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Abstract

A key advantage of polarizable force fields is their ability to model the atomic polarization 

effects that play key roles in the atomic many-body interactions. In this work, we assessed the 

accuracy of the recently developed polarizable Gaussian Multipole (pGM) models in reproducing 

quantum mechanical (QM) interaction energies, many-body interaction energies, as well as the 

nonadditive and additive contributions to the many-body interactions for peptide main-chain 

hydrogen-bonding conformers, using glycine dipeptide oligomers as the model systems. Two 

types of pGM models were considered, including that with (pGM-perm) and without (pGM-ind) 

permanent atomic dipoles. The performances of the pGM models were compared with several 

widely used force fields, including two polarizable (Amoeba13 and ff12pol) and three additive 

(ff19SB, ff15ipq, and ff03) force fields. Encouragingly, the pGM models outperform all other 

force fields in terms of reproducing QM interaction energies, many-body interaction energies, as 

well as the nonadditive and additive contributions to the many-body interactions, as measured 

by the root-mean-square errors (RMSEs) and mean absolute errors (MAEs). Furthermore, we 

tested the robustness of the pGM models against polarizability parameterization errors by 

employing alternative polarizabilities that are either scaled or obtained from other force fields. 

The results show that the pGM models with alternative polarizabilities exhibit improved accuracy 

in reproducing QM many-body interaction energies as well as the nonadditive and additive 

contributions compared with other polarizable force fields, suggesting that the pGM models are 

robust against the errors in polarizability parameterizations. This work shows that the pGM models 

are capable of accurately modeling polarization effects and have the potential to serve as templates 

for developing next-generation polarizable force fields for modeling various biological systems.

INTRODUCTION

Development of molecular mechanical force fields has been at the forefront of molecular 

modeling research due to the critical roles that force fields play in applications such 

as molecular dynamics (MD) simulations, Monte Carlo (MC) simulations, and protein 

structure prediction.1-4 Force fields that have the ability to provide accurate energy 

calculations and are highly transferable to a wide range of molecular systems have 

become highly desirable. With graphical processing unit (GPU)-accelerated and specialized 

high-performance computational platforms,5,6 it becomes increasingly feasible to conduct 

simulations at time scales of biological relevance. The extensively used point-charge 

additive force fields, such as Amber ff19SB,7 CHARMM,8 and OPLS,9 share similar 

functional forms. In the additive Amber force fields, the following general functional form is 

used to calculate the potential energies of molecular systems:

Etotal = Ebond + Eangle + Edihedral + Eele + EvdW (1)

The first three terms are short-range bonded terms, including the bond stretching terms Ebond, 

the angle bending terms Eangle, and the dihedral angle torsion terms Edihedral, with the following 

formulas:
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Ebond = ∑
bonds

kb(r − r0)2
(2)

Eangle = ∑
angles

kθ(θ − θ0)2
(3)

Edihedral = ∑
dihedrals

V n[1 + cos(nϕ − γ)] (4)

The last two terms are nonbonded terms between any two atoms i and j. The electrostatic 

term Eele, usually modeled by the interactions between fixed atom-centered partial charges 

(Coulomb’s law), is a long-range term; whereas the van der Waals term EvdW, modeled by the 

6–12 Lennard-Jones potential, is nominally also a long-range term, although it decays rather 

quickly with increasing distance. Eele and EvdW are formulated as

EvdW = ∑
i < j

Aij

Rij
12 − Bij

Rij
6 (5)

Eele = ∑
i < j

qiqj

εRij
(6)

both of which are pairwise and additive. Therefore, in this framework, the interaction 

between any two atoms is not affected by the presence or absence of other nonbonded 

atoms.

While additive force fields will continue to play important roles, polarizable force fields 

are expected to extend our ability to study biomolecular systems more adequately due 

to their ability to model the atomic polarization effects, which are the redistribution of 

atomic electron density due to the electric field produced by nearby atoms.10 Polarization 

effects are important in biological processes such as ligand–receptor interactions,11-14 the 

interactions of ions with nucleic acids,15,16 the dielectric environmental changes during 

protein folding,17,18 and enzymatic mechanisms.19 If more than two atoms are involved, 

polarization effects lead to nonadditivity, since when polarized by a third atom, any two 

atoms interact differently from the situation where the third atom is absent. Lacking proper 

representation of the polarization effects is considered a major shortcoming of the additive 

force fields. For over five decades, many attempts have been directed to properly incorporate 

polarization effects into polarizable force fields. A variety of methods have been explored, 

including the induced dipole models,20-28 the fluctuating charge models,29,30 the Drude 

oscillator models,31,32 and the continuum dielectric models.33,34

The induced point dipole model is one of the most studied approaches with a long history 

since the 1970s.35,36 In this approach, the induced dipole of atom i, subject to the external 

electric field Ei, is
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μi = αi Ei − ∑
j ≠ i

n
T ijμj (7)

where αi is the isotropic polarizability of atom i and T ij is the dipole field tensor with the 

matrix form

T ij = fe

rij
3 I − 3ft

rij
5

x2 xy xz
xy y2 yz
xz yz z2

(8)

where I is the identity matrix; x, y, and z are the Cartesian components along the vector 

between atoms i and j at distance rij; and fe and ft are distance-dependent damping 

functions that modify T ij to avoid the so-called “polarization catastrophe” problem, i.e., the 

phenomenon that induced dipole diverges due to the cooperative induction between induced 

dipoles at short distances.10,37 Several damping schemes have been proposed by Thole using 

a smeared charge distribution ρ(u), where u = rij ∕ (αiαj)1 ∕ 6 is the effective distance.38,39 

Thole’s damping schemes have been incorporated into several important polarizable force 

fields. For example, in the ff12pol force field,22-25 the linear damping scheme is adopted

ρ(u) =
3
π

(a − u)
a4 , u < a

0, u ≥ a
(9)

and the damping functions fe and ft have the form

v = u ∕ a
fe = 4v3 − 3v4, v < 1

1.0, v ≥ 1

ft = v4, v < 1
1.0, v ≥ 1

(10)

In the Amoeba polarizable force field,26-28 an exponential damping scheme is used

ρ(u) = 3a
4π exp( − au3) (11)

and the damping functions fe and ft become

v = au3
fe = 1 − exp( − v)
ft = 1 − (v + 1) exp( − v)

(12)

However, since Thole’s schemes only screen the interactions between induced dipoles, 

leaving the polarization due to fixed charges and permanent multipoles unaffected, one 

caveat is the possibility of producing large atomic induced dipoles when other highly 
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charged species are nearby. About a decade ago, Elking et al. developed a scheme 

that models atomic electric multipoles using Gaussian electron densities,40-42 which was 

originally proposed by Wheatley,43,44 and this model was later named as the polarizable 

Gaussian Multipole (pGM) model.45-47 The pGM model can overcome the potential 

problem of Thole’s scheme by screening all short-range electrostatic interactions in a 

consistent manner, including the interactions of charge—charge, charge—dipole, charge—

quadrupole, dipole—dipole, and so on, eliminating a potential source of singularity in 

the electrostatic term Eele. Consequently, it has been shown that the pGM model notably 

improves the prediction of molecular polarizability anisotropy compared with that of Thole 

models.45 In the pGM model, the nth order Gaussian multipole at distance r with atom i is 

defined as

ρ(n)(r) = Θ(n) ⋅ ∇(n) βi

π
3

exp( − βi
2r2) (13)

where Θ(n) is the nth rank momentum tensor, ∇(n) is the nth rank gradient operator, and 

βi is the Gaussian exponent controlling the “radius” of the distribution with the following 

formula:

βi = s 2αi

3 2π
−1 ∕ 3

(14)

where αi is the atomic polarizability and s is a constant screening factor. Although any order 

of multipoles can be modeled by the pGM model, only charges (zeroth order multipole, 

eq 15) and dipoles (first order multipole, eq 16) are considered in the current pGM model 

design

ρ(0)(r) = qi

βi

π
3

exp( − βi
2r2) (15)

ρ(1)(r) = pi ⋅ ∇ βi

π
3

exp( − βi
2r2) (16)

where qi is the permanent charge and pi is the permanent dipole of atom i. Replacing pi in eq 

16 with μi in eq 7 will give the pGM distribution of the induced dipole, which has the same 

form as that of the permanent dipole. For the pGM model, we have the following formula of 

damping functions fe and ft:

Sij = βiβjrij

2(βi
2 + βj

2)
fe = erf(Sij) − 2

πSij exp( − Sij
2)

ft = erf(Sij) − 2
πSij exp( − Sij

2) 1 + 2
3Sij

2

(17)

where erf(erf(Sij)) is the error function of Sij.
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In a series of recent works, the functional form and parameterization schemes for the pGM 

model have been designed and implemented. First, a set of isotropic atomic polarizabilities 

and radii for the pGM model were obtained by fitting to molecular polarizability tensors 

of 1405 molecules or dimers calculated at the B3LYP/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ 

level of theory using an optimization method based on the genetic algorithm (GA).45 

Second, a local frame for the pGM permanent dipoles formed by covalent basis vectors 

(CBVs), which are unit vectors along the direction of covalent bonds or virtual bonds, has 

been proposed based on the observation that atomic permanent dipole moments mainly 

result from covalent bonding interactions.46 Third, the analytical formula of the electrostatic 

term of the pGM models has been derived,46 which is the sum of a permanent electrostatic 

term Eele−perm and an induced electrostatic term Eele−ind

Eele = Eele−perm + Eele−ind (18)

with the following formula

Eele−perm = ∑
i < j

(qi + pi ⋅ ∇i)(qj + pj ⋅ ∇j)
erf(Sij)

rij
(19)

Eele−ind = ∑
i < j

μi(qj + pj ⋅ ∇j)∇i
erf(Sij)

rij
(20)

