least one of the four methods at the same locus. Fig

4c shows the IGV plots of two such DEL calls that are consistent with a divergent reference

repeat. Examining the methodology and the reported SV evidence of each method, we found

that the tools relied solely on the discordant read-pair signal to call these DELs. Although

each method can use additional sources of evidence, no tool requires the concordance of

multiple distinct evidence sources to make a call nor takes into account the presence of any

conflicting evidence (e.g. the RL signal or the lack of change in read depth). This points to

the difficulty of hand-engineering a model that can combine multiple, potentially discrepant,

sources of evidence at the same location. Therefore, since existing short-read tools can call

events using the same underlying assumption, their consensus often cannot be considered as

a validation of shared events.

We performed a similar analysis for DUP and INV events reported in Extended Data Fig.

6. As opposed to the DEL benchmark, the consensus across callers is considerably smaller

for these event types. In particular, only one DUP and zero INVs were reported by all

of the short and long-read callers. A considerable number of DUP events (namely, 42)

were reported by all short-read callers except Cue. Since consensus for these calls was

high, we manually examined them individually. We found that 18 out of the 42 events

were found within centromeric satellite repeat regions, which are notoriously difficult to

analyze using short reads. As shown in Supplementary Fig. 2, existing methods produce

numerous overlapping DUP calls in such regions due to the abundance of RL pairs. Of the

remaining calls, we found that 17 were also reported as DELs by some of the tools and were

consistent with dispersed DUP or divergent repeat signatures. Overall these results point

Popic et al. Page 8

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to the difficulty of calling DUPs and INVs using existing methods, and using orthogonal

technologies for validation. More importantly, they reveal the need for a benchmarking

dataset for such events (and especially complex SVs) that can be used to evaluate existing

and future tools.

DEL, DUP, and INV discovery in the presence of decoy events.

Given the results on real data, where the presence of complex events (e.g. dispersed DUPs)

often confounded the detection of single DEL, DUP, and INV events, we created a synthetic

benchmark to investigate the performance of each tool in detecting these single events in

the presence of other decoy events in the genome. In particular, we simulated a synthetic

genome with 1,000 DELs, 1,000 DUPs, and 1,000 INVs in the range of 5–250kbp, as well

as 1,000 translocations (TRAs), 1,000 dispersed duplications (dDUPs), and 1,000 inverted

dispersed duplications (inv-dDUPs) to serve as decoys. We then simulated a 60x paired-end

short-read dataset from this genome. Fig. 5a shows the IGV plots of the six types of

simulated events. It can be seen that certain types of read-pair signals are shared across

these event types; however, each event type corresponds to a unique combination of signals.

Fig. 5b shows the precision, recall, and F1 scores of each method in DEL, DUP, and INV

calling. While the recall of each method is still high, precision is significantly affected by

the presence of decoy events that partially share paired-end evidence with DELs, DUPs, and

INVs. Cue achieves substantially higher results in each metric in DEL and DUP calling in

this benchmark, leading by 52–55% and 57–63% in precision, 4–13% and 2–10% in recall,

and 45–49% and 41–48% in F1 score, respectively. In INV calling, LUMPY achieves the

highest F1 score of 98%, with Cue achieving the second highest score of 93%, followed by

Manta at 66%. This experiment shows that Cue is able to learn complex representations for

simple SV types that automatically capture and reconcile multiple types of SV-informative

signals.

Extending Cue to long and linked read sequencing platforms.

To demonstrate that our approach can be extended to different sequencing platforms, we

have also performed a preliminary evaluation of Cue on long-read and linked-read data. Fig.

6a and Supplementary Note 3 describe the inputs constructed for these platforms. We used

the same synthetic genomes for evaluation and training and simulated long reads at 30x

coverage using PBSIM2 [28] (aligned with minimap2 [29]) and linked reads at 60x coverage

using LRSIM [30] (aligned with Longranger [31]).

We compared the performance of Cue to state-of-the-art long-read SV callers, PBSV [9]

and Sniffles [8], and to linked-read SV callers, Longranger [31] and LinkedSV [32]. We

performed the evaluation on the two synthetic benchmarks described above for single-event

(DEL, INV, and DUP) and complex-event (INVDUP and INVDEL) discovery. As shown

in Fig. 6b, Cue achieved the highest scores in DEL, INV, and DUP calling. We see the

biggest performance gap in comparison to linked-read methods, where Cue leads by 15%

in F1 score. Note that state-of-the-art linked-read callers are also outperformed by existing

short-read callers, suggesting that developing expert-driven software that fully leverages

linked-read signals is particularly difficult. Cue achieves significantly higher genotyping

accuracy with both long and linked reads as well.

Popic et al. Page 9

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6c shows the recall of complex SVs broken down by type. As with short reads, Cue

discovered a significantly higher number of complex events in this benchmark. In particular,

it found 98% and 97% of INVDUPs using long reads and linked reads, respectively, while

only 56% and 64% of these events were found by the leading tools, PBSV and Longranger,

respectively. Cue labeled 100% of the detected events correctly as INVDUPs using long

reads and 99% using linked reads. Existing methods reported most of the recovered

INVDUPs as INVs. Only Sniffles was designed to detect INVDUPs specifically; however,

of the recalled 381 (54%) SVs, it reported only 7 as actual INVDUPs, and the majority

as INVs. Furthermore, Cue found 88% (with long reads) and 90% (with linked reads) of

INVDELs, respectively, which is significantly greater than the next best result of 39% found

by Sniffles. For INVDELs, existing methods missed most of the flanking deletions and

discovered only a fraction of the inversions.

