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Abstract

The concept of the exposome encompasses the totality of exposures from a variety of external 

and internal sources across an individual’s life course. The wealth of existing spatial and 

contextual data makes it appealing to characterize individuals’ external exposome to advance 

our understanding of environmental determinants of health. However, the spatial and contextual 

exposome is very different from other exposome factors measured at the individual-level as 

spatial and contextual exposome data are more heterogenous with unique correlation structures 

and various spatiotemporal scales. These distinctive characteristics lead to multiple unique 

methodological challenges across different stages of a study. This article provides a review of the 

existing resources, methods, and tools in the new and developing field for spatial and contextual 

exposome-health studies focusing on four areas: (1) data engineering, (2) spatiotemporal data 

linkage, (3) statistical methods for exposome-health association studies, and (4) machine- and 

deep-learning methods to use spatial and contextual exposome data for disease prediction. A 

critical analysis of the methodological challenges involved in each of these areas is performed to 

identify knowledge gaps and address future research needs.
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1. Introduction

The concept of the exposome was first proposed in 2005, and “encompasses all life-course 
environmental exposures from the prenatal period onwards, complementing the genome” 

(Wild, 2005, 2012). The exposome can be categorized into internal (e.g., metabolism) 

and external (i.e., including specific external factors such as pollutants and general 

external factors such as social capital) factors (Vrijheid, 2014). While a large number 

of exposome-health studies have been conducted over the past decade, the majority 

of them focused on the internal exposome. The external exposome is still a new and 

developing field, and very few external exposome studies have been conducted (Zheng et 

al., 2020). This is not surprising since exposome-health studies require well-characterized 

historical exposures before disease onset, as well as large sample sizes to ensure sufficient 

statistical power given the domain-agnostic approach often used. The internal exposome can 

usually be measured using biospecimens that allows researchers to retrospectively assess 

individuals’ exposures from long time ago; on the other hand, measurement methods for 

the external exposome are more heterogeneous. As shown in Figure 1, a wide variety of 

tools and information can be leveraged to characterize external exposome factors, such 

as questionnaires and surveys (e.g., self-reported physical activity and diet), smartphone-

based sensors (e.g., accelerometer-based physical activity measures), personal environmental 

monitors (e.g., passive silicone wristband-based polycyclic aromatic hydrocarbon measures), 

environmental specimens (e.g., house dust), and spatial and contextual information (e.g., 

ambient temperature) (Turner et al., 2017). However, most of these methods are not able 

to accurately characterize historical exposures decades ago (e.g., prior to 2000) because 

historical data on these exposures are scarce.

One exception is spatial and contextual information. There is a wealth of existing historical 

spatial and contextual data (Table 1 shows the examples of publicly available data sources) 

which can be linked to individuals based on their geolocations (e.g., residential address 

history, Global Positioning System [GPS]-derived time activity patterns) that are widely 

available in many studies and/or can also be obtained from public-record databases 

(Wheeler & Wang, 2015). Because of this, the few existing external exposome studies have 
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predominantly focused on exposures measured using spatial and contextual data (Hu, Zhao, 

Savitz, et al., 2020; Hu et al., 2021; Lynch et al., 2017; Mooney et al., 2017; Nieuwenhuijsen 

et al., 2019; Siroux et al., 2018; Vrijheid et al., 2020), instead of other methods (e.g., 

questionnaires and surveys, smartphone-based sensors, personal environmental monitors, 

and environmental specimens). However, the spatial and contextual exposome also has 

several unique methodological challenges due to its difference from the internal exposome 

and other external exposome factors (e.g., chemicals and toxicants based on personal 

environmental monitors). First, while routinely performed for single spatial and contextual 

factors in environmental health studies, data engineering and linkages are challenging when 

the exposome is of interest (i.e., a large number of exposome factors needs to be considered 

to account for the totality of the exposome) due to scalability issues. In addition, the 

spatial and contextual exposome are usually assessed using data from different sources, 

which are often heterogenous with (1) unique correlation structures (i.e., factors from the 

same data source are more likely to be highly correlated) (Hu, Zhao, Savitz, et al., 2020; 

Zheng et al., 2020), and (2) different spatiotemporal scales, leading to different aggregations 

and spatiotemporal linkages and potentially different exposure-health associations (e.g., the 

modifiable areal and temporal unit problems) (Cheng & Adepeju, 2014; Jelinski & Wu, 

1996). While many statistical methods have been developed for exposome-health studies 

in the past decades (Agier et al., 2016), they have all focused on the exposome factors 

that can be directly measured at the individual-level, and it is largely unknown how these 

methods perform in spatial and contextual exposome-health studies. Furthermore, given the 

wealth of spatial and exposome data and relatively low cost to append them to individuals’ 

geolocation data, it is appealing to leverage them in disease prediction (Hu, Zhao, Bian, et 

al., 2020). Machine and deep learning approaches are increasingly used to account for the 

high dimensionality of and high-order interactions among spatial and exposome factors and 

their nonlinear relationships with the outcomes of interest for disease prediction (Feng & 

Jiao, 2021; Hu, Zhao, Bian, et al., 2020; Mohnen et al., 2019). However, challenges exist 

to fully leverage and preserve the rich spatiotemporal structures in spatial and contextual 

exposome data using off-the-shelf machine and deep learning models.