Therefore, in the functional form of the pGM models, the electrostatic term in eq 6 is 

replaced by eqs 18-20, and the rest of the terms remain unchanged (eqs 2-5). In addition, 

the pGM electrostatic term has been interfaced with the particle mesh Ewald (PME) 

method for molecular simulations under periodic boundary conditions.46,48-51 Fourth, the 

pGM internal stress tensor expression for constant pressure MD simulations of both the 

flexible and rigid-body molecular system has been derived.47 Finally, the PyRESP program 

enabling parameterizations for the pGM models with and without atomic permanent dipoles 

by reproducing quantum mechanical (QM) electrostatic potential (ESP) around molecules 

has been implemented.52 All of the components mentioned above, including the pGM 

polarizabilities and radii, the sander program enabling MD simulations for the pGM models, 

and the PyRESP parametrization program, are available in the AmberTools22 program suite 

that can be downloaded from http://ambermd.org/.53

In this work, we assessed the ability of the pGM models to reproduce QM many-body 

interaction energies in peptide oligomers, specifically the influences of neighboring peptides 

upon a pair of interacting peptide monomers. For polarizable force fields, the many-body 

interaction energies can be decomposed into nonadditive and additive contributions. The 

detailed definitions of the many-body interaction energy, as well as its nonadditive and 

additive contributions, will be presented in the Theory section. Glycine dipeptide oligomers 

arranged in three main-chain hydrogen-bonding conformations were used as the model 

peptide systems because glycine has the minimalist side chain so that we can focus on 

main-chain hydrogen-bonding interactions. Two types of pGM models were considered, 

including pGM-perm, in which the atomic dipoles are represented by a combination of both 
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induced and permanent dipoles, and pGM-ind, in which the atomic dipoles are represented 

by the induced dipoles only. We compared the performances of the pGM-perm and pGM-

ind models with several other widely used force fields in terms of reproducing QM 

interaction energies and many-body interaction energies, including four Amber force fields: 

ff12pol,22-25 ff19SB,7 ff15ipq,54 and ff03,55 as well as the 2013 version of the Amoeba 

protein force field (Amoeba13).28 Among the seven force fields tested, pGM-perm, pGM-

ind, Amoeba13, and ff12pol are polarizable force fields, while ff19SB, ff15ipq, and ff03 are 

classical point-charge additive force fields. The results show that the pGM models perform 

significantly better than all other force fields in terms of reproducing QM interaction 

energies, many-body interaction energies, and the nonadditive and additive contributions to 

the many-body interactions. In addition, we tested the robustness of the pGM models against 

parameterization errors by employing alternative atomic polarizabilities, including the pGM 

polarizabilities scaled by a factor of 0.9,45 the Amoeba polarizabilities,26 and the ff12pol 

polarizabilities.22 The results show that the pGM models are highly robust and perform well 

even with those “wrong” polarizabilities.

THEORY

In this work, each oligomer is arranged in a general form of m glycine dipeptides interacting 

with n glycine dipeptides, named Glym:Glyn, where m and n are ranged from 1 to 3. Each 

“Gly” in this work represents a glycine dipeptide (ACE-GLY-NME) capped with an N-acetyl 

(ACE) group at the N-terminal and an N-methylamide (NME) group at the C-terminal. For 

example, Figure 1A shows the Gly2:Gly2 oligomer.

The interaction energy IE(Glym:Glyn) between Glym and Glyn of the Glym:Glyn oligomer can be 

calculated by the following equation:

IE(Glym: Glyn) = E(Glym: Glyn) − E(Glym) − E(Glyn) (21)

where E(Glym:Glyn) is the potential energy of the entire Glym:Glyn oligomer and E(Glym), 
E(Glyn) are the potential energies of isolated Glym and Glyn, respectively.

More importantly, we intend to study the many-body effects in the Glym:Glyn oligomer, 

specifically, the influence of the neighboring glycine dipeptides Glym − 1 and Glyn − 1 upon the 

interaction between the two middle glycine dipeptides Gly:Gly in the Glym:Glyn oligomer. 

Here, we define the many-body interaction energy ME(Glym:Glyn) as the difference between 

IE(Glym:Glyn) and IE(Gly:Gly). That is,

ME(Glym: Glyn) = IE(Glym: Glyn) − IE(Gly:Gly) (22)

Taking the Gly2:Gly2 oligomer in Figure 1A as an example, the difference between 

IE(Gly2:Gly2) and IE(Gly:Gly) of the two middle peptides (displayed in brown) is the many-

body interaction energy ME(Gly2:Gly2) caused by the presence of the two neighboring 

peptides (displayed in cyan).
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The many-body interaction energy ME(Glym:Glyn) can be decomposed into the nonadditive 

contribution MENA(Glym:Glyn) and the additive contribution MEA(Glym:Glyn). Before showing 

their formulas, we first need to define the interaction energies of the two middle peptides 

IEmid(Glym:Glyn) in the presence of the neighboring peptides Glym − 1 and Glyn − 1.

IEmid(Glym: Glyn) = IE(Glym: Glyn) − IE(Glym: XGlyn − 1)
− IE(Glym − 1X: Glyn)
+ IE(Glym − 1X: XGlyn − 1)

(23)

where X indicates the absence of either one of the two middle peptides. IE(Glym:XGlyn − 1) is 

the interaction energy between Glym and the neighboring peptides Glyn − 1; IE(Glym − 1X:Glyn)
is the interaction energy between the neighboring peptides Glym − 1 and Glyn; and 

IE(Glym − 1X:XGlyn − 1) is the interaction energy between the neighboring peptides Glym − 1 and 

Glyn − 1 on both sides. Then, we have the formulas of MENA(Glym:Glyn) and MEA(Glym:Glyn), the 

proof of which can be found in the Appendix.

MENA(Glym: Glyn) = IEmid(Glym: Glyn) − IE(Gly: Gly) (24)

MEA(Glym: Glyn) = ME(Glym: Glyn) − MENA(Glym: Glyn) (25)

For the Gly2:Gly2 oligomer example, Figure 1B shows the oligomer Gly2:XGly
with the interaction energy IE(Gly2:XGly); Figure 1C shows the oligomer 

GlyX:Gly2 with the interaction energy IE(GlyX:Gly2); and Figure 1D shows the 

oligomer GlyX:XGly with the interaction energy IE(GlyX:XGly). The interaction 

energy of the two middle peptides in the presence of the neighboring 

peptides is IEmid(Gly2:Gly2) = IE(Gly2:Gly2) − IE(Gly2:XGly) − IE(GlyX:Gly2) + IE(GlyX:XGly). 
The nonadditive and additive contributions to the many-body interaction 

energy ME(Gly2:Gly2) are MENA(Gly2:Gly2) = IEmid(Gly2:Gly2) − IE(Gly:Gly) and 

MEA(Gly2:Gly2) = ME(Gly2:Gly2) − MENA(Gly2:Gly2), respectively.

For additive force fields, MENA(Glym:Glyn) is guaranteed to be zero, so that ME(Glym:Glyn) is 

equivalent to MEA(Glym:Glyn), while for polarizable force fields, MENA(Glym:Glyn) is nonzero, 

so that ME(Glym:Glyn) has both additive and nonadditive contributions.

COMPUTATIONAL DETAILS

Geometry Preparations.

The formamide dimer and three glycine dipeptide dimers were used to select density 

functional theory (DFT) methods for subsequent QM energy calculations. The formamide 

dimer was first arranged into hydrogen-bonding conformation, and the geometry was 

optimized at the B3LYP/6-311++G(d,p) level of theory. A total of 15 glycine dipeptide 

oligomers were constructed. First, three glycine dipeptide dimers were configured 

and arranged into α-helix, anti-parallel β-sheet, and parallel β-sheet hydrogen-bonding 
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conformations observed in proteins. Then, the geometries were optimized at the B3LYP/

6-311++G(d,p) level of theory with the main-chain torsion angles fixed at (ϕ, ψ) = (−57, 

−47°), (−140, 135°) and (−119, 113°), corresponding to the α-helix, anti-parallel β-sheet, 

and parallel β-sheet conformations, respectively. Higher-order oligomers were constructed 

from these three optimized dimers by rigid-body translations and rotations. For example, 

to produce a Gly3:Gly3 dipeptide hexamer (in the conformation of an interacting pair of 

trimers) while maintaining the central dimer in the optimized conformation, both dipeptides 

of the Gly:Gly dimer are rotated and moved toward both sides along the hydrogen bond 

direction. The structures of formamide dimer and glycine dipeptide oligomers are presented 

in Figures S1-S6, and the detailed coordinates of glycine dipeptide oligomers are available 

in the Supporting Information.

Quantum Mechanical Calculations.