In conclusion, by applying modifications only to the image channels, our approach can

be extended to other sequencing platforms, while matching or surpassing state-of-the-art

methods that were manually tailored to those platforms. This combination of power and

simplicity of deployment allows Cue to keep up with the rapid advances in sequencing

technology and to deliver optimal performance on each platform.

Discussion

In this work we motivate the use of deep learning for structural variant discovery, which

allows us to shift method development away from ad hoc hand-engineered pipelines to

scalable and sustainable models that can learn complex patterns of variation directly from

the data. We lay out how SV detection can be formulated as a deep learning computer vision

task and propose an extensible framework, Cue, to call and genotype SVs of diverse size and

type. We demonstrate state-of-the-art results in calling several SV classes from synthetic and

real short-read datasets. For a proof of concept, we show how Cue can be adapted to PacBio

CLR long reads and 10x Genomics linked reads and achieve state-of-the-art performance,

especially in complex SV discovery. We will expand the framework in future work to

formally support these additional sequencing platforms, a larger range of SV sizes (which

can be achieved by changing the basepair-to-pixel resolution of our images), and more SV

types (such as translocations, insertions, and other complex SVs).

A major requirement and challenge for data-driven SV discovery is the availability of

large and well-balanced training datasets. While numerous callsets are available in publicly-

available repositories, such as GIAB and HGSVC [33], high-confidence calls that can be

used reliably for training are currently very scarce. To compensate for the lack of labeled

real genomes, we have used in silico SV modeling for training. This approach can produce

arbitrarily large well-balanced datasets; however, extensive modeling is required to capture

the full repertoire of sequencing technology characteristics, SV types, and genome contexts

observed in real data. We expect the model to struggle with event types it has never seen

during training; therefore, including real data into the training dataset is critical both for

performance and generalizability. To that end, we will retrain our model as our SV truthsets

grow over time, while leaving our core framework untouched.

Popic et al. Page 10

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Methods

Multi-channel image generation.

Given a set of read alignments A from an input BAM or CRAM file, a set of candidate

genome interval pairs G (with intervals of size S), and a set of n predefined alignment signal

scalar valued functions F = f1, f2, …, fn (where fk:A × ℝ2 ℝ) mapping alignments

extracted from two regions of the genome to a single value, we create an n-channel w × ℎ
image for each interval pair gx, gy ∈ G, where the kth image channel is obtained as follows.

First we use the function fk ∈ F to compute a square matrix Mk, such that Mij
k = fk A, i, j .

The dimension of Mk is S
B × S

B , where B represents the matrix resolution (or the number

of genome base pairs that correspond to one entry in M). The ith row in Mk corresponds

to the genome region (or bin) gy iB… i + 1 B , the jtℎ column corresponds to the genome

region gx jB… j + 1 B , and the value Mij
k is given by applying fk to alignments in regions

i and j (denoted as the alignment subsets Ai and Aj, respectively). We assign an alignment

to a region if its midpoint position falls into the region. Post-construction, each matrix is

down-sampled (using block summation) or up-sampled (using nearest neighbours) to size

w × ℎ, depending on the configured values of S, B, w, and ℎ, and its values are normalized to

fall in the range [0, 1]. In the resulting image, genome positions from the interval gx are on

the x-axis and those from gy are on the y-axis, respectively. Presented results were obtained

with images of size 256 × 256 pixels, B of 750bp for SV discovery and B of 200bp for SV

refinement, and S of 150kbp.

We define the following alignment signal functions (note: we denote the sets of a specific

property taken from all elements in a given alignment set using subscript notation; for

example, the set of all read names taken from the alignments in a subset Ai is given by

Aname
i .):

• The read-depth function

Ai − Aj

computes the difference in coverage in regions i and j normalized such that

negative values fall in the range [0, 0.5), and positive values fall in the range

(0.5, 1] (to distinguish between deletion and duplication events); we compute

two channels using this function with (1) only MAPQ>20 alignments and (2) all

alignments (including MAPQ=0).

• The split-read and read-pair function

Aname
i ∩ Aname

j

computes the number of reads or read pairs mapping to both bin i and j, where

read pairs and split-read alignments are given the same name.

Popic et al. Page 11

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• The read-pair LL and RR orientation function

Aname, LL, RR
i ∩ Aname, LL, RR

j

computes the number of read pairs that map to both bin i and j in the same

orientation; these mappings are common with inversions.

• The read-pair RL orientation function

Aname, RL
i ∩ Aname, RL

j

computes the number of read pairs that map to both bin i and j in the RL

orientation, where the second read in the pair maps to an earlier position on the

reference; these mappings are common with duplications.

• The read-pair orientation ratio function

Aname LL, RR
i ∩ Aname, LL, RR

j

min Ai , Aj

computes the ratio in coverage by LL and RR read pairs versus read depth, which

is indicative of the inversion genotype.

In order to boost the signal from discordant mappings, the normalized output of the read-pair

orientation functions is also passed through a dilating maximum filter and a Gaussian filter.

To speed up computation, we build, in a single pass over the input BAM file, an index

that allows us to quickly query several properties of the alignments mapped to individual

genome bins. More specifically, we partition each chromosome into B-sized bins, and store

the following sets of values extracted from the reads assigned to each bin: (1) number

of MAPQ ≥ 20 reads, (2) number of all reads, (3) read names, (4) read names of the LL
and RR read-pairs, (5) reads names of the RL read-pairs. Each function can then be easily

computed via index lookups (e.g. the split-read and read-pair function can be computed as

the intersection of the read names stored in the corresponding two bins of the index). All

images are generated on-the-fly in small batches in memory as we scan the genome and

deallocated immediately after use (images are not pre-generated or stored on disk). The

batch size is a configurable parameter that can be tuned to achieve the desired tradeoff

of throughput and RAM consumption (e.g. larger batches can increase the GPU inference

throughput while also increasing the memory consumption).