In this review, we aimed to describe existing resources, methods, and tools available 

and major methodological challenges for spatial and contextual exposome-health studies, 

focusing on four major areas: (1) data engineering, (2) spatiotemporal data linkage, (3) 

statistical methods for exposome-health association studies, and (4) machine- and deep-

learning methods to use spatial and contextual exposome data for disease prediction.

2. Engineering of the spatial and contextual exposome data

The first step in spatial and contextual exposome-health studies is data engineering, which 

involves three major steps (Figure 2): data source identification, variable selection, and 

data harmonization. The unique characteristics of the spatial and contextual exposome pose 

challenges to each of these three steps.

The spatial and contextual exposome can be characterized using data from a variety of data 

sources (Hu, Zhao, Savitz, et al., 2020; Hu et al., 2021; Lynch et al., 2017; Mooney et 

al., 2017; Nieuwenhuijsen et al., 2019; Siroux et al., 2018; Vrijheid et al., 2020). Table 1 
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shows the examples of publicly available spatial and contextual exposome data sources. It 

is not rare to have multiple data sources available to assess a specific spatial and contextual 

exposome construct. For example, air pollutants such as fine particulate matter (PM2.5) 

and ozone can be assessed using stationary monitored data such as the U.S. Environmental 

Protection Agency (USEPA) Air Quality System (AQS, Lamsal et al., 2015), remote sensing 

data such as Sentinel-5P (Verhoelst et al., 2021), and modelled data from USEPA’s Fused 

Air Quality Surface Using Downscaling (FAQSD, Berrocal et al., 2012), the Atmospheric 

Composition Analysis Group (ACAG, van Donkelaar et al., 2019), the Center for Air, 

Climate, and Energy Solutions (CACES, Kim et al., 2020), and many other sources (Di et 

al., 2017; Hart et al., 2009; Kloog et al., 2015; Lee et al., 2015; Logue et al., 2011; Sampson 

et al., 2013; Yanosky et al., 2014). Similarly, there are multiple indices developed to measure 

walkability such as the Walk Score (Carr et al., 2010), USEPA’s National Walkability Index 

(Thomas & Zeller, 2021), and a few others (James et al., 2015; Rundle et al., 2019). For 

specific spatial and contextual exposome constructs of interest which can be assessed using 

multiple data sources, the decisions are usually based on their corresponding spatiotemporal 

coverage and scale. For example, studies focusing on acute impacts of air pollution usually 

prefer data sources with daily measures, while data sources with annual estimates work well 

for studies on long-term impacts. Nevertheless, for certain spatial and contextual exposome 

factors, there are multiple options with similar spatiotemporal coverage and scale available. 

The selection of data sources in this circumstance is usually subjective: while the same 

exposome factor from different data sources may have varying degree of bias by geographic 

areas and time (Ma et al., 2019; Mukhopadhyay & Sahu, 2018; van Donkelaar et al., 

2019), there is not a framework or tool to enable objective selections of data sources. 

For traditional studies focusing on single or a small subset of environmental exposures, 

researchers’ knowledge of the specific exposures is usually used to guide the selection of 

data sources and sensitivity analyses using different data sources are commonly conducted 

within and between research groups. However, this approach is increasingly challenging in 

spatial and contextual exposome studies. When adopting the exposome concept, individual 

researchers may lack the expertise to subjectively select the best data source for certain 

exposures, and the large number of exposome factors considered makes it infeasible to 

conduct sensitivity analyses due to the substantially increased computational burden and 

difficulties in interpretations. A potential way to address this challenge is to establish 

reference spatial and contextual exposome databases. Reference databases have long been 

used in other fields such as image classifications (Deng, 2012) to compare performance 

and guide selection of different methods for specific studies. There is an urgent need for 

the field to start the efforts to establish reference databases with gold-standard measures 

on different spatial and contextual exposome constructs across different geographic areas 

and time periods to provide guidance when multiple data sources exist to assess a specific 

exposure.

After the data sources are selected, the next step in data engineering is to determine the 

variables from each data source to include. A data source may include multiple variables 

measuring similar spatial and contextual exposome constructs. For example, data from 

the American Community Survey (ACS) contain thousands of variables characterizing 

contextual-level social environment. Some of the existing exposome-wide association 
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studies (ExWAS) included all of these individual variables in the analyses (Hu, Zhao, 

Savitz, et al., 2020; Mooney et al., 2017), while others performed dimension reduction 

and used indices such as the neighborhood deprivation index and index of concentration 

at the extremes (Andrews et al., 2020; Krieger et al., 2018, 2016; Messer et al., 2006). 

Similarly, many air pollution studies examined associations between health outcomes and 

individual air pollutants (Loxham et al., 2019; Mannucci et al., 2015), while others used 

indices such as the Air Quality Index to assess multiple air pollutants (Olalekan et al., 2018). 