Three DFT methods were tested to calculate the QM interaction energies of the formamide 

dimer and the glycine dipeptide dimers, including ωB97X − D,56 M062X,57 and B3LYP,58,59 

all with the aug-cc-pVTZ (aTZ) basis set. The basis set superposition errors (BSSEs) 

were corrected through the counterpoise corrections.60 To select the most suitable DFT 

method for our systems, the CCSD(T)/CBS interaction energies IECCSD(T) ∕ CBS were calculated 

as the reference energies using Helgaker’s extrapolation method.61,62 First, the HF and MP2 

interaction energies were calculated with aug-cc-pVTZ (aTZ) and aug-cc-pVQZ (aQZ) basis 

sets, and the correlation (CORR) energies IECORR were defined as the difference between the 

MP2 and HF energies IECORR = IEMP2 − IEHF. Next, IEHF∕CBS and IECORR∕CBS were calculated using 

the following equations:

IEHF∕CBS =
IEHF∕aTZ exp( − 1.63 × 4) − IEHF∕aQZ exp( − 1.63 × 3)

exp( − 1.63 × 4) − exp( − 1.63 × 3)
(26)

IECORR∕CBS = IECORR∕aTZ × 33 − IECORR∕aQZ × 43

33 − 43 (27)

and IEMP2∕CBS can be calculated as

IEMP2 ∕ CBS = IEHF∕CBS + IECORR∕CBS (28)

Note that the average of IEMP2∕CBS with and without counterpoise correction was used as 

the final IEMP2∕CBS. Finally, IECCSD(T) ∕ CBS were calculated by adding a CCSD(T) correction 

calculated at a small basis set to the averaged IEMP2∕CBS

IECCSD(T) ∕ CBS = IEMP2 ∕ CBS
+ (IECCSD(T) − IEMP2)small basis set

(29)

For formamide dimers, aug-cc-pVTZ was used as the small basis set; for glycine dipeptide 

dimers, cc-pVTZ was used as the small basis set.
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Following the strategy that has been successfully used in Amber force field development 

in which the partial charges were fit to QM electrostatic potentials (ESPs), the QM 

ESPs were calculated at the MP2/aug-cc-pVTZ level of theory for a set of points in the 

solvent-accessible region around each glycine dipeptide molecule in the α-helix, anti-parallel 

β-sheet, and parallel β-sheet conformations. The points were generated using the method 

developed by Singh et al. on molecular surfaces (with a density of 6 points/Å2) at each of 

1.4, 1.6, 1.8, and 2.0 times the van der Waals radii.63,64 All QM calculations were performed 

using the Gaussian 16 software.65

pGM Parameterizations.

To assess the robustness of the pGM models against errors in polarizability parameterization, 

four sets of atomic polarizabilities were employed to parameterize the pGM models, 

including the pGM polarizabilities,45 the pGM polarizabilities scaled by a factor of 0.9, 

the Amoeba polarizabilities,26 and the ff12pol polarizabilities,22 for a combined total of 

two pGM models and six variants. The recently developed PyRESP program was used 

to parameterize the point charges and permanent point dipoles of the glycine dipeptide 

molecule for the pGM-perm and pGM-ind models, and a two-stage parameterization 

procedure was adopted.52 In the first stage, all charges and permanent dipoles were set 

free to change, and a weak restraining strength of 0.0005 was applied. In the second stage, 

intra-molecular equivalencing was enforced on all charges and permanent dipoles that share 

an identical chemical environment with others, such as those of methyl and methylene 

hydrogens. A stronger restraining strength of 0.001 was applied, and all other fitting centers 

were set frozen to keep the values obtained from the first stage. In both stages, the restraints 

were only applied to non-hydrogen-heavy atoms. Only the total charge constraint was 

enforced in the parameterization process, and no additional intra-molecular charge constraint 

was applied. Inter-molecular equivalencing was enforced in both the first and the second 

stages for the three conformations of glycine dipeptides. For the parameterizations of both 

the pGM-perm and pGM-ind models, both 1–2 and 1–3 polarization interactions were 

included for reasons elucidated before.45,66

The parameters of bonded terms (bond stretching terms, angle bending terms, dihedral angle 

torsion terms) and the van der Waals terms for both the pGM-perm and pGM-ind models 

were obtained from the ff12pol force field without any change.25

Molecular Mechanics Calculations.

Seven force fields were explored for calculating the molecular mechanics energies of 

glycine dipeptide oligomers, including four polarizable force fields: pGM-perm, pGM-ind, 

ff12pol,22-25 and Amoeba13,28 and three additive force fields: ff19SB,7 ff15ipq,54 and 

ff03.55 The parameter and topology files for the Amber force fields (pGM-perm, pGM-

ind, ff12pol, ff19SB, ff15ipq, and ff03) were generated using the tleap program from 

the AmberTools22 program suite.53 The coordinate files for the Amber force fields and 

the .xyz files for the Amoeba13 force field were generated from the geometries optimized by 

Gaussian 16 software.65 The single-point energies of the Amber force fields were calculated 

by the sander program with extensions to accommodate the pGM models.46,53 The dynamic 
program from the Tinker 8.6.1 software package was used to calculate the single-point 
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energies of the Amoeba13 force field.67 All nonbonded interactions were calculated in gas 

phase without distance cutoff.

The performance of each force field in each energy calculation task was evaluated by the 

root-mean-squared error (RMSE) and mean absolute error (MAE) given by

RMSE = ∑i = 1
N (Ei

QM − Ei)
2

N
(30)

MAE = ∑i = 1
N ∣ Ei

QM − Ei ∣
N (31)

where Ei
QM is the energy given by QM calculations and Ei is the energy calculated by 

molecular mechanics force fields.

RESULTS AND DISCUSSION

ωB97X − D without Counterpoise Correction Most Accurately Reproduces CCSD(T)/CBS 

Interaction Energies.

There have been numerous works documenting the performances of various DFT methods 

in their ability to model the dispersion effect. Among these DFT methods, ωB97X − D56 

and M062X57 exhibit great trade-offs between computation speed and accuracy.68 One 

observation is that the accuracy of DFT methods depends on the particular molecular 

systems being studied. To determine which one of these DFT methods is the most 

suitable to our systems, we compared the interaction energies of the formamide dimer and 

the glycine dipeptide dimers obtained from three DFT methods, including ωB97X − D,56 

M062X,57 and B3LYP,58,59 with those calculated at the CCSD(T)/CBS level of theory, 

which have been considered as the “gold standard” of computational chemistry. Table 

1 shows the interaction energies calculated with these DFT methods with and without 

counterpoise BSSE corrections. We can see that the interaction energies by ωB97X − D
without counterpoise correction are the closet to the CCSD(T)/CBS results (eq 29), with 

an RMSE of 0.17 kcal/mol and an MAE of 0.12 kcal/mol. Not surprisingly, B3LYP 

interaction energies consistently exhibit the highest deviations from the CCSD(T)/CBS 

results, since B3LYP lacks proper consideration of dispersion contributions. Without 

counterpoise corrections, the RMSEs of M062X and B3LYP are 0.32 and 3.37 kcal/mol, 

respectively, and the MAEs are 0.30 and 3.12 kcal/mol, respectively. With counterpoise 

corrections, the RMSEs of ωB97X − D, M062X, and B3LYP are 0.31, 0.71, and 3.70 kcal/

mol, respectively, and the MAEs are 0.29, 0.67, and 3.42 kcal/mol, respectively. Therefore, 

for the formamide dimer and the glycine dipeptide dimers, ωB97X − D without counterpoise 

BSSE correction best reproduces the CCSD(T)/CBS interaction energies. For this reason, 

ωB97X − D without counterpoise correction was chosen as the QM reference method to 

evaluate various molecular mechanical force fields in the following discussions.
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pGM Models Show the Best Performances in Interaction Energy Calculations.

Listed in Table 2 are the interaction energies calculated at the ωB97X − D/aug-cc-pVTZ level 

of theory without counterpoise corrections and seven molecular mechanical force fields. 

The interaction energies IE(Glym:Glyn) between Glym and Glyn of the Glym:Glyn oligomers 

were calculated following eq 21 without consideration of the deformation energies to avoid 

complications in energy calculations that may arise from structural changes. The interaction 

energies calculated by the ωB97X − D method exhibit an increasing trend in the order of 

Gly:Gly, Gly:Gly2, Gly:Gly3, Gly2:Gly2, and Gly3:Gly3 for all three conformations. It is notable 

that IE(Gly3:Gly3) is 11.00 kcal/mol stronger than IE(Gly:Gly) in the α-helix conformation. In 

comparison, for the anti-parallel β-sheet and parallel β-sheet conformations, IE(Gly3:Gly3) are 

only 3.50 and 4.11 kcal/mol stronger than IE(Gly:Gly), respectively. The larger difference 

of the α-helix conformation is attributable to the strong polarization effect caused by the 

alignments of the main-chain peptide hydrogen bonds. Another observation is that although 

Gly:Gly3 and Gly2:Gly2 are both tetramers, Gly2:Gly2 consistently shows stronger interaction 

energies than Gly:Gly3 in all three conformations. This shows that the inner parts of the 

peptide secondary structures are expected to have stronger main-chain hydrogen bonding 

than the outer parts.

The interaction energies calculated by the pGM-perm and pGM-ind models stand out as 

the closest to the DFT results, with RMSEs of 1.35 and 1.37 kcal/mol, respectively. The 

similarity between the performances of the pGM-perm and pGM-ind models indicates that, 

with the pGM damping schemes, the induced dipoles are sufficient for calculating the 

interaction energies of glycine dipeptides. The next best performance is given by the ff15ipq 

force field with an RMSE of 1.87 kcal/mol, which is an additive force field whose charges 

were fit to the ESP of peptides in the presence of explicit solvent water.54 The polarizable 

force field ff12pol, the additive force field ff19SB, and the polarizable force field Amoeba13 

are ranked fourth to sixth, with RMSE of 2.28, 2.67, and 2.91 kcal/mol, respectively. 

The observation that Amoeba13 performs worse than ff12pol in this test set is somewhat 

surprising, given that Amoeba13 is such an elaborate force field that includes atomic 

permanent dipoles and quadrupoles, in addition to the polarizable induced dipoles.26,28 In 

contrast, the ff12pol force field is a minimalist polarizable induced dipole force field with 

neither permanent dipoles nor quadrupoles.22-25

Another interesting observation is that, compared with the ωB97X − D results, the 

pGM-perm and pGM-ind models systematically overestimate the interaction energies 

IE(Glym:Glyn). On average, pGM-perm and pGM-ind overestimate the interaction energies by 

1.32 and 1.34 kcal/mol, respectively. Also interesting is the consistency of the deviations 

between the interaction energies of ωB97X − D and the pGM models across different 

conformations. Since the main-chain hydrogen bonds contribute to peptide secondary 

structure formations, the balance across different conformations can influence the peptide 

secondary structure preference and the capability of modeling the relative strength of 

different hydrogen-bonding systems and in peptide main-chain secondary structures. In 

this regard, both pGM models show good balance and their differences in the interaction 

energies are about the same magnitude across the three conformations, with pGM-perm 
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exhibiting slightly better consistency than pGM-ind. For example, the Gly:Gly interaction 

energies are overestimated by 1.48–1.88 kcal/mol by pGM-perm and overestimated by 1.36–

1.92 kcal/mol by pGM-ind. In contrast, all other force fields show nonuniform deviations 

across different conformations. Taking ff12pol as an example, the largest deviation of 

interaction energies among the three conformations consistently comes from the oligomers 

in the α-helix conformation. For Amoeba13, the deviations of α-helix and parallel β-sheet 

conformers are comparable, whereas the deviations of anti-parallel β-sheet conformer 

are notably smaller. Since uniform deviations across different conformers naturally avoid 

introducing conformational bias, it is much more preferable than nonuniform deviations. 