Interval pair selection.

We use the following strategy to generate G, the set of candidate interval pairs (for which

images are constructed) that capture both small and large SV events on each chromosome.

Let L be the length of a chromosome sequence and K be the step size of the sliding window.

Then, for a given interval size S, we produce the set of interval pairs G ∈ g × g where

g = x, x + S ∣ x = Kp, ∀p ∈ 0, L − S /K is the set of all intervals of size S that start at

Popic et al. Page 12

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

every Ktℎ position on the chromosome. We only add interval pairs gx, gy to G that have at

least two discordant read pairs, such that one alignment of the read pair is contained in gx

and the other alignment is contained in gy, for every gx and gy in g. In our experiments, we set

K = 50kbp and S = 150kbp. We can find smaller events by reducing the size of the intervals,

S, to enlarge them in the image. The number of interval pairs generated in our benchmarks

was 61,296 for the 30x synthetic genome, 16,850 for HG002, and 30,119 for the CHM-mix

dataset, respectively.

SV confidence map regression.

Given an n-channel image I generated for the genome interval pair gx, gy , our neural

network outputs a set of confidence maps H = ℎ1, ℎ2, …, ℎT corresponding to the T
zygosity-aware SV types supported by the model. Each confidence map encodes the

predicted location of the breakpoints of all the SVs of a particular type in the input. More

specifically, let bx, by be the coordinates of a given SV’s breakpoints in the genome (i.e. its

start and end positions). If bx ∈ gx and by ∈ gy, we can map these breakpoints to a keypoint

p = bx − gx
start

B , gy
end − by

B in I. If detected, this keypoint is sufficient to infer the genome

coordinates of this SV within B base pairs by mapping its pixel coordinates back to genome

space. Visually, the SV keypoint corresponds to the top-left corner of the square defined by

the start and end coordinates of the SV on each axis of I.

We generate ground-truth confidence maps of size wH × ℎH to train the network as follows.

For each SV, v (provided as a ground-truth BED or VCF file), overlapping gx and gy

with a visible keypoint pv (i.e. bx
v ∈ gx and by

v ∈ gy), we add an unnormalized 2D Gaussian

distribution peak centered around pv to ℎt, where t represents the type of the SV. As a result,

for each SV type t ∈ 1…T , the values at x ∈ ℝwH × ℎH
 in ℎt are given by

ℎt(x) = ∑
v ∈ V t

exp − x − pv
2
2

2σ2

where V t is the set of all SVs in I of type t. The hyperparameter σ of the Gaussian

kernel determines the spread of each keypoint peak and can be used to balance the ratio

of foreground and background pixels. The confidence map size is determined by the stride

hyperparameter s, which controls the ratio between the input image size and the confidence

map size. In our experiments we generate confidence maps of size 64 × 64, given by s = 4
(with σ = 10).

Network structure and training.

Our deep learning model is a fourth-order stacked hourglass network based on the human

pose estimation model proposed in [37, 38]. The network starts with a convolutional

backbone module through which the image is fed prior to the four hourglass modules.

The backbone consists of a 7 × 7 convolutional layer, a residual module, a max-pooling

Popic et al. Page 13

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

layer, and two additional residual modules. For input images of size 256 × 256, the backbone

reduces the resolution down to 64 × 64 (our confidence map size). Each hourglass module

consists of residual modules and max pooling layers to process the input features down

to a low resolution, followed by nearest neighbor upsampling layers and skip connections

to get back up to the output resolution. We perform intermediate supervision after each

hourglass module, resulting in each hourglass module generating its own set of intermediate

confidence map predictions from which we compute a loss. Stacking and intermediate

supervision allow the network to repeatedly reassess its estimates and features at every scale.

For more details on the HN architecture, please see [37, 38].

Our network was implemented in Pytorch. To train the network we used the Adam optimizer

[39], a learning rate of 1e−4, and a batch size of 16. We used a random subset of our training

dataset (10% of the data) as a heldout validation set to evaluate the model during training.

Focal loss.

We use focal L2 loss adapted from [40] to compute the distance between the predicted and

the ground truth confidence maps. Let ℎt
k be the predicted confidence map of size wH × ℎH

for SV type t by hourglass module k and let ℎt
G be the ground truth confidence map for this

SV type, the focal L2 loss between these two confidence maps is defined as follows:

FLt
k = ∑

p ∈ ℝwH × ℎH
ℎt

k(p) − ℎt
G(p) 2

2 ⋅ 1 − Dt
k(p) 2

2, where Dt
k(p) =

ℎt
k(p) − α, ℎt

G(p) > θ,
1 − ℎt

k(p) − β, otherwise

The hyperparameter θ is the threshold used to separate background and foreground pixels,

while α and β are used to scale down the contribution of easy background and easy

foreground pixels. The total loss for the stacked HN, summed over the four stacked

hourglass modules and SV types, is then computed as:

FL = ∑
k = 1

4
∑

t = 1

T
FLt

k

Converting regressed confidence maps to final SV calls.