There are different assumptions and hypotheses underlying these two approaches, which 

lead to substantially different numbers of variables to be included in subsequent analyses. 

The approach to consider all individual variables seeks to understand the impact of each 

variable separately with the assumption that these variables represent different constructs 

and consequently leads to many more variables to be included in the analyses compared 

with the other approach (i.e., 104-105 vs. 103), which assumes that these variables matter in 

aggregate, but quantifying their individual contributions is difficult or not of interest. This 

dramatic difference in the number of variables to be included has a large impact on the 

analyses: the p value cut points determined to account for multiple testing are very different 

and thus certain variables considered statistically significant in the second approach may 

no longer be significant when using the first approach. Interestingly, for many spatial and 

contextual exposome factors, it is possible to generate multiple variables with the exposures 

aggregated at different spatiotemporal windows. For example, social environment factors 

are available in ACS at different spatial (e.g., county, census tract, census block group, 

5-digit zip code tabulation area) and temporal levels (e.g., 1-year, 3-year, and 5-year), and 

many of the variables from the Food Access Research Atlas (FARA) are the same exposures 

aggregated at spatial buffers with different sizes (e.g., percentages of low access population 

that are children at 0.5, 1, 10, or 20 miles). We will revisit this issue and its implications for 

statistical analyses and interpretations in section 4 (Cheng & Adepeju, 2014; Jelinski & Wu, 

1996). The lack of consensus on variable selection in spatial and contextual exposome data 

engineering may dramatically impact the results of downstream studies, and therefore, it is 

critical for the field to make more efforts (e.g., develop ontology-based approaches (Heacock 

et al., 2022; Zhang et al., 2021)) to not only standardize the variables selected and data 

sources but also the approaches of making these choices.

The last step in spatial and contextual exposome data engineering is data harmonization. 

As shown in Table 1, data from different sources are very heterogeneous – with different 

formats, data structures, and spatiotemporal scales – making harmonization challenging. 

Data on some exposome factors may only be available for certain years. For example, air 

toxicants data from the USEPA’s National Air toxics Assessment (NATA) are only available 

in 1996, 1999, 2002, 2005, 2011, and 2014 (Logue et al., 2011), and FARA data are only 

available in 2010, 2015, and 2019. As a result, interpolation is often needed to assign these 

exposures for other years. While many spatiotemporal interpolation methods are available 

(Li & Heap, 2014; Liu et al., 2021; Susanto et al., 2016), there is not a standardized, 

validated method and thus an urgent need to evaluate and establish the optimal method(s) for 

different spatial and contextual exposome factors.

In summary, it is critical for the field to start making efforts to tackle challenges in 

data engineering and to develop infrastructure to support streamlined and standardized 
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measures of the spatial and contextual exposome. As discussed previously (Zhang et al., 

2021), the development of semantic standards of the spatial and contextual exposome is 

critically needed to provide an unambiguous and consistent understanding of the variables 

in heterogeneous data sources and to explicitly express the context of the variables as well 

as the relationships among them. Further, like in any other domain, reporting standards 

to capture the steps of the data engineering process from each data source and variable 

selection choices to the interpolation methods used for different variables are critical for 

transparency and reproducibility.

3. Spatiotemporal linkages of spatial and contextual exposome data to 

individuals

There are two major steps to link spatial and contextual exposome data to individuals 

(Figure 2): (1) when GPS locations are not available, geocoding is performed to derive 

individuals’ geolocations from addresses, which are (2) then used to spatiotemporally link 

exposome data. Geocoding also has methodological challenges such as positional accuracy 

and privacy issues, which have been extensively discussed in the literature (Brokamp, 2018; 

Christen, 2006; Harris & Delcher, 2019; Kounadi et al., 2013) and are not our focus. In this 

section, we will focus on the second step – the spatiotemporal data linkage – which has 

unique scalability challenges in spatial and contextual exposome studies.

Two approaches are commonly used to assign spatial and contextual exposome data 

to individuals spatially. The first is the buffer-based approach (Kwan, 2012), which 

calculates area- or population-weighted averages to generate individuals’ exposures based 

on preselected spatial buffers surrounding individuals’ geolocations, and the other approach 

preserves the original spatial scale in the data source and directly assigns exposures from the 

geographic units corresponding to individuals’ geolocations. Existing spatial and contextual 

exposome studies often use the buffer-based approach for all exposome factors (Hu, Zhao, 

Savitz, et al., 2020; Mooney et al., 2017; Nieuwenhuijsen et al., 2019) due to the lack 

of statistical methods available to assess multi-level exposome-health associations, a major 

methodological challenge that we will revisit in section 4. Lastly, temporal aggregation 

is performed to generate exposures in different time windows of interest. We further 

discussed the implications of different spatiotemporal aggregations for downstream analyses 

in Sections 4 and 5.