Furthermore, when taking all Glym:Glyn oligomers into account, the deviations of interaction 

energies range between −0.96 and −1.88 kcal/mol for pGM-perm, and between −0.90 and 

−1.92 kcal/mol for pGM-ind, which are more consistent than other force fields. On the other 

hand, all other force fields (except ff15ipq) exhibit a tendency of growing deviations with 

increasing size of oligomers, suggesting that they underestimate the many-body interactions 

when there are multiple peptides in the oligomers. Therefore, it is encouraging that the 

pGM models outperform all other five force fields in terms of interaction energy calculations 

across oligomers with different conformations and with different sizes.

pGM Models Most Accurately Reproduce QM Many-Body Interaction Energies.

Subtracting corresponding rows of the Gly:Gly dimers from other rows in Table 2 gives 

Table 3, which lists the many-body interaction energies ME(Glym:Glyn) calculated by the 

seven force fields compared with those calculated by the ωB97X − D method. The many-

body interaction energies defined in eq 22 describe the overall (additive and nonadditive) 

contributions from the neighboring glycine dipeptides (Glym − 1 and Glyn − 1, excluding the 

Gly:Gly at the interface) to the dimerization energy at the interface of Glym:Glyn. As shown 

in the ωB97X − D results, the many-body interaction energies again increase in the order of 

Gly:Gly2, Gly:Gly3, Gly2:Gly2, and Gly3:Gly3 for all three conformations. Comparing oligomers 

in the anti-parallel and parallel β-sheet conformations, we can see that the addition of outer 

peptides does not significantly increase the many-body interactions. Thus, the cross-strand 

effects in the β-sheet conformations are mainly limited to those in close contact and diminish 

rather quickly with distance. For the α-helix conformation, notably, a stronger many-body 

interaction is observed because the hydrogen bonds are aligned in the same directions. 

An interesting observation is that the many-body interaction energy of tetramer Gly:Gly3 is 

only marginally stronger than that of trimer Gly:Gly2 by 1.16 kcal/mol, which is a much 

smaller increase compared to the 4.21 kcal/mol increase of tetramer Gly2:Gly2. By adding 

one more peptide at each side, the many-body interaction energy of hexamer Gly3:Gly3

becomes stronger by 3.62 kcal/mol than that of tetramer Gly2:Gly2. Therefore, for the α-helix 

conformation, in contrast to the marginal effect of adding peptides to one side of the 

interface, symmetric addition makes the interaction at the interface significantly stronger, 

so that a much stronger many-body interaction is expected in the inner part of α-helices. 

Therefore, the outer and inner parts of α-helices could have considerably different stabilities. 

This effect could be significant in nonpolar environments such as transmembrane proteins.
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Among the seven force fields tested, pGM-perm and pGM-ind again show the lowest 

RMSEs (0.40 and 0.38 kcal/mol, respectively) and the lowest MAEs (0.37 and 0.35 kcal/

mol, respectively), making them the best force fields in terms of many-body interaction 

energy calculations. It is encouraging that the RMSEs and MAEs of both pGM models are 

lower than the thermal fluctuation energy of 0.60 kcal/mol at 300 K. Similar to the case 

of interaction energy calculations, both pGM models give similar performances in terms 

of many-body interaction energy calculations. This indicates a potential advantage of the 

ESP fitting strategy employed for pGM parameterizations. Both the interaction energies and 

many-body interaction energies between molecules are largely dependent on the electrostatic 

interactions, and the ESP surrounding molecules are one of the most important electrostatic 

properties. Since both the pGM-ind and pGM-perm models are able to reproduce QM ESPs 

with low errors,52 it is expected that both models can accurately reproduce QM interaction 

energies and many-body interaction energies, therefore giving similar performances.

The next best-performing force field is the Amoeba13 force field, which exhibits the largest 

improvement compared with interaction energy calculations in Table 2, with the RMSE 

reduced from 2.91 to 1.16 kcal/mol. The significant improvement of Amoeba13 shows that 

the short-range interactions are the main cause of the large errors observed in the interaction 

energies. The ff12pol force field is ranked the third best-performing force field, with an 

RMSE of 1.62 kcal/mol. It is remarkable that all polarizable force fields perform better 

than all additive force fields. In fact, all additive force fields notably underestimate the 

many-body interactions by more than 2.00 kcal/mol. Among the additive force fields tested, 

ff15ipq once again shows the best performance, with an RMSE of 2.04 kcal/mol. However, 

this RMSE is slightly higher than that of interaction energies (1.87 kcal/mol) given by 

ff15ipq.

Another observation in Table 3 is that all force fields consistently underestimate the many-

body interaction energies ME(Glym:Glyn) when compared with the ωB97X − D results. For the 

pGM models, this is in sharp contrast to the systematic overestimations in the interaction 

energies IE(Glym:Glyn), as shown in Table 2, indicating that the long-range terms are still 

under-represented in the pGM models. Moreover, this suggests that the overestimations 

of IE(Glym:Glyn) of the pGM models are primarily due to the short-range van der Waals 

terms. Because of this, we anticipate that the present van der Waals parameters, which 

were taken directly from ff12pol without optimization, need to be tuned to make the short-

range terms less attractive. For Amoeba13 and ff12pol, however, since their IE(Glym:Glyn)
and ME(Glym:Glyn) are systematically weaker than the ωB97X − D results and the errors in 

IE(Glym:Glyn) are larger than ME(Glym:Glyn), it appears that these two force fields could be 

improved by strengthening both their short-range and polarization terms.

Similar to the case of interaction energies, the underestimations of the pGM models 

compared to ωB97X − D across different conformations and across different oligomers 

are consistent, which range between 0.17 and 0.61 kcal/mol for pGM-perm and between 

0.15 and 0.59 kcal/mol for pGM-ind. In contrast, all other force fields once again show 

nonuniform deviations across different conformations, and the deviations increase with the 

size of oligomers. It is notable that the additive ff15ipq force field, which exhibits relatively 
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consistent deviations in terms of interaction energies, also shows gradually increasing 

deviations with the oligomer size in terms of many-body interaction energies. Based on 

the above observations, we conclude that the polarization effects play critical roles in the 

many-body interactions, and the additive force fields are, in general, incapable of modeling 

them accurately.

pGM Models Perform the Best in Reproducing QM Nonadditive and Additive Contributions 
to the Many-Body Interactions.

The many-body interaction energies in Table 3 depend on the nonbonded terms in the 

functional form of each molecular mechanical force field. For additive force fields such 

as Amber ff19SB, ff15ipq, and ff03, the many-body interactions only have contributions 

from the additive electrostatic and van der Waals terms. In polarizable force fields ff12pol 

and pGM-ind, the nonadditive induced dipole polarization energy is also involved. The 

pGM-perm model has additional energy contributions from atomic permanent dipoles, 

and the Amoeba13 force field also has contributions from atomic permanent quadrupoles, 

which are both additive terms. It is difficult to decipher which of these terms plays a 

more important role if we just look at the total many-body interaction energies shown in 

Table 3. Therefore, we decompose the many-body interaction energies into nonadditive and 

additive contributions to gain insight into these force fields. For each Glym:Glyn oligomer, 

the formulas of the nonadditive contributions MENA(Glym:Glyn) and the additive contributions 

MEA(Glym:Glyn) are given in eqs 24 and 25, respectively. The proof of the decomposition is 

shown in the Appendix. Note that the functional forms of additive force fields only have 

additive terms, so that the nonadditive contribution MENA(Glym:Glyn) of any additive force 

field is guaranteed to be zero. For this reason, we will only compare the performances of 

polarizable force fields pGM-perm, pGM-ind, Amoeba13, and ff12pol in this section.

The interaction energies of the two peptides at the interface, IEmid(Glym:Glyn), in the presence 

of the neighboring peptides Glym − 1 and Glyn − 1 defined in eq 23, calculated by the four 

polarizable force fields and by ωB97X − D, are shown in Table S1. For additive force fields, 

the values will be identical to those of IE(Gly:Gly) in the absence of neighboring peptides 

Glym − 1 and Glyn − 1, as shown in Table 2, if listed. For polarizable force fields, a trend similar 

to that in Table 2 is observed. First, the pGM-perm and pGM-ind models outperform the 

other two polarizable force fields, with RMSEs of 1.39 and 1.43 kcal/mol, respectively. 