Since the input images can contain multiple SVs of the same type, we detect all local

maxima in each regressed confidence map using a maximum filter and thresholding

(i.e. only values above a certain threshold are kept as candidates; we use 0.4 as the

threshold in our experiments). Given the resulting set of peak keypoints, we perform 2D

non-maximum suppression (NMS) by finding the SV breakpoint bounding boxes defined by

each keypoint and filtering keypoints with conflicting or redundant bounding boxes. More

specifically, let x, y be the coordinates of a candidate SV keypoint. The bounding box

defined by this SV’s breakpoints is given by the following confidence map coordinates:

xmin = x, ymin = y, xmax = w − x, ymax = ℎ − x . For each pair of resulting bounding boxes M, N ,

we compute the intersection over union, IoU = M ∩ N / M ∪ N and intersection over

minimum, IoM = M ∩ N /min M , N , metrics and remove the keypoint with the lower

Popic et al. Page 14

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

score if the IoU or IoM values are above a specified threshold (i.e. the boxes have

substantial overlap).

In order to increase the accuracy of Cue’s breakpoint positions, we optionally refine the

location of the remaining keypoints using higher resolution images “zoomed-in” around SV

keypoints. During refinement, we extract a small patch of the initial image around each

predicted keypoint and pass the patch through our model to obtain a higher resolution

keypoint. To minimize the number of base pairs represented by each pixel, the input images

are constructed using a smaller genome bin size B , resulting in higher resolution.

Each refined SV keypoint coordinate x, y is then converted to genome breakpoint

coordinates, with the x coordinate giving the start position of the SV and the y coordinate

giving its end position (as previously described). Since each confidence map encodes only

keypoints of SVs with a specific type (and genotype), we can directly determine the type and

genotype of each SV call based on the index of the confidence map in which it was detected.

The above process produces a set of SV calls for each image, which are then collected and

filtered using 1D NMS, wherein we compute the IoU and IoM metrics for the SV intervals

on the genome to find and filter out near-duplicate or conflicting SVs. Since multiple images

can capture the same part of the genome, and hence call the same SV, we need this step to

remove such duplicate calls. Finally, our method can also be configured to filter out SVs

falling into blacklisted regions of the genome (e.g. assembly gaps); however, this is not

enabled by default.

Training data generation.

To generate training data for our model, we simulated a human genome using

SURVIVOR with 13,864 SVs of size 5–250kbps, consisting of homozygous and

heterozygous deletions, tandem duplications, inversions, deletion-flanked inversions,

inverted duplications, insertions, and translocations (note: insertions and translocations

were included in the simulated genome but not labeled for training in the images). When

simulating SVs, SURVIVOR selects the size, the zygosity, and the genome location of each

SV at random. Additionally, we added small insertions and deletions (of size 50bp - 1kbp).

Since SURVIVOR chooses genome positions at random, we have simulated a large number

of SVs within the same genome, to guarantee that SVs are placed in a variety of genome

sequence contexts and co-occur nearby on the genome in different combinations. This

procedure resulted in the following breakdown of SVs by sequence context in our labeled

training examples: 1,101(8%) in segmental duplications; 913 (7%) in simple repeats; 9,190

(66%) in all other repeat types; and 2,660 (19%) in non-repetitive regions. We generated

a 60x paired-end Illumina short-read WGS dataset from this genome using DWGSIM and

mapped the reads with BWA-MEM to obtain a BAM file with read alignments.

Given the generated BAM file and the ground-truth SV BED file produced by SURVIVOR,

we generated an annotated training image dataset by: (1) scanning the genome using a

sliding-window approach to produce genome interval pairs, (2) generating images from the

alignments to each interval pair, and (3) annotating the resulting images with information

that includes the SV type and breakpoint coordinates of each visible (or partially visible) SV,

Popic et al. Page 15

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as well as genome intervals used to generate the image. This scheme resulted in 175,934

images with 0–6 SVs fully visible in the same image. To diversify the genome coverage of

our training examples, we have also down-sampled the generated BAM file to a depth of 30x

and generated new images for this depth. In addition, we have also augmented SURVIVOR

to model LINE-1 deletions by selecting random LINE-1 breakpoints from the LINE track

of RepeatMasker, and simulated 7,501 such events with 51,541 corresponding images.

Finally, we also generated 48,073 image examples using reads simulated directly from the

reference genome, 10,400 images with divergent read alignments (to model divergence,

we simply down-sampled reference-read alignments at random loci of the genome), and

193,361 images with unlabeled dispersed duplications and inverted dispersed duplications.

Extended Data Fig. 7 shows a high-level diagram of the in-silico training data generation

process and a sample of produced annotated images.

Runtime and memory requirements.

We evaluated the runtime and memory requirements of Cue on the 60x HG002 genome and

compared its performance to the four state-of-the-art short-read callers. All our experiments

were performed on an Intel Xeon Gold 6258R system with 56 physical cores and maximum

single-core frequency of 4GHz, four NVIDIA RTX A6000 GPUs, and 2TB of RAM. For

each experiment, we report the average wall clock time and the average maximum resident

set size (Max RSS) over five executions of each program.

To evaluate single-core performance, we first executed each method on chr1 of the HG002

genome configuring each tool to run on a single thread. As can be seen in Extended

Data Fig. 8a–b, Cue required 5.6GB of peak memory and 1h runtime on this benchmark

(of which 20min was spent in indexing the BAM file and 42min in SV calling). SvABA

ran slightly longer than Cue and DELLY required slightly more RAM. When configuring

PyTorch to use multiple CPUs or a single GPU, the calling time of Cue was reduced to

20min on chr1 (Extended Data Fig. 8c).