There are many packages and tools available to perform spatiotemporal data linkages. As a 

free software environment with an open source development model (R Core Team, 2013), R 

has an increasing number of contributed packages to handle spatial and contextual data, such 

as “sf” (Pebesma, 2018), “sp” (Pebesma & Bivand, 2005), “rgdal” (Bivand et al., 2010), 

“rgeos” (Bivand & Rundel, 2017), “raster” (Hijmans, 2021), and “exactextractr” (Baston et 

al., 2021). Python – as a general programing language becoming increasingly popular for 

data science projects – also supports a rich set of libraries for spatiotemporal data linkages. 

For example, GeoPandas (Jordahl et al., 2021) is widely used for manipulation of geospatial 

data allowing spatial operations on geometric objects (e.g., creating geometries representing 

all points within a given distance of each geometric object). For zonal statistics calculation 
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and areal-weighted interpolation, several packages are often used along with Geopandas, 

such as Xarray-Spatial (xarray-spatial Development Team, 2022), Rasterstats (Perry, 2021), 

and Tobler (Knaap et al., 2021). QGIS (QGIS, 2022) and ArcGIS (ESRI, 2022) are also 

useful tools with good integrations with both R and Python. Other emerging tools have 

also been developed to facilitate spatiotemporal data linkages, such as the Decentralized 

Geomarker Assessment for Multi-Site Studies (DeGAUSS), a container-based application 

that performs both geocoding and exposure assessment (Brokamp, 2018).

While the buffer-based approach makes it possible to take advantage of the wealth of 

statistical methods available to assess individual-level exposome-health associations, it is 

more computationally challenging in the exposome setting given the large number of 

exposures and sample size. Parallelization, a type of computing paradigm designed to have 

multiple processes carrying out the computation simultaneously to speed up the processing 

time, is possible in many of the existing packages and tools to address some of the large 

dataset issues. For example, spatiotemporal data linkages in R and Python can be scaled 

with parallel computing techniques such as using the “parallel” package and Dask (Rocklin, 

2015) in R and Python, respectively. However, as in-memory processing is implemented in 

many of these parallelization packages, the scalability is still a concern for extremely large 

datasets, which is common for spatiotemporal linkages in spatial and contextual exposome 

studies. There are several potential alternatives. For example, Google Earth Engine (GEE) is 

increasingly used (Gorelick et al., 2017). GEE leverages Google’s cloud infrastructure and 

distributed data processing algorithms such as MapReduce, which makes it extremely fast to 

handle large datasets such as remote sensing data. However, as a cloud infrastructure, GEE 

requires uploads of geolocation data for spatiotemporal data linkages, leading to potential 

privacy concerns as all sub-state geographic information is often considered as protected 

health information under the Health Insurance Portability and Accountability Act of 1996 

(HIPAA) (Cohen & Mello, 2018). PostGIS is another alternative (The PostGIS Development 

Group, 2019), which provides parallel processing in spatial queries that can be further 

accelerated using PG-Strom (PG-Strom Development Team, 2021), a GPU acceleration 

extension. However, there is a steep learning curve with complex configurations required.

Despite the various packages and tools available, each of them has its limitations. Future 

efforts are warranted to develop tools specifically to facilitate spatiotemporal data linkages 

for spatial and contextual exposome studies.

4. Statistical methods for spatial and contextual exposome-health studies

Many statistical methods have been applied in exposome-health association studies to 

identify risk and protective factors from the exposome for a variety of health outcomes. 

Some commonly used variable selection methods perform well when model assumptions 

are satisfied and can be easily scaled to large-scale problems, but their performance can 

be affected by the special structure of exposome covariates and their complex effects on 

the health outcome. In particular, the unique challenges in exposome-health association 

studies are mainly manifested by the high correlation among exposures, with possible 

nonlinear relationships and nonadditive effects. When the model assumptions of some 

commonly used methods are violated, statistical approaches tailored to solve these issues 
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are needed to recover the underlying dependence relationship between exposures and health 

outcomes. In this section, we review representative approaches used in exposome-health 

association studies, followed by a discussion on major methodological challenges to apply 

these approaches to spatial and contextual exposome data. Table 2 shows a summary of the 

representative statistical methods. Details of model fitting and parameter specification can be 

found in reference literatures. Thus, our discussions here focus on the intuition underlying 

the various methods and their applicability under different use case scenarios. Continuous 

outcomes are mainly considered in this section while most approaches are also applicable to 

exponential family distributed variables.

Let us first consider an ideal situation where the assumption of a linear relationship between 

the outcome of our interest Y ∈ R and environmental covariates X1, …, Xp is satisfied. 

In this situation, the environment-wide association study (EWAS, Patel et al., 2010) or 

exposome-wide association study (ExWAS, Juarez & Matthews-Juarez, 2018) can be used to 

assess influential factors on the outcome. These methods measure the association between 

the outcome and covariates by regressing Y on each Xj separately, and then applying 

multiple adjustment techniques to control the inflated type I error caused by simultaneously 

conducting hypothesis testing for all p covariates. Variable selection is conducted by 

examining the two-sided p values, and a covariate is claimed to be statistically significantly 

related to the outcome if its related p value is less than a threshold value after multiple 

adjustment. This method has a high sensitivity to detect predictive exposures, but it ignores 

the potential joint functioning mechanism of covariates on the outcome and has a high false 

discovery rate even after doing multiple adjustment (Agier et al., 2016).