The RMSEs of the Amoeba13 force field and the ff12pol force field are 2.54 and 1.69 

kcal/mol, respectively. Second, compared with the ωB97X − D results, the pGM-perm and 

pGM-ind models systematically overestimate the interaction energies (by 1.37 and 1.41 

kcal/mol, respectively), whereas both Amoeba13 and ff12pol underestimate (by 2.31 and 

1.18 kcal/mol, respectively). Third, the deviations between the interaction energies given by 

ωB97X − D and the pGM models across different conformations and different oligomers 

are highly consistent. For pGM-perm, the largest spread (0.41 kcal/mol) comes from 

Gly:Gly3 between the anti-parallel β-sheet (−1.25 kcal/mol) and parallel β-sheet (−1.66 kcal/

mol) conformers. For pGM-ind, the largest spread (0.56 kcal/mol) is between the α-helix 

(−1.36 kcal/mol) and parallel β-sheet (−1.92 kcal/mol) conformers of Gly:Gly. Overall, the 

deviations range between −1.02 and −1.88 kcal/mol for pGM-perm, and between −1.15 and 
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−1.92 kcal/mol for pGM-ind, for all five oligomers and all three conformations. However, 

Amoeba13 and ff12pol show nonuniform deviations across different conformations, and 

these deviations tend to increase with the size of oligomers.

Table 4 shows the nonadditive contributions MENA(Glym:Glyn) of ωB97X − D and the four 

polarizable force fields obtained by subtracting corresponding rows of the Gly:Gly dimers 

from other rows in Table S1, and Table 5 shows the additive contributions MEA(Glym:Glyn)
obtained by subtracting the corresponding nonadditive contributions MENA(Glym:Glyn) 

from the many-body interaction energies ME(Glym:Glyn) in Table 3. For nonadditive 

contributions MENA(Glym:Glyn), pGM-ind produces the lowest RMSE (0.30 kcal/mol) 

among all four polarizable force fields, and pGM-perm is the second best, with an RMSE 

of 0.33 kcal/mol. However, for additive contributions MEA(Glym:Glyn), pGM-perm performs 

the best with an RMSE of 0.09 kcal/mol, and pGM-ind is the second-best, with an RMSE 

of 0.10 kcal/mol. The significantly lower RMSEs of the additive contributions of the pGM 

models than other polarizable force fields show the robustness of the ESP fitting scheme 

of PyRESP since the additive contribution is mainly due to the interactions involving fixed 

point charges and permanent dipoles.52 For both nonadditive and additive contributions, the 

ff12pol force field gives the worst performance, with RMSEs of 0.95 and 0.72 kcal/mol for 

the nonadditive and additive contributions, respectively. Amoeba13 yields RMSEs of 0.59 

kcal/mol for both the nonadditive and additive contributions, which are better than ff12pol in 

terms of both contributions, but still notably worse than the pGM models.

Interestingly, compared with the ωB97X − D results, all four polarizable force fields 

underestimate both the nonadditive and additive contributions to varying degrees. As 

measured by MAE, the nonadditive contributions are underestimated by 0.30, 0.27, 0.54, 

and 0.85 kcal/mol by pGM-perm, pGM-ind, Amoeba13, and ff12pol, respectively, and 

the additive contributions are underestimated by 0.06, 0.08, 0.42, and 0.46 kcal/mol by 

pGM-perm, pGM-ind, Amoeba13, and ff12pol, respectively. Therefore, MAEs show the 

same performance trend as RMSEs, where pGM-ind performs the best for calculating the 

nonadditive contributions, and pGM-perm performs the best for calculating the additive 

contributions. The consistent underestimations could potentially come from two sources: 

inadequate short-range damping and smaller-than-needed polarizabilities, both of which may 

be improved by further parameterizations. Encouragingly, the pGM models again exhibit 

consistent deviations from the ωB97X − D results for both contributions across different 

conformations and different sized oligomers. For the pGM-perm model, the deviations 

range between 0.12 and 0.52 kcal/mol for the nonadditive contributions, and between 0.01 

and 0.22 kcal/mol for the additive contributions; For the pGM-ind model, the deviations 

range between 0.09 and 0.49 kcal/mol for the nonadditive contributions, and between 0.02 

and 0.25 kcal/mol for the additive contributions. In contrast, Amoeba13 and ff12pol show 

significant variations in the deviations from the ωB97X − D results for both nonadditive 

and additive contributions across different conformations. Overall, Tables 4 and 5 show 

that compared with the other two polarizable force fields tested here, the pGM models 

(with or without permanent atomic dipoles) perform the best in terms of reproducing QM 

nonadditive and additive contributions to the many-body interaction energies.
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pGM Models Are Robust with Altered Atomic Polarizabilities.

Because of the inherent approximations to either experimental observations or QM 

calculations, all mechanical force fields are subject to errors that can come from both the 

functional forms and parameterization processes. In the development of Amber force fields, 

a consistent electrostatic parameterization approach is to fit the QM calculated ESPs of 

small molecules or fragments of large molecules to obtain atomic charges and multipoles. 

Technically, this approach is rather straightforward and allows the development of consistent 

parameters across a wide variety of chemistry. In the cases of polarizable force fields, 

another advantage is that the errors in the initial fitting of polarizabilities can be partially 

compensated at the stage when charges and permanent multipoles are calculated, yielding 

a more robust force field. This feature is potentially advantageous because of the nonlinear 

nature of the polarization energy.

In our previous work, the pGM atomic polarizabilities and radii were obtained by fitting 

QM molecular polarizability tensors of 1405 molecules or dimers.45 In this work, we 

further evaluated the robustness of the pGM models by re-parameterizing the glycine 

dipeptide charges and permanent dipoles using the recently developed PyRESP program,52 

with alternative polarizabilities, including the pGM polarizabilities scaled by a factor 

of 0.9, the Amoeba13 polarizabilities,26 and the Amber ff12pol polarizabilities.22 These 

alternative polarizability sets are either scaled or taken from different sources and have been 

developed for different polarization schemes. Therefore, we expect that the energies related 

to polarization calculated with these three polarizability sets be less accurate than those 

produced by the pGM models with original pGM polarizabilities shown in Tables 2-5. Our 

objective is to see whether these “wrong” polarizabilities would lead to intolerable errors in 

energy calculations.

The interaction energies IE(Glym:Glyn) as well as the many-body interaction energies 

ME(Glym:Glyn) of each Glym:Glyn oligomer of the pGM-perm and pGM-ind models calculated 

with the alternative polarizabilities are shown in Tables 6 and S2, respectively. Interestingly, 

for both pGM models, the “wrong” polarizabilities produce interaction energies IE(Glym:Glyn)
with lower RMSEs compared with those obtained by the “correct” pGM polarizabilities 

shown in Table 2. For the pGM-perm model, the overall RMSE of interaction energies 

decreased from 1.35 kcal/mol to 0.80, 0.82, and 0.62 kcal/mol for the scaled pGM, 

Amoeba13, and ff12pol polarizabilities, respectively. For the pGM-ind model, the overall 

RMSE of interaction energies decreased from 1.37 kcal/mol to 0.81, 0.97, and 0.57 

kcal/mol for the scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. The 

higher RMSEs associated with the “correct” pGM polarizabilities compared with that of the 

“wrong” polarizabilities might be explained by the fact that the van der Waals parameters for 

the pGM models were taken directly from the ff12pol force field without any optimization. 

As shown in Table 2, with the original polarizabilities, both pGM-perm and pGM-ind 

overestimate the interaction energies. Since the interaction energies can be decomposed 

to the electrostatic and van der Waals contributions, the overestimation in the interaction 

energies can be explained by the overestimation of the van der Waals term in the current 

pGM models. Specifically, the dispersion effect of the van der Waals term might be too 

attractive. As shown in Tables 6 and S2, the amount of overestimation in the interaction 
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energies is reduced with the alternative polarizabilities, indicating weaker electrostatic 

attractions. Consequently, the overestimation of the van der Waals term is compensated 

by the underestimation of the electrostatic term with the alternative polarizabilities, leading 

to lower overall RMSEs. Therefore, there is a need to reparameterize the van der Waals 

terms, and we anticipate the pGM models with re-parameterized van der Waals terms will 

give interaction energies with better agreement with QM results than those with the “wrong” 

polarizabilities.

In contrast to the interaction energies IE(Glym:Glyn), as expected, the many-body interaction 

energies ME(Glym:Glyn) calculated by the pGM models with the “wrong” polarizabilities 

are consistently worse than those with the “correct” pGM polarizabilities shown in Table 

3. For the pGM-perm model, the overall RMSE of the many-body interaction energies 

increased from 0.40 kcal/mol to 0.70, 0.69, and 1.11 kcal/mol for the scaled pGM, 

Amoeba13, and ff12pol polarizabilities, respectively. Similarly, for the pGM-ind model, 

the overall RMSE increased from 0.38 kcal/mol to 0.69, 0.68, and 1.10 kcal/mol for the 

scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. Remarkably, the many-

body interaction energies produced by the pGM models with alternative polarizabilities 

consistently outperform the Amoeba13 and ff12pol force fields, with their respective 

native polarizabilities shown in Table 3. With the Amoeba13 polarizabilities, the RMSEs 

of the Amoeba13 force field, the pGM-perm, and pGM-ind models are 1.16, 0.69, and 

0.68 kcal/mol, respectively; with the ff12pol polarizabilities, the RMSEs of the ff12pol 

force field, the pGM-perm, and pGM-ind models are 1.62, 1.11, and 1.10 kcal/mol, 

respectively. Because short-range terms contribute much less to ME(Glym:Glyn) than to 

IE(Glym:Glyn), these improvements are likely attributable to the differences in the treatment 

of long-range terms, including the electrostatic and polarization terms. This shows that 

the pGM models are highly robust in terms of modeling the many-body interactions of 

peptide main-chain hydrogen-bonding structures. The improvement is remarkable, given 

the substantial differences among the different force fields in their functional forms of the 

electrostatic and polarization terms. Both the Amoeba13 and ff12pol force fields are based 

on the Thole screening schemes, in which only the cross induction between the induced 

dipoles is screened to avoid polarization catastrophe. In the pGM models, all electrostatic 

terms are represented as Gaussian densities. Consequently, all electrostatic interactions are 

screened, including charge—charge, charge—dipole, and dipole—dipole interactions. The 

improvement observed in this comparison is likely attributable to the inherent consistency of 

the treatment of electrostatic terms in the pGM models.