Next we evaluated the runtime of Cue on the full HG002 genome. Cue can be configured

to process each chromosome in parallel across multiple CPUs or a single or multiple GPUs.

When running on 24 CPU cores in parallel (such that each chromosome is assigned to a

separate core), Cue processed the full genome in 40min (when pre-indexed) and 1h from

scratch, with a Max RSS of 37GB. This runtime is dominated by the time it takes one

core to process chr1. Enabling parallel processing in PyTorch (which runs inference on

multiple images of the same chromosome in parallel), brings the SV calling time down to

30min. Using a single GPU (filled to capacity with 18 chromosomes processed in parallel

and a batch size of 16), reduces the runtime further down to 20min. Using all four GPUs

(by assigning each GPU to 6 chromosomes) did not reduce runtime significantly for any

batch size. Since Cue was implemented in Python, we expect that a significant increase

in performance can be achieved by shifting the index computation to C++. Furthermore,

we plan to optimize SV calling and index construction in future releases, by performing

a fine-grained load-balanced assignment of interval pairs (rather than chromosomes) to

parallel threads.

Popic et al. Page 16

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data

Extended Data Fig. 1.
Performance evaluation broken down by SV type on synthetic data at 30x genome coverage.

a. Precision, recall, and F1 score for DEL, DUP, and INV calling and genotyping. b.
Recall-precision curves for each SV type generated using the SV quality thresholds reported

in the QUAL VCF field.

Popic et al. Page 17

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 2.
Performance evaluation on synthetic data at varying genome coverage. Precision, recall,

and F1 score for DEL, DUP, and INV calling and genotyping computed for chr1 at 10x,

15x, 30x, 45x, and 60x genome coverage. Results are shown for all the SV calls combined

(‘ALL’) and broken down by type.

Popic et al. Page 18

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 3.
Evaluation of the TP, FN, and FP SV calls in the HG002 benchmark. a. Histogram showing

the number of occurrences of the TP and FN SV calls in gnomAD-SV for each tool.

SVs with no match in gnomAD-SV are collected in the zeroth bin. b. TP and FN calls

broken down by frequency in gnomAD-SV and genome context. c. Recall-Precision curves

generated using the SV quality thresholds reported in the QUAL VCF field. d. The Recall-

Precision curve of Cue annotated with a subset of reported SV quality values.

Popic et al. Page 19

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 4.
Analysis of a false positive HG002 deletion generated by all short-read callers except Cue.

a. IGV plot showing short-read alignments at the call locus. Discordant read pairs mapped

to the same strand (LL and RR mappings) are shown in light and dark blue, RL mappings

are shown in green, and read pairs with a discordantly large insert size are shown in red.

b. Cue-generated image channels depicting short-read signals that are inconsistent with a

valid DEL signature. c. One of the two haplotypes of HG002, reconstructed by de novo

assembly of PacBio CCS reads, that explains the main discordant pair mappings in panel

a (the other haplotype is identical to the reference). The reconstructed haplotype contains

two dispersed DUPs, one inverted dispersed DUP, and no DEL. Colored blocks labeled with

letters are distinct short repeats. Gray blocks broken by diagonal lines are long sequences.

rc(A) denotes the reverse-complement of A. Haplotypes were reconstructed and compared

to the reference as follows. Let W be the sequence of the reference that covers the main

Popic et al. Page 20

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

patterns of discordant pairs in panel a. We built a joint de Bruijn graph (k=87) on W and on

the 190 CCS reads that have some alignment to W, we removed k-mers with frequency one,

and we translated W and every read into a walk (which may contain cycles) in the graph.

Extended Data Fig. 5.
Schematic of read-pair mapping signatures for a small dispersed DUP and a divergent

reference repeat. Locus ‘A’ is duplicated in the donor genome. Some read pairs map

discordantly in the RL orientation (green) or with a large insert size (red). Pairs internal to

each copy of the donor map to the single copy of ‘A’ in the reference genome, doubling its

coverage. If the reference has a divergent copy of ‘A’ (denoted as ‘a’), a gap in coverage will

be observed at ‘a’.

Popic et al. Page 21

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 6.
Evaluation of DUP and INV calls in the CHM1+CHM13 benchmark. a. Upset plot depicting

DUP callset overlaps of short-read and long-read callers (only sets larger than 5 events

are displayed for conciseness). Overlaps that include Cue are highlighted in orange. b.
Breakdown of DUP calls by consensus with long-read and other short-read callers. c. Upset

plot depicting INV callset overlaps of short-read and long-read callers. d. Breakdown of

INV calls by consensus with long-read and other short-read callers.

Popic et al. Page 22

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 7.
Training data generation. a. High-level overview of the in-silico sequencing and image

data generation process. b. Annotated training examples (displayed using standard image

visualization software using only three Cue channels, including the read-depth channel).

Extended Data Fig. 8.
Runtime and memory performance on chr1 of HG002. a. Sequential runtime. Cue’s runtime

is divided into indexing and calling. Lumpy’s runtime is divided into indexing, calling (short

block), and genotyping. b. Sequential peak memory. c. Effect of PyTorch parallelism on

calling time of Cue. In ‘multi-CPU’ mode we do not limit PyTorch to use a specific number

of threads.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Popic et al. Page 23

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgments

This study was supported by the Broad Institute Schmidt Fellowship and the National Human Genome Research
Institute of the National Institutes of Health Award R01HG012467 to V.P. The content is solely the responsibility
of the authors and does not necessarily represent the official views of the National Institutes of Health. I.H. was
also supported by the National Institute of General Medical Sciences Maximizing Investigators’ Research Award
R35GM138152. We thank H. Brand, M. Talkowski, A. Al’Khafaji and members of their labs at the Broad Institute
for useful feedback and discussions. We thank the Genomics Platform at the Broad Institute and the SCU at Weill
Cornell Medicine for access to GPU computing resources. We also thank A. Kushlak for the data recovery service
provided during this project.