To take into account the joint effect of covariates, the following multiple linear regression 

model is more appropriate

Y = β0 + ∑j = 1

p βjXj + ϵ, (1)

where βjs are the regression coefficients and ϵ is the random error. In this formulation, an 

environmental exposure Xj’s effect on the health outcome is the part that is only attributable 

to Xj after accounting for other covariates’ effects. To do variable selection, penalized 

regression is commonly adopted for simultaneous variable selection and estimation. 

Specifically, variable selection is facilitated by adding penalties on the magnitude of 

coefficients to push noise signals which are often embodied by small coefficient values to be 

zeros, and therefore rules out irrelevant covariates. For example, lasso regression applies an 

l1 penalty of the regression coefficients and can achieve variable selection consistency when 

the irrelevant covariates are “irrepresentable” by predictive covariates (Tibshirani, 1996; 

Zhao & Yu, 2006). To fulfill different needs, various variants of lasso regression can be 

applied in exposome-health association studies, e.g., group lasso to conduct group selection 

(Yuan & Lin, 2006) and adaptive lasso to adjust penalty levels for different exposures 

(Zou, 2006). Instead of penalized regression, Graphical Unit Evolutionary Stochastic Search 

(GUESS, Bottolo et al., 2013) can also be applied in large p and small N (N is the sample 

size) scenarios by applying a Bayesian variable selection technique to select a combination 

of covariates that achieves the best prediction performance from a total of 2p candidate 

models. Specifically, the candidate models with large posterior probabilities are retained, 
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and from the retained models, the involved exposures that have large marginal posterior 

probabilities of inclusion are selected. Rockova and George (2018) proposed a spike-and-

slab lasso regression by introducing a mixture prior of two Laplace distributions on each 

βj with the spike part heavily concentrating around zero (Bai et al., 2021), and it achieves 

simultaneous variable selection and estimation using the posterior mode. Bai et al. (2020) 

further extended this method to handle grouped covariates and proposed the spike-and-slab 

group lasso regression.

The performance of the above linear regression-based statistical methods can be hampered 

by high-collinearity among exposures, which is a commonly seen issue in exposome-health 

association studies (Agier et al., 2016; Hu, Zhao, Savitz, et al., 2020). With the existence of 

high-collinearity, it is highly possible that the selected variable is the one that is correlated 

with the truly predictive covariate, or measured with the least amount of error (Agier et 

al., 2016). To relieve this issue, one choice is to apply the elastic-net regression which 

combines the l1 and l2 penalties as a weighted average so that strongly correlated covariates 

are included in or excluded from the model together (Zou & Hastie, 2005). The additionally 

incorporated l2 penalty assigns almost equal coefficients to highly correlated covariates and 

avoids the situation that only one variable from the highly correlated covariates is selected 

while all the others are removed from the model (Zou & Hastie, 2005). The sparse partial 

least square (sPLS, Chun & Keleş, 2010) regression solves this problem from a different 

aspect. Instead of identifying a subset of variables that best predict the outcome, sPLS 

focuses on locating a set of latent variables by iteratively searching for projection directions 

that project the original set of covariates to directions that are most correlated with the 

outcome and best explain the variations in covariates as well. Therefore, this supervised 

dimension reduction procedure is robust to the high collinearity of the covariates. However, 

it has inferior interpretability than lasso although an ℓ1 penalty is imposed on each direction 

vector to select covariates when forming each latent variable.

All the methods we discussed above assume a linear association between the environmental 

covariates and the health outcome, which could be violated in exposome-health studies 

as dose-dependent effect and nonlinear relationships are observed for many environmental 

exposures (Claus Henn et al., 2010). Under these circumstances, additive models serve as a 

more flexible alternative to linear regression models. Consider the following additive model

Y = Zγ + ∑j = 1

p fj Xj + ϵ, (2)

where Z represents the confounding variables and fj(Xj) models the effect of Xj on Y with 

no assumption of a specific form. Model (1) can be regarded as a special case of (2) where 

each function fj(Xj) admits a linear form. In (2), the relationship between each exposure and 

the health outcome can be characterized more flexibly by using, e.g., smoothing splines. In 

general, to avoid overfitting and achieve some sort of smoothness, the penalty ∫ fj″ Xj
2dXj

is often exploited to remove excessive wiggliness during fitting (Marra & Wood, 2011). 

However, this penalty often cannot completely exclude an exposure from the model, e.g., 

for cubic splines there is no penalty on the linear part. Marra and Wood (2011) provided 

two choices of modifying the penalty ∫ fj″ Xj
2dXj to make removing Xj from the model 
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possible in the context of generalized additive models. Briefly speaking, both methods 

complete the penalty space to be of full rank but with different completing methods. If 

taking the cubic splines as an example, these methods added a penalty on the linear part to 

completely exclude the effects of an exposure on the health outcome from the model. They 

also provided a two-step nonnegative garrote component selection method to shrink the 

irrelevant model components to be zeros based on the originally obtained smooth function 

estimates.