The nonadditive and additive contributions to the many-body interactions calculated by the 

pGM-perm and pGM-ind models with the alternative polarizabilities are shown in Tables 7 

and S3, respectively. With the scaled pGM polarizabilities, the RMSEs of the nonadditive 

contributions of the pGM-perm and pGM-ind models increase from 0.33 and 0.30 kcal/mol 

to 0.60 and 0.58 kcal/mol, respectively. Despite the fact that the functional forms of the 

polarization terms of the pGM models are different from those of the Amoeba13 and 

ff12pol force fields, the nonadditive contributions of the pGM models with the Amoeba13 

and ff12pol polarizabilities are remarkably similar to Amoeba13 and ff12pol with their 

respective native polarizabilities. With the Amoeba13 polarizabilities, the RMSEs of the 
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Amoeba13 force field, the pGM-perm, and pGM-ind models are 0.59, 0.59, and 0.57 kcal/

mol, respectively; with the ff12pol polarizabilities, the RMSEs of the ff12pol force field, 

the pGM-perm, and pGM-ind models are 0.95, 0.96, and 0.95 kcal/mol, respectively. We 

therefore conclude that the changes in the functional forms in the calculations of induction 

energies from their respective native forms did not lead to an intolerable level of error.

For the additive contribution calculations, the RMSEs of the pGM-perm and pGM-ind 

models with the scaled pGM polarizabilities increase from 0.09 and 0.10 kcal/mol to 0.12 

and 0.13 kcal/mol, respectively, which are essentially unchanged. Remarkably, both pGM 

models with the Amoeba13 and ff12pol polarizabilities notably outperform their respective 

native counterparts (Amoeba13 and ff12pol force fields) in the calculation of the additive 

contributions. With the Amoeba13 polarizabilities, the RMSEs of the Amoeba13 force 

field, the pGM-perm, and pGM-ind models are 0.59, 0.12, and 0.13 kcal/mol, respectively; 

with the ff12pol polarizabilities, the RMSEs of the ff12pol force field, the pGM-perm, 

and pGM-ind models are 0.72, 0.17, and 0.18 kcal/mol, respectively. In fact, for the 

additive contribution calculations, the RMSEs of both pGM models with the alternative 

polarizabilities are comparable to those with the original polarizabilities. The notably better 

performance of the pGM models with the Amoeba13 and ff12pol polarizabilities than the 

Amoeba13 and ff12pol force fields in the additive contribution calculations suggests that 

the PyRESP scheme of fitting charges and permanent multipoles from QM calculated ESPs 

is a reliable approach in the development of molecular mechanical force fields and has the 

ability to compensate the errors in the initial parameterization of polarizabilities.

CONCLUSIONS

In this work, we assessed the capabilities of the recently developed pGM models46,47 in 

modeling the many-body interactions of glycine dipeptides main-chain hydrogen-bonding 

conformers. Two types of pGM models were considered, including that with (pGM-perm) 

and without (pGM-ind) permanent atomic dipoles. The performances of the pGM models 

were compared with several other widely used force fields, including Amoeba13,28 

ff12pol,22-25 ff19SB,7 ff15ipq,54 and ff03.55 The glycine dipeptide oligomers were selected 

as the model systems since glycine has the minimalist side chain so that we can focus on 

main-chain hydrogen-bonding interactions.

We first identified ωB97X − D/aug-cc-pVTZ without counterpoise BSSE correction as the 

most suitable DFT method for our molecular systems. Compared with other DFT methods 

tested (M062X and B3LYP) with and without counterpoise corrections, ωB97X − D without 

counterpoise correction produced the interaction energies of the formamide dimer and the 

glycine dipeptide dimers with the best agreement to those calculated at the CCSD(T)/CBS 

level of theory.

Next, we compared the interaction energies IE(Glym:Glyn) and many-body interaction energies 

ME(Glym:Glyn) calculated at the ωB97X − D/aug-cc-pVTZ level of theory and those calculated 

by the seven molecular mechanical force fields. The overall RMSEs of the interaction 

energies and many-body interaction energies of the seven force fields are shown in Figure 

2. Encouragingly, the overall RMSEs of the interaction energies IE(Glym:Glyn) calculated 
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by the pGM-perm and pGM-ind models are 1.35 and 1.37 kcal/mol, respectively, which 

significantly outperform other polarizable (Amoeba13, 2.91 kcal/mol; ff12pol, 2.28 kcal/

mol) and additive (ff19SB, 2.67 kcal/mol; ff15ipq, 1.87 kcal/mol; ff03, 3.78 kcal/mol) force 

fields. For the many-body interaction energies ME(Glym:Glyn), the overall RMSEs of the 

pGM-perm and pGM-ind models are 0.40 and 0.38 kcal/mol, respectively. In comparison, 

the RMSEs of other polarizable (Amoeba13, 1.16 kcal/mol; ff12pol, 1.62 kcal/mol) and 

additive (ff19SB, 2.45 kcal/mol; ff15ipq, 2.04 kcal/mol; ff03, 2.58 kcal/mol) force fields 

are notably higher than those of the pGM models. In addition, for both interaction energies 

and many-body interaction energies, the deviations between the ωB97X − D results and the 

pGM models results across different conformations and oligomers with different sizes are 

highly consistent, while all other force fields exhibit nonuniform deviations across different 

conformations, and these deviations increase with the size of oligomers. Therefore, our data 

show that the pGM models perform the best among all seven tested force fields in terms of 

calculating interaction energy and many-body interaction energy.

For polarizable force fields, the many-body interaction energy can be decomposed into the 

nonadditive contribution MENA(Glym:Glyn) and the additive contribution MEA(Glym:Glyn), so 

that we compared both contributions calculated by the four polarizable force fields with 

those of ωB97X-D calculations. Figure 2 shows the overall RMSEs of the nonadditive and 

additive contributions to the many-body interaction energies of the four polarizable force 

fields. Encouragingly, the pGM models result in the lowest RMSEs for both nonadditive 

(pGM-perm, 0.33 kcal/mol; pGM-ind, 0.30 kcal/mol) and additive (pGM-perm, 0.09 kcal/

mol; pGM-ind, 0.10 kcal/mol) contributions. In comparison, the Amoeba13 force field gives 

RMSEs of 0.59 kcal/mol for both the nonadditive and additive contributions. The ff12pol 

force field gives RMSEs of 0.95 kcal/mol for the nonadditive contribution and 0.72 kcal/mol 

for the additive contribution. Therefore, the pGM models perform the best among all tested 

polarizable force fields in terms of modeling both the nonadditive and additive contributions 

to the many-body interactions.

Finally, we tested the robustness of the pGM models against parameterization errors by 

employing alternative polarizabilities. Interestingly, the pGM models with the alternative 

polarizabilities produce interaction energies with lower RMSEs compared with those 

produced by the original pGM polarizabilities. This might be explained by the fact that 

the current pGM models share identical van der Waals parameters as the ff12pol force field, 

and the overestimation of the van der Waals term is compensated by the underestimation 

of the electrostatic term with the alternative polarizabilities. In future works, the van der 

Waals parameters of the pGM models will be re-parameterized using similar ways as 

we did for parameterizing the ff12pol force field.25 On the other hand, the pGM models 

with the alternative polarizabilities produce many-body interaction energies as well as the 

nonadditive and additive contributions to the many-body interactions with higher RMSEs 

compared with those with the original pGM polarizabilities. Even so, both pGM models 

with the alternative polarizabilities still give better or similar performances compared with 

the Amoeba13 and ff12pol force fields. Our data show that the pGM models are robust 

against polarizability errors and perform well even with those “wrong” polarizabilities.
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In summary, this work validates that the pGM models have the capabilities to accurately 

model the interaction energies, many-body interaction energies, as well as the nonadditive 

and additive contributions to the many-body interactions of peptide main-chain hydrogen-

bonding structures. We expect that the pGM models have the potential to serve as 

templates for developing the next-generation polarizable force fields for modeling various 

polarization-sensitive biological processes.
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APPENDIX: PROOF OF MANY-BODY INTERACTION ENERGIES 

DECOMPOSITION

In the Theory section, we claim that the many-body interaction energies ME(Glym:Glyn) (eq 

22) can be decomposed into the nonadditive contributions MENA(Glym:Glyn) and the additive 

contributions MEA(Glym:Glyn), whose formulas are given in eqs 24 and 25, respectively. We 

first prove the formula of the nonadditive contributions in Appendix A1 and then prove the 

formula of the additive contributions in Appendix A2.

A1 Nonadditive Contributions

The nonadditive effect refers to that for a molecular system with more than two atoms 

involved; any two atoms will interact differently compared with the situation where other 

atoms were not present.10 For additive force fields, the nonadditive effect does not exist, 

i.e., MENA(Glym:Glyn) defined in eq 24 is always zero. Therefore, the interaction energy of 

the two middle peptides IEmid(Glym:Glyn) in the presence of the neighbor peptides Glym − 1 and 

Glyn − 1 defined in eq 23 should be the same as the interaction energy of the two middle 

peptides IE(Gly:Gly) in the absence of the neighbor peptides. The key to prove this is that, for 

additive force fields, the interaction energy IE(A,B:C,D) of a four-body system A,B:C,D can 

be decomposed into

IE(A, B: C, D) = IE(A: C) + IE(B: C) + IE(A: D)
+ IE(B: D) (A1)

Therefore, the first three terms in eq 23 can be decomposed to

IE(Glym: Glyn) = IE(Glym − 1X: XGlyn − 1)
+ IE(Glym − 1X: Gly) + IE(Gly: XGlyn − 1)
+ IE(Gly: Gly)

(A2)
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IE(Glym: XGlyn − 1)
= IE(Glym − 1X: XGlyn − 1) + IE(Gly: XGlyn − 1)

(A3)

IE(Glym − 1X: Glyn)
= IE(Glym − 1X: XGlyn − 1) + IE(Glym − 1X: Gly) (A4)

Substituting eqs A2-A4 into eq 23 gives

IEmid(Glym: Glyn) = IE(Gly: Gly) (A5)

Therefore, for additive force fields, the nonadditive contribution MENA(Glym:Glyn) in eq 

24 becomes zero. For polarizable force fields, the difference between IEmid(Glym:Glyn) and 

IE(Gly:Gly) is naturally the nonadditive contribution MENA(Glym:Glyn), which is a nonzero 

value.