Data availability

The 60x HG002 Illumina WGS short reads, the 28x HG002 PacBio CCS reads, and the

HG002 v0.06 truthset are available through the GIAB FTP data repository. In particular,

short reads can be downloaded from https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/

NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60x.1.bam, the PacBio

CCS reads can be downloaded from https://ftp-trace.ncbi.nlm.nih.gov/

giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/alignment/

HG002.Sequel.15kb.pbmm2.hs37d5.whatshap.haplotag.RTG.10x.trio.bam, and the

v0.06 truthset can be downloaded from https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz.

The CHM1 and CHM13 40x coverage Illumina WGS short

reads can be downloaded from the ENA short read archive (ENA accessions

ERR1341794 and ERR1341795, respectively). The CHM1 and CHM13 PacBio long reads

can be obtained from the NCBI sequence read archive under accession numbers SRP044331

(CHM1) and SRR11292120-SRR11292123 (CHM13). The Huddleston et al. [41]

CHM1 and CHM13 truthsets can be downloaded from http://eichlerlab.gs.washington.edu/

publications/Huddleston2016/structural_variants. To obtain a single truthset,

we merged the CHM1 and CHM13 VCFs using SURVIVOR and genotyped the

calls accordingly (i.e. such that records reported in both CHM1 and CHM13 were labeled

as homozygous, and records only reported in one of the two were labeled as heterozygous).

To label duplications, we cross-referenced insertion calls with Supplementary

Table 11 of [41], which separately reports which published insertion calls are duplications.

The synthetic benchmark data, training data, trained models, and configurations

are available through the associated GitHub repository: https://github.com/PopicLab/cue.

References

[1]. Chaisson Mark JP et al. “Multi-platform discovery of haplotype-resolved structural variation in
human genomes”. In: Nature Communications 10.1 (2019), pp. 1–16.

[2]. Mantere Tuomo, Kersten Simone, and Hoischen Alexander. “Long-read sequencing emerging in
medical genetics”. In: Frontiers in Genetics 10 (2019), p. 426. [PubMed: 31134132]

[3]. Li Yilong et al. “Patterns of somatic structural variation in human cancer genomes”. In: Nature
578.7793 (2020), pp. 112–121. [PubMed: 32025012]

[4]. Chen Xiaoyu et al. “Manta: rapid detection of structural variants and indels for germline and
cancer sequencing applications”. In: Bioinformatics 32.8 (2016), pp. 1220–1222. [PubMed:
26647377]

Popic et al. Page 24

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/alignment/HG002.Sequel.15kb.pbmm2.hs37d5.whatshap.haplotag.RTG.10x.trio.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/alignment/HG002.Sequel.15kb.pbmm2.hs37d5.whatshap.haplotag.RTG.10x.trio.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/alignment/HG002.Sequel.15kb.pbmm2.hs37d5.whatshap.haplotag.RTG.10x.trio.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants
http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants
https://github.com/PopicLab/cue

[5]. Rausch Tobias et al. “DELLY: structural variant discovery by integrated paired-end and split-read
analysis”. In: Bioinformatics 28.18 (2012), pp. i333–i339. [PubMed: 22962449]

[6]. Layer Ryan M. et al. “LUMPY: a probabilistic framework for structural variant discovery.” eng.
In: Genome Biology 15.6 (2014), R84. [PubMed: 24970577]

[7]. Wala Jeremiah A et al. “SvABA: genome-wide detection of structural variants and indels by local
assembly.” In: Genome Research (Mar. 2018).

[8]. Sedlazeck Fritz J et al. “Accurate detection of complex structural variations using single-molecule
sequencing”. In: Nature Methods 15.6 (2018), pp. 461–468. [PubMed: 29713083]

[9]. Pacific Biosciences. pbsv. https://github.com/PacificBiosciences/pbsv. 2018.

[10]. Alkan Can, Coe Bradley P, and Eichler Evan E. “Genome structural variation discovery and
genotyping”. In: Nature Reviews Genetics 12.5 (2011), pp. 363–376.

[11]. Poplin Ryan et al. “A universal SNP and small-indel variant caller using deep neural networks”.
In: Nature Biotechnology 36.10 (2018), pp. 983–987.

[12]. Belyeu Jonathan R et al. “Samplot: a platform for structural variant visual validation and
automated filtering”. In: Genome Biology 22.1 (2021), pp. 1–13. [PubMed: 33397451]

[13]. Bai Ruofei et al. “Cnngeno: A high-precision deep learning based strategy for the calling of
structural variation genotype”. In: Computational Biology and Chemistry 94 (2021), p. 107417.

[14]. Liu Yongzhuang et al. “A deep learning approach for filtering structural variants in short read
sequencing data”. In: Briefings in bioinformatics 22.4 (2021), bbaa370. [PubMed: 33378767]

[15]. Cai Lei, Wu Yufeng, and Gao Jingyang. “DeepSV: accurate calling of genomic deletions
from high-throughput sequencing data using deep convolutional neural network”. In: BMC
Bioinformatics 20.1 (2019), pp. 1–17. [PubMed: 30606105]

[16]. Newell Alejandro, Yang Kaiyu, and Deng Jia. “Stacked hourglass networks for human pose
estimation”. In: European Conference on Computer Vision. Springer. 2016, pp. 483–499.