The spike-and-slab group lasso method can also be applied in the context of additive models 

by treating the coefficients of the basis functions corresponding to fj(Xj) as a group (Bai 

et al., 2020). Another method for conducting variable selection from a Bayesian aspect is 

the Bayesian structured additive regression with spike-and-slab priors (BSTARSS, Scheipl 

et al., 2012). BSTARSS is an extension of the additive model (2) where a special prior 

specification is used to conduct simultaneous variable and function shape selection and 

the choice of functions fj Xi  where Xi = Xi1, …, Xip
T , i = 1, …, N is the exposure of the 

i-th subject can be more flexible. For example, fj Xi  can be smooth functions of one or 

more exposures, Markov random fields, random effects, and interactions between different 

terms (Scheipl et al., 2012). Specifically, representing each fj Xi  by a linear combination 

of dj basis functions as fj Xi = ∑k = 1
dj βjkBjk Xi = βj

TBj Xi  with Bj Xi = Bj1 Xi , …, Bjdj Xi
T

be the basis function value of the i-th subject. For simultaneously selecting variables 

and deciding their functional forms, let the basis function coefficient be βj = rjξj with 

mutually independent components rj and ξj = ξj1, …, ξjdj
T . The inclusion or exclusion of the 

component fj(Xi) is decided by rj for which a spike-and-slab type prior is imposed, and the 

determination of the function shape is further controlled by all elements of ξj. Specifically, 

the spike-and-slab prior is imposed on the hyper-variance of rj with a narrow spike around 

zero and a slab of inverse Gamma distribution, and the posterior mixture weights for the 

spike component is used as the posterior probability of excluding fj Xi  from the model. 

BSTRASS can be implemented by R package spikeSlabGAM (Scheipl, 2011).

Although additive models relax the linear assumption imposed by model (1) and terms 

that capture more complex relationships between environmental exposures and the health 

outcome (e.g., the interaction terms) can be added into model (2) when necessary (Bai et al., 

2020), there are more flexible methods that require no such specification. Bayesian kernel 

machine regression (BKMR) is a non-parametric method that commonly uses a Gaussian 

kernel machine to characterize the functioning mechanism of multiple covariates on the 

outcome (Bobb et al., 2015). Using (Yi, Zi, Xi), i = 1, …, N to denote the observation for the 

i-th subject, the model is written as

Y i = Zi
Tγ + ℎ Xi + ϵi

where ℎ Xi  is the target multivariate exposure-response function. Based on the Gaussian 

kernel machine, the functions ℎ X1 , …, ℎ XN N 0, τK  where τ is a smoothing parameter 

and K ∈ RN×N is the kernel matrix whose (i1, i2)-th element is in the form of 
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the augmented Gaussian kernel function K Xi1, Xi2; r = exp −∑j = 1
P rj Xi1j − Xi2j

2  with the 

smoothing parameters r = (r1, …, rp). As for the effects of the kernel matrix, we provide an 

intuitive explanation here. Firstly, the form of K(Xi1, Xi2; r) directly transforms the similarity 

between exposures Xi1 and Xi2 of two subjects into the correlation strength between their 

corresponding exposure-response functions ℎ Xi1  and ℎ Xi2 . Consider the following two 

extreme examples: when two subjects have exactly the same exposures, i.e., Xi1 = Xi2, we 

have K Xi1, Xi2; r = 1 which means perfectly positively correlated ℎ Xi1  and ℎ Xi2 . On the 

contrary, we have K Xi1, Xi2; r = 0 when ∑j = 1
P rj Xi1j − Xi2j

2 = ∞, i.e., when two subjects have 

totally different exposures, knowing one’s health outcome cannot give any information of 

another’s health outcome. Secondly, applying the kernel machine successfully allows for the 

nonlinear, nonadditive and multivariate functioning mechanism of exposures on the health 

outcome, and thus provides BKMR high flexibility in modeling. Finally, the parameter rj 

controls the weights when measuring the distance between Xi1 and Xi2, and when rj = 0 

the j-th exposure plays no role in the exposure-response function. Based on this intuition, 

BKMR imposes a spike-and-slab prior that comprises a spike part with a point mass at zero 

and a gamma density as the slab part on each rj to facilitate variable selection. Once rj has 

a large posterior probability to be nonzero, the j-th exposure is kept in the model. After 

specifying proper prior distributions on the unknown parameters in the model, BMKR is 

fitted by Markov Chain Monte Carlo (MCMC). The package bkmr in R can be used to fit the 

model (Bobb, 2022).

There are some other useful Bayesian non-parametric methods that provide a flexible 

modeling framework. For example, Bayesian additive regression trees (BART, Chipman 

et al., 2010) is a nonparametric ensemble method that uses the summation of a set of trees 

to model the outcome. Each tree consists of some nonterminal binary decision rules and 

terminal nodes, and each subject is assigned a leaf value at the terminal node. For the 

choice of the splitting variables and the related splitting values, uniform priors are used 

to allow all covariates to have the same probability to be selected thus different trees may 

represent the effects from different covariates. As for the tree size and leaf values at terminal 

nodes, to weaken the influence from any individual tree, the priors are set to prefer shallow 

trees with fewer splits with leaf values be centered around the mean value of the outcome. 