A2 Additive Contributions

For either additive or polarizable force fields, the additive contribution can be expressed in 

the following alternative formula by substituting eqs 22-24 into eq 25

MEA(Glym: Glyn) = IE(Glym: XGlyn − 1)
+ IE(Glym − 1X: Glyn)
− IE(Glym − 1X: XGlyn − 1)

(A6)

For additive force fields, we need to show that the many-body interaction energies 

ME(Glym:Glyn) only have the additive contribution MEA(Glym:Glyn). This can be done by 

substituting eq A2 into the formula of the many-body interaction energy in eq 22 and 

substituting eq A3-A4 into the formula of the additive contribution in eq A6. Therefore, we 

have proved that for additive force fields, we have

ME(Glym: Glyn) = MEA(Glym: Glyn) (A7)

For polarizable force fields, the difference between the many-body interaction energy 

ME(Glym:Glyn) and the nonzero nonadditive contribution MENA(Glym:Glyn) naturally gives the 

additive contribution MEA(Glym:Glyn).

REFERENCES

(1). Leach AR Molecular Modelling: Principles and Applications, 2nd ed.; Pearson Education, 2001.

(2). Monticelli L; Tieleman DPForce Fields for Classical Molecular Dynamics. In Biomolecular 
Simulations, Methods in Molecular Biology; Humana Press, 2013; pp 197–213.

(3). Vitalis A; Pappu RV Methods for Monte Carlo simulations of biomacromolecules. Annu. Rep. 
Comput. Chem 2009, 5, 49–76. [PubMed: 20428473] 

Zhao et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4). Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates 
R; Žídek A; Potapenko A; et al. Highly accurate protein structure prediction with AlphaFold. 
Nature 2021, 596, 583–589. [PubMed: 34265844] 

(5). Le Grand S; Götz AW; Walker RC SPFP: Speed without compromise—A mixed precision model 
for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun 2013, 184, 374–
380.

(6). Lee T-S; Cerutti DS; Mermelstein D; Lin C; LeGrand S; Giese TJ; Roitberg A; Case DA; Walker 
RC; York DM GPU-accelerated molecular dynamics and free energy methods in Amber18: 
performance enhancements and new features. J. Chem. Inf. Model 2018, 58, 2043–2050. 
[PubMed: 30199633] 

(7). Tian C; Kasavajhala K; Belfon KA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; 
Pincay J; Wu Q; Simmerling C ff19SB: Amino-acid-specific protein backbone parameters trained 
against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput 2020, 16, 
528–552. [PubMed: 31714766] 

(8). Brooks BR; Brooks CL III; Mackerell AD Jr.; Nilsson L; Petrella RJ; Roux B; Won Y; Archontis 
G; Bartels C; Boresch S; et al. CHARMM: the biomolecular simulation program. J. Comput. 
Chem 2009, 30, 1545–1614. [PubMed: 19444816] 

(9). Jorgensen WL; Maxwell DS; Tirado-Rives J Development and testing of the OPLS all-atom force 
field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc 1996, 
118, 11225–11236.

(10). Cieplak P; Dupradeau F-Y; Duan Y; Wang J Polarization effects in molecular mechanical force 
fields. J. Phys.: Condens. Matter 2009, 21, No. 333102. [PubMed: 21828594] 

(11). Friesner RAModeling Polarization in Proteins and Protein–ligand Complexes: Methods and 
Preliminary Results. In Peptide Solvation and HBonds, Advances in Protein Chemistry; Elsevier 
Inc., 2005; Vol. 72, pp 79–104.

(12). Gresh N; Cisneros GA; Darden TA; Piquemal J-P Anisotropic, polarizable molecular mechanics 
studies of inter-and intramolecular interactions and ligand–macromolecule complexes. A bottom-
up strategy. J. Chem. Theory Comput 2007, 3, 1960–1986. [PubMed: 18978934] 

(13). Zhao S; Schaub AJ; Tsai S-C; Luo R Development of a Pantetheine Force Field Library for 
Molecular Modeling. J. Chem. Inf. Model 2021, 61, 856–868. [PubMed: 33534558] 

(14). King E; Qi R; Li H; Luo R; Aitchison E Estimating the roles of protonation and electronic 
polarization in absolute binding affinity simulations. J. Chem. Theory Comput 2021, 17, 2541–
2555. [PubMed: 33764050] 

(15). Draper DE; Grilley D; Soto AM Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct 
2005, 34, 221–243. [PubMed: 15869389] 

(16). Lipfert J; Doniach S; Das R; Herschlag D Understanding nucleic acid–ion interactions. Annu. 
Rev. Biochem 2014, 83, 813–841. [PubMed: 24606136] 

(17). Fitch CA; Karp DA; Lee KK; Stites WE; Lattman EE; García-Moreno EB Experimental pKa 
values of buried residues: analysis with continuum methods and role of water penetration. 
Biophys. J 2002, 82, 3289–3304. [PubMed: 12023252] 

(18). Dill KA; Bromberg S; Yue K; Chan HS; Fiebig KM; Yee DP; Thomas PD Principles of protein 
folding—a perspective from simple exact models. Protein Sci. 2008, 4, 561–602.

(19). Greatbanks SP; Gready JE; Limaye AC; Rendell AP Enzyme polarization of substrates of 
dihydrofolate reductase by different theoretical methods. Proteins: Struct., Funct., Bioinf 1999, 
37, 157–165.

(20). Cieplak P; Caldwell J; Kollman P Molecular mechanical models for organic and biological 
systems going beyond the atom centered two body additive approximation: aqueous solution free 
energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding 
and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem 2001, 22, 
1048–1057.

(21). Wang ZX; Zhang W; Wu C; Lei H; Cieplak P; Duan Y Strike a balance: optimization of 
backbone torsion parameters of AMBER polarizable force field for simulations of proteins and 
peptides. J. Comput. Chem 2006, 27, 781–790. [PubMed: 16526038] 

Zhao et al. Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22). Wang J; Cieplak P; Li J; Hou T; Luo R; Duan Y Development of polarizable models for 
molecular mechanical calculations I: parameterization of atomic polarizability. J. Phys. Chem. B 
2011, 115, 3091–3099. [PubMed: 21391553] 

(23). Wang J; Cieplak P; Li J; Wang J; Cai Q; Hsieh M; Lei H; Luo R; Duan Y Development of 
polarizable models for molecular mechanical calculations II: induced dipole models significantly 
improve accuracy of intermolecular interaction energies. J. Phys. Chem. B 2011, 115, 3100–
3111. [PubMed: 21391583] 

(24). Wang J; Cieplak P; Cai Q; Hsieh M-J; Wang J; Duan Y; Luo R Development of polarizable 
models for molecular mechanical calculations. 3. Polarizable water models conforming to Thole 
polarization screening schemes. J. Phys. Chem. B 2012, 116, 7999–8008. [PubMed: 22712654] 

(25). Wang J; Cieplak P; Li J; Cai Q; Hsieh M-J; Luo R; Duan Y Development of polarizable models 
for molecular mechanical calculations. 4. van der Waals parametrization. J. Phys. Chem. B 2012, 
116, 7088–7101. [PubMed: 22612331] 

(26). Ren P; Ponder JW Consistent treatment of inter-and intramolecular polarization in molecular 
mechanics calculations. J. Comput. Chem 2002, 23, 1497–1506. [PubMed: 12395419] 

(27). Ren P; Ponder JW Polarizable atomic multipole water model for molecular mechanics 
simulation. J. Phys. Chem. B 2003, 107, 5933–5947.

(28). Shi Y; Xia Z; Zhang J; Best R; Wu C; Ponder JW; Ren P Polarizable atomic multipole-based 
AMOEBA force field for proteins. J. Chem. Theory Comput 2013, 9, 4046–4063. [PubMed: 
24163642] 

(29). Banks JL; Kaminski GA; Zhou R; Mainz DT; Berne B; Friesner RA Parametrizing a polarizable 
force field from ab initio data. I. The fluctuating point charge model. J. Chem. Phys 1999, 110, 
741–754.

(30). Patel S; Brooks CL III CHARMM fluctuating charge force field for proteins: I parameterization 
and application to bulk organic liquid simulations. J. Comput. Chem 2004, 25, 1–16. [PubMed: 
14634989] 

(31). Lamoureux G; Harder E; Vorobyov IV; Roux B; MacKerell AD Jr. A polarizable model of water 
for molecular dynamics simulations of biomolecules. Chem. Phys. Lett 2006, 418, 245–249.

(32). Lopes PEM; Lamoureux G; Roux B; MacKerell AD Polarizable empirical force field for 
aromatic compounds based on the classical drude oscillator. J. Phys. Chem. B 2007, 111, 2873–
2885. [PubMed: 17388420] 

(33). Tan Y-H; Luo R Continuum treatment of electronic polarization effect. J. Chem. Phys 2007, 126, 
No. 094103. [PubMed: 17362100] 

(34). Tan Y-H; Tan C; Wang J; Luo R Continuum polarizable force field within the Poisson-Boltzmann 
framework. J. Phys. Chem. B 2008, 112, 7675–7688. [PubMed: 18507452] 

(35). Warshel A; Levitt M Theoretical studies of enzymic reactions: dielectric, electrostatic and steric 
stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol 1976, 103, 227–249. 
[PubMed: 985660] 

(36). Vesely FJ N-particle dynamics of polarizable Stockmayer-type molecules. J. Comput. Phys 1977, 
24, 361–371.