[17]. Newell Alejandro, Huang Zhiao, and Deng Jia. “Associative embedding: End-to-end learning for
joint detection and grouping”. In: arXiv preprint arXiv:1611.05424 (2016).

[18]. Zook Justin M et al. “A robust benchmark for detection of germline large deletions and
insertions”. In: Nature Biotechnology 38.11 (2020), pp. 1347–1355.

[19]. Li Heng et al. “A synthetic-diploid benchmark for accurate variant-calling evaluation”. In: Nature
Methods15.8 (2018), pp. 595–597. [PubMed: 30013044]

[20]. Huddleston John et al. “Discovery and genotyping of structural variation from long-read haploid
genome sequence data”. In: Genome Research 27.5 (2017), pp. 677–685. [PubMed: 27895111]

[21]. Li Jia, Su Wen, and Wang Zengfu. “Simple pose: Rethinking and improving a bottom-up
approach for multi-person pose estimation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34. 07. 2020, pp. 11354–11361.

[22]. Jeffares Daniel C et al. “Transient structural variations have strong effects on quantitative traits
and reproductive isolation in fission yeast”. In: Nature Communications 8.1 (2017), pp. 1–11.

[23]. English Adam C et al. “Truvari: Refined structural variant comparison preserves allelic
diversity”. In: bioRxiv (2022).

[24]. Tarailo-Graovac Maja and Chen Nansheng. “Using RepeatMasker to identify repetitive elements
in genomic sequences”. In: Current Protocols in Bioinformatics 25.1 (2009), pp. 4–10.

[25]. Karolchik Donna et al. “The UCSC Genome Browser database”. In: Nucleic Acids Research 31.1
(2003), pp. 51–54. [PubMed: 12519945]

[26]. Zhao Xuefang et al. “Expectations and blind spots for structural variation detection from long-
read assemblies and short-read genome sequencing technologies”. In: The American Journal of
Human Genetics (2021).

[27]. Collins Ryan L et al. “A structural variation reference for medical and population genetics”. In:
Nature 581.7809 (2020), pp. 444–451. [PubMed: 32461652]

[28]. Ono Yukiteru, Asai Kiyoshi, and Hamada Michiaki. “PBSIM2: a simulator for long-read
sequencers with a novel generative model of quality scores”. In: Bioinformatics 37.5 (2021),
pp. 589–595. [PubMed: 32976553]

[29]. Li Heng. “Minimap2: pairwise alignment for nucleotide sequences”. In: Bioinformatics 34.18
(2018), pp. 3094–3100. [PubMed: 29750242]

Popic et al. Page 25

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PacificBiosciences/pbsv

[30]. Luo Ruibang et al. “LRSim: a linked-reads simulator generating insights for better genome
partitioning”. In: Computational and Structural Biotechnology Journal 15 (2017), pp. 478–484.
[PubMed: 29213995]

[31]. Marks Patrick et al. “Resolving the full spectrum of human genome variation using Linked-
Reads”. In: Genome Research 29.4 (Mar. 2019), pp. 635–645. [PubMed: 30894395]

[32]. Fang Li et al. “LinkedSV for detection of mosaic structural variants from linked-read exome and
genome sequencing data”. In: Nature Communications 10.1 (2019), pp. 1–15.

[33]. Ebert Peter et al. “Haplotype-resolved diverse human genomes and integrated analysis of
structural variation”. In: Science 372.6537 (2021).

[34]. Thorvaldsdóttir Helga, Robinson James T, and Mesirov Jill P. “Integrative Genomics Viewer
(IGV): high-performance genomics data visualization and exploration”. In: Briefings in
Bioinformatics 14.2 (2013), pp. 178–192. [PubMed: 22517427]

[35]. DWGSIM. https://github.com/nh13/DWGSIM.

[36]. Li Heng. “Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM”. In:
arXiv preprint arXiv:1303.3997 (2013).

[37]. Newell Alejandro, Yang Kaiyu, and Deng Jia. “Stacked hourglass networks for human pose
estimation”. In: European Conference on Computer Vision. Springer. 2016, pp. 483–499.

[38]. Newell Alejandro, Huang Zhiao, and Deng Jia. “Associative embedding: End-to-end learning for
joint detection and grouping”. In: arXiv preprint arXiv:1611.05424 (2016).

[39]. Kingma Diederik P and Ba Jimmy. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[40]. Li Jia, Su Wen, and Wang Zengfu. “Simple pose: Rethinking and improving a bottom-up
approach for multi-person pose estimation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34.07. 2020, pp. 11354–11361.

[41]. Huddleston John et al. “Discovery and genotyping of structural variation from long-read haploid
genome sequence data”. In: Genome Research 27.5 (2017), pp. 677–685. [PubMed: 27895111]

[42]. Popic Victoria et al. Cue (Version 2.0). 10.24433/CO.8949236.v2. Code Ocean, 2022.

Popic et al. Page 26

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nh13/DWGSIM

Fig. 1.
Overview of the Cue framework. a. Conversion of sequence alignments to images.