To understand this setting, suppose each tree has only one or two splitting variables and 

each different tree is built based on different covariates, then the summation of these trees 

plays a similar role as a model contains individual covariates and second-order interaction 

terms among them. Similarly, higher-order interaction terms can be built into the model by 

growing deeper tree structures. Therefore, BART allows both the nonlinear and nonadditive 

functioning effect of covariates to be modeled. Variable selection in BART is achieved by 

comparing the variable inclusion proportion to a pre-specified threshold (Bleich et al., 2014), 

and the R package bartMachine facilitates the application of BART in association studies 

(Kapelner & Bleich, 2016).

Most of the above methods can be used to examine the association between an individual 

exposure on a health outcome while keeping all other exposures fixed. If the interest 

is instead to see a joint effect of a mixture of exposures on the outcome, we can 
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resort to exposure-index methods. One application scenario is for designing public health 

interventions that act on multiple exposures simultaneously (e.g., interventions on reducing 

particulate matter usually also result in joint reductions of other pollutants from particulate 

matter sources such as sulfur dioxide), then it is more meaningful to measure the joint effect 

of a mixture of exposures on a health outcome. Weighted quantile sum regression (Carrico 

et al., 2015) and quantile G-computation approach (Keil et al., 2020) are popular exposure-

index methods to form an index by taking a weighted average of quantiled exposures and 

then estimating an overall index effect and the weights of forming the index by fitting a 

linear model between the outcome and index. These methods enjoy a good interpretation 

gifted by decomposition of effects into the overall index effect and index weights, but they 

still suffer from the potential nonlinear and nonadditive relation between the exposures and 

the health outcome. To relieve these restrictions, the Bayesian multiple index model (BMIM, 

McGee et al., 2021) has been developed to leverage the strengths from both the index-based 

models and BKMR by incorporating more flexibility and interpretability. Suppose the 

exposures can be grouped into M (< p) disjoint groups written as Xm = Xm1, …, Xmlm
T , m 

= 1, …, M, then the model is

Y i = Zi
Tγ + ℎ θ1

TXi
1, …, θM

T Xi
M + ϵi

with θm ∈ Rlm is an index weights vector that satisfies some identifiability constraints. 

Then follow the notation of BKMR, the elements in the kernel matrix can be 

represented as K Xi1, Xi2; r = exp −∑m = 1
M rm θm

T(Xi1
m − Xi2

m) 2 = exp −∑m = 1
M θm

* T(Xi1
m − Xi2

m) 2  with 

a reparameterization θm
* = rmθm to simplify computation. The spike-and-slab priors are 

imposed on each element of θm
* to facilitate variable selection, which naturally leads to 

index selection if all variables within an index are excluded from the model. Therefore, 

compared to index-based methods, this method allows for the characterization of nonlinear 

and nonadditive relations between the variables/index and the outcome. On the other hand, 

it also improves the interpretability of BKMR and achieves a dimension reduction from p 
to M, which makes the inspection of the fitting results by visualization be less cumbersome 

than BKMR. Other highly flexible methods include the nonparametric Bayesian shrinkage 

method (Herring, 2010) and clustering-based Bayesian profile regression (Molitor et al., 

2010, 2011), among others.

Despite the various methods available for exposome-health association studies, all of 

them were developed for exposure factors measured at the individual-level. Given the 

differences between individual- and contextual-level exposome factors, there are two major 

methodological challenges to apply these methods to study the spatial and contextual 

exposome.

The first challenge is the scalability of these methods. ExWAS and elastic-net have been 

applied to examine the totality of the external environment where thousands of covariates 

are involved with a large sample size (Hu, Zhao, Savitz, et al., 2020). GUESS is capable 

of handling a large number of covariates, but its computation time may be long when N is 

large (Bottolo et al., 2013). On the contrary, the shrinkage additive models often require N 
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> kp with k the average number of basis functions for constructing each function component 

(Marra & Wood, 2011). Other methods that we discussed above which impose very few 

or no assumptions on the underlying model have only been applied to problems with a 

subset of preselected exposures from a single source, e.g., mixtures of multiple pollutants 

(McGee et al., 2021), where p is often not large. In addition, small scale scenarios are 

often considered in simulation studies investigating the performance of these methods. For 

example, Agier et al. (2016) considered a setting with 237 covariates and 1200 samples to 

test the variable selection ability of linear regression-based methods, while in investigations 

of the empirical performance of some more flexible methods include BKMR and BSTRASS 

(Hoskovec et al., 2021; Lazarevic et al., 2020), the scale of the simulation study is even 

much smaller with p < 20 and N < 250. Therefore, the scalability of most of the methods for 

spatial and contextual exposome-health studies that commonly have a large sample size and 

a large number of exposures remains unknown and warrants more evaluation.