(37). Applequist J; Carl JR; Fung K-K Atom dipole interaction model for molecular polarizability. 
Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. 
Soc 1972, 94, 2952–2960.

(38). Thole BT Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys 
1981, 59, 341–350.

(39). Van Duijnen PT; Swart M Molecular and atomic polarizabilities: Thole’s model revisited. J. 
Phys. Chem. A 1998, 102, 2399–2407.

(40). Elking D; Darden T; Woods RJ Gaussian induced dipole polarization model. J. Comput. Chem 
2007, 28, 1261–1274. [PubMed: 17299773] 

(41). Elking DM; Cisneros GA; Piquemal J-P; Darden TA; Pedersen LG Gaussian multipole model 
(GMM). J. Chem. Theory Comput 2010, 6, 190–202. [PubMed: 20209077] 

(42). Elking DM; Perera L; Duke R; Darden T; Pedersen LG Atomic forces for geometry-dependent 
point multipole and Gaussian multipole models. J. Comput. Chem 2010, 31, 2702–2713. 
[PubMed: 20839297] 

Zhao et al. Page 24

J Chem Theory Comput. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(43). Wheatley RJ Gaussian multipole functions for describing molecular charge distributions. Mol. 
Phys 1993, 79, 597–610.

(44). Wheatley RJ; Mitchell JB Gaussian multipoles in practice: Electrostatic energies for 
intermolecular potentials. J. Comput. Chem 1994, 15, 1187–1198.

(45). Wang J; Cieplak P; Luo R; Duan Y Development of polarizable Gaussian model for 
molecular mechanical calculations I: Atomic polarizability parameterization to reproduce ab 
initio anisotropy. J. Chem. Theory Comput 2019, 15, 1146–1158. [PubMed: 30645118] 

(46). Wei H; Qi R; Wang J; Cieplak P; Duan Y; Luo R Efficient formulation of polarizable Gaussian 
multipole electrostatics for biomolecular simulations. J. Chem. Phys 2020, 153, No. 114116. 
[PubMed: 32962395] 

(47). Wei H; Cieplak P; Duan Y; Luo R Stress tensor and constant pressure simulation for polarizable 
Gaussian multipole model. J. Chem. Phys 2022, 156, No. 114114. [PubMed: 35317572] 

(48). Darden T; York D; Pedersen L Particle mesh Ewald: An N·log (N) method for Ewald sums in 
large systems. J. Chem. Phys 1993, 98, 10089–10092.

(49). Essmann U; Perera L; Berkowitz ML; Darden T; Lee H; Pedersen LG A smooth particle mesh 
Ewald method. J. Chem. Phys 1995, 103, 8577–8593.

(50). Crowley M; Darden T; Cheatham T; Deerfield D Adventures in improving the scaling and 
accuracy of a parallel molecular dynamics program. J. Supercomput 1997, 11, 255–278.

(51). Duke RE; Cisneros GA Ewald-based methods for Gaussian integral evaluation: application to a 
new parameterization of GEM*. J. Mol. Model 2019, 25, No. 307. [PubMed: 31501946] 

(52). Zhao S; Wei H; Cieplak P; Duan Y; Luo R PyRESP: A Program for Electrostatic 
Parameterizations of Additive and Induced Dipole Polarizable Force Fields. J. Chem. Theory 
Comput 2022, 18, 3654–3670. [PubMed: 35537209] 

(53). Case DA; Aktulga HM; Belfon K; Ben-Shalom I; Berryman JT; Brozell SR; Cerutti DS; 
Cheatham TE III; Cisneros GA; Cruzeiro VWD; Darden TA; Duke RE; Giambasu G; Gilson 
MK; Gohlke H; Goetz AW; Harris R; Izadi S; Izmailov SA; Kasavajhala K; Kaymak MC; 
King E; Kovalenko A; Kurtzman T; Lee T; LeGrand S; Li P; Lin C; Liu J; Luchko T; Luo R; 
Machado M; Man V; Manathunga M; Merz KM; Miao Y; Mikhailovskii O; Monard G; Nguyen 
H; O’Hearn KA; Onufriev A; Pan F; Pantano S; Qi R; Rahnamoun A; Roe DR; Roitberg A; 
Sagui C; Schott-Verdugo S; Shajan A; Shen J; Simmerling CL; Skrynnikov NR; Smith J; Swails 
J; Walker RC; Wang J; Wang J; Wei H; Wolf RM; Wu X; Xiong Y; Xue Y; York DM; Zhao S; 
Kollman PA Amber 2022; University of California: San Francisco, 2022.

(54). Debiec KT; Cerutti DS; Baker LR; Gronenborn AM; Case DA; Chong LT Further along the road 
less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical 
model. J. Chem. Theory Comput 2016, 12, 3926–3947. [PubMed: 27399642] 

(55). Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; 
Lee T; et al. A point-charge force field for molecular mechanics simulations of proteins based 
on condensed-phase quantum mechanical calculations. J. Comput. Chem 2003, 24, 1999–2012. 
[PubMed: 14531054] 

(56). Chai J-D; Head-Gordon M Long-range corrected hybrid density functionals with damped 
atom–atom dispersion corrections. Phys. Chem. Chem. Phys 2008, 10, 6615–6620. [PubMed: 
18989472] 

(57). Zhao Y; Truhlar DG The M06 suite of density functionals for main group thermochemistry, 
thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two 
new functionals and systematic testing of four M06-class functionals and 12 other functionals. 
Theor. Chem. Acc 2008, 120, 215–241.

(58). Lee C; Yang W; Parr RG Development of the Colle-Salvetti correlation-energy formula into a 
functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys 1988, 37, 785.

(59). Becke AD Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys 
1993, 98, 5648–5652.

(60). Boys SF; Bernardi F The calculation of small molecular interactions by the differences of 
separate total energies. Some procedures with reduced errors. Mol. Phys 1970, 19, 553–566.

Zhao et al. Page 25

J Chem Theory Comput. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(61). Halkier A; Helgaker T; Jørgensen P; Klopper W; Koch H; Olsen J; Wilson AK Basis-set 
convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett 1998, 286, 243–
252.

(62). Halkier A; Helgaker T; Jørgensen P; Klopper W; Olsen J Basis-set convergence of the energy in 
molecular Hartree–Fock calculations. Chem. Phys. Lett 1999, 302, 437–446.

(63). Connolly ML Analytical molecular surface calculation. J. Appl. Crystallogr 1983, 16, 548–558.

(64). Singh UC; Kollman PA An approach to computing electrostatic charges for molecules. J. 
Comput. Chem 1984, 5, 129–145.

(65). Frisch MJ; Trucks GW; Schlegel HB; Scuseria GE; Robb MA; Cheeseman JR; Scalmani G; 
Barone V; Petersson GA; Nakatsuji H; Li X; Caricato M; Marenich AV; Bloino J; Janesko 
BG; Gomperts R; Mennucci B; Hratchian HP; Ortiz JV; Izmaylov AF; Sonnenberg JL; Williams-
Young D; Ding F; Lipparini F; Egidi F; Goings J; Peng B; Petrone A; Henderson T; Ranasinghe 
D; Zakrzewski VG; Gao J; Rega N; Zheng G; Liang W; Hada M; Ehara M; Toyota K; Fukuda 
R; Hasegawa J; Ishida M; Nakajima T; Honda Y; Kitao O; Nakai H; Vreven T; Throssell K; 
Montgomery JA Jr.; Peralta JE; Ogliaro F; Bearpark MJ; Heyd JJ; Brothers EN; Kudin KN; 
Staroverov VN; Keith TA; Kobayashi R; Normand J; Raghavachari K; Rendell AP; Burant JC; 
Iyengar SS; Tomasi J; Cossi M; Millam JM; Klene M; Adamo C; Cammi R; Ochterski JW; 
Martin RL; Morokuma K; Farkas O; Foresman JB; Fox DJGaussian 16, revision A.03; Gaussian 
Inc.: Wallingford, CT, 2016.

(66). Xie W; Pu J; Gao J A coupled polarization-matrix inversion and iteration approach for 
accelerating the dipole convergence in a polarizable potential function. J. Phys. Chem. A 2009, 
113, 2109–2116. [PubMed: 19123850] 

(67). Ponder JWTINKER: Software Tools For Molecular Design, Washington University School of 
Medicine: Saint Louis, MO, 2004; 3.

(68). Li A; Muddana HS; Gilson MK Quantum mechanical calculation of non-covalent interactions: a 
large-scale evaluation of PMx, DFT, and SAPT approaches. J. Chem. Theory Comput 2014, 10, 
1563–1575. [PubMed: 24803867] 

Zhao et al. Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Glycine dipeptide oligomers (in the parallel β-sheet conformation) used to calculate 

the interaction energy, many-body interaction energy, and the nonadditive and additive 

contributions to the many-body interaction of the Gly2:Gly2 oligomer. For each oligomer, 

the interaction energies between glycine dipeptides above and below the dashed line are 

calculated using eq 21. (A) Gly2:Gly2, (B) Gly2:XGly, (C) GlyX:Gly2, and (D) GlyX:XGly. Refer 

to the Theory section for detailed descriptions.
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Figure 2. 
Overall RMSEs of the interaction energies IE(Glym:Glyn), many-body interaction energies 

ME(Glym:Glyn) (left), as well as the nonadditive contribution MENA(Glym:Glyn) and the additive 

contribution MEA(Glym:Glyn) to the many-body interaction energies (right) of the tested force 

fields with the ωB97X − D/aug-cc-pVTZ calculated results.
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