Alignments from a 150kbp synthetic genome interval (visualized in IGV [34]) are shown

on the x-axis and y-axis of the resulting image (displaying the overlay of several signal

channels), annotated with four different SVs in this interval. The four highlighted pixel

keypoints in the image correspond to the breakpoints of each SV (given by their start

coordinate on the x-axis and their end coordinate on the y-axis). b. SV image channels

representing different signals. Given two loci: the read-depth channel shows the difference

in depth between the loci; the split-read/read-pairs channel shows the number of split reads

or read pairs mapping to both loci; the LL and RR pairs channel shows the number of

read pairs mapping in the LL or RR orientation – such pairs are indicative of an inversion;

and the RL pairs channel shows the number of read pairs mapping in the RL orientation

(where the second read in the pair maps to an earlier position of the reference) – such

Popic et al. Page 27

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pairs are indicative of a duplication. c. SV breakpoint confidence maps predicted by the

network given the image in A for homozygous (HOM) and heterozygous (HET) DELs,

INVs, and DUPs. For simplicity only the read-depth channel is shown as the background.

The bright kernels in each map represent a high confidence that the breakpoints of an SV

of that specific type and genotype occur at that location, e.g. each pixel in the DEL-HOM

map encodes its probability to be a homozygous deletion keypoint. d. The architecture of the

stacked hourglass network used in Cue. It takes an n-channel image as input and generates

a confidence map for each supported SV type and genotype. The predicted confidence maps

are then post-processed to produce the final SV callset.

Popic et al. Page 28

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Performance evaluation on synthetic data. a. Precision, recall, and F1 score in DEL, DUP,

and INV calling and genotyping at 30x genome coverage. b. FN calls broken down

by size, SV type, and genome context. The following number of simulated SVs were

assigned to each genome context: SD=1,131(8.3%), SR=786 (5.8%), RM=8,722 (64.6%),

and unique=2,865 (21.2%). c. Recall of two complex SV types (INVDUP and INVDEL)

at 60x genome coverage. Bottom: Cue image channels for an example of each event type

found only by Cue. d. Recall of subclonal somatic SVs broken down by type at 60x genome

coverage. All panels: paired-end Illumina short reads were simulated from the corresponding

synthetic genome using DWGSIM [35] and mapped with BWA-MEM [36].

Popic et al. Page 29

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Performance evaluation on the HG002 GIAB DEL benchmark. a. Precision, recall, and F1

score in DEL calling. b. FN, FP, and TP calls broken down by size and genome context.

(1)-(3) are FN and FP SV calls analyzed in panel c and Extended Data Fig. 4. c. IGV plots

and Cue image channels for (1) TP LINE-1 deletion event detected only by Cue and (2) FP

deletion call made by DELLY, LUMPY, and Manta. IGV shows RL read-pair alignments

in green and read pairs with a discordantly large insert size in red. As we can see in

the Cue-generated channels, the LINE-1 deletion signature of event (1) is well-captured in

the high-MAPQ read-depth channel (which shows the drop in coverage consistent with a

deletion or a repeat) and the split-read/read-pair channel (which shows the novel adjacency

formed by discordant read pairs). The signatures in these two channels jointly, along with

the absence of signal in the remaining channels, can uniquely characterize a deletion of a

repeat element. On the other hand, while the split-read/read-pair channel alone at the site of

FP event (2) can be consistent with a deletion, the presence of the RL signal and the absence

of read-depth signal are not jointly consistent with a deletion. Long-read analysis found this

event to be a divergent repeat as described in Extended Data Fig. 5 and Supplementary Note

2.

Popic et al. Page 30

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Performance evaluation of DEL calling on the CHM1+CHM13 benchmark. a. Upset plot

depicting DEL callset overlaps of five short-read and three long-read callers (only sets larger

than 5 events are displayed for conciseness). Overlaps that include Cue are highlighted in

orange. b. Breakdown of DEL calls by consensus with long-read and short-read callers. c.
IGV plots of (1) a DEL reported by all short-read callers except Cue and (2) a DEL reported

by DELLY, LUMPY, and SvABA that are consistent with a divergent reference repeat.

Popic et al. Page 31

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Performance evaluation on synthetic data in the presence of decoy events. a. IGV plots of

DEL, DUP, INV, TRA, dDUP, and inv-dDUP events. b. Precision, recall, and F1 scores in

DEL, DUP, and INV calling.

Popic et al. Page 32

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Extending Cue to long and linked read sequencing platforms. a. Image channels generated

from synthetic PacBio CLR long reads and 10x Genomics linked reads, computed for an

interval of the genome containing four different SVs (labeled along the x-axis; the same

interval is assigned to both axes). b. Precision, recall, and F1 score in DEL, DUP, and INV

calling and genotyping. LinkedSV does not output SV genotypes and is omitted. c. Recall of

two complex SV types (INVDUP and INVDEL) using long and linked reads.

Popic et al. Page 33

Nat Methods. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Results
	Overview of the Cue framework.
	DEL, DUP, and INV discovery from short-read synthetic data.
	Complex SV discovery from short-read synthetic data.
	Subclonal SV discovery from short-read synthetic data.
	HG002 GIAB DEL benchmark.
	CHM1 and CHM13 diploid mix benchmark.
	DEL, DUP, and INV discovery in the presence of decoy events.
	Extending Cue to long and linked read sequencing platforms.

	Discussion
	Methods
	Multi-channel image generation.
	Interval pair selection.
	SV confidence map regression.
	Network structure and training.
	Focal loss.
	Converting regressed confidence maps to final SV calls.
	Training data generation.
	Runtime and memory requirements.

	Extended Data
	Extended Data Fig. 1.
	Extended Data Fig. 2.
	Extended Data Fig. 3.
	Extended Data Fig. 4.
	Extended Data Fig. 5.
	Extended Data Fig. 6.
	Extended Data Fig. 7.
	Extended Data Fig. 8.
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.