The other major methodological challenge lies in the lack of consensus and guidance 

to optimally handle the heterogeneous spatiotemporal scales in spatial and contextual 

exposome data. When linking the spatial and contextual exposome data to individuals, 

different spatiotemporal aggregations may lead to subsequently different associations. This 

issue has long been recognized as the modifiable areal unit and uncertain geographic context 

problems spatially (Jelinski & Wu, 1996; Kwan, 2012), and their temporal analogue, the 

modifiable temporal unit problem (Cheng & Adepeju, 2014). To address data heterogeneity, 

two strategies have been used in existing spatial and contextual exposome studies: (1) 

calculate area- and time-weighted averages to generate individuals’ exposures based on pre-

selected spatiotemporal exposure windows (Hu, Zhao, Savitz, et al., 2020; Mooney et al., 

2017; Nieuwenhuijsen et al., 2019) and then directly apply the existing statistical methods 

for exposome-health associations, and (2) preserve the original spatiotemporal scales in 

spatial and contextual exposome data and apply statistical methods that can account for 

multi-level data (Lynch et al., 2017). However, it is largely unknown about the performance 

of these strategies and their corresponding statistical methods as well as whether and 

how the modifiable areal/temporal unit problems may impact the findings. Future efforts 

are warranted to systematically evaluate these methods in spatial and contextual exposome-

health studies.

5. Using spatial and contextual exposome data for disease prediction

It is attractive to leverage the spatial and contextual exposome for disease prediction given 

the wealth of information captured and the extremely low cost to obtain and append it to 

large numbers of individuals. A number of spatial and contextual factors have been used 

for disease prediction, such as air pollution (Jayaraj, 2021; Ku et al., 2022), climate (Ku 

et al., 2022), and neighborhood socioeconomic status (Bhavsar et al., 2018). Most existing 

studies only focused on single or very few spatial and contextual factors. It is increasingly 

acknowledged that most diseases are not caused by single exposure but rather the aggregate 

result of multiple exposures (Figueroa et al., 2020), and there are emerging efforts to 

leverage multiple spatial and contextual factors for disease prediction (Feng & Jiao, 2021; 

Hu, Zhao, Bian, et al., 2020; Mohnen et al., 2019).
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Traditional machine learning models such as elastic net, support vector machine, random 

forest, and gradient boosting (Feng & Jiao, 2021; Hu, Zhao, Bian, et al., 2020; Mohnen et 

al., 2019) have been predominantly used in existing disease prediction models leveraging 

multiple spatial and contextual exposome factors. As shown in sections 2 and 3, spatial and 

contextual exposome data have rich and heterogeneous spatiotemporal structures, and they 

need to be manually aggregated spatiotemporally to be used by traditional machine learning 

models. However, the manually selected and engineered predictors from the aggregations 

unavoidably result in the loss of spatiotemporal structures and are likely to result in a loss of 

model performance.

Deep learning (also known as deep neural network) is a potential solution to preserve 

the rich spatiotemporal structures in spatial and contextual exposome data to improve 

performance for disease prediction. Since the breakthrough by AlexNet in 2012 (Krizhevsky 

et al., 2017), deep learning has dramatically improved state-of-the-art prediction 

performance in many domains including speech recognition, visual object recognition, 

object detection, drug discovery, and genomics (LeCun et al., 2015). Compared with 

traditional machine learning models, one of the biggest advantages of deep learning is its 

ability to perform automatic feature selection and engineering by using multiple processing 

layers to learn representations of data with multiple levels of abstraction. This is especially 

useful for data with spatiotemporal structures, such as images, time series, and sequential 

data, which traditionally rely on manually selected and engineered features. Given the 

successes of deep learning in these fields and the rich spatiotemporal structures in spatial 

and contextual exposome data, deep learning has great potential to boost the predictive 

power of the spatial and contextual exposome in disease prediction.

In the past decades, a number of deep learning model architectures have been developed, 

such as convolutional neural networks such as VGG (Simonyan & Zisserman, 2014), 

Inception (Szegedy et al., 2016, 2015), ResNet (He et al., 2016), and DenseNet (Huang 

et al., 2017), and recurrent neural networks such as Long-Short-Term Memory (Hochreiter 

& Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014). However, these well-

designed architectures may not be directly applied to spatial and contextual exposome data, 

which have several major distinctions compared with images, time series and sequential 

data. First, spatial and contextual exposome data are much more heterogeneous. As shown 

in section 2, data obtained from different sources have different spatiotemporal scales, which 

need to be accounted for in the models. In addition, the number of variables characterizing 

the spatial and contextual exposome is much larger, which poses additional challenges to the 

design of the model architecture and computational efficiency. Lastly, for certain exposures 

such as air pollution and green space only a few “pixels” characterizing individuals’ 

immediate surroundings may matter. On the other hand, exposures such as neighborhood 

socioeconomic status and safety may be relevant at larger spatial scales (Kwan, 2012). This 

unique characteristic requires model architectures to have specific attention mechanisms 

for different exposures and individuals (as individuals’ activity patterns, when known, may 

vary). To fully leverage the information in the spatial and contextual exposome for disease 

prediction, new deep learning model architectures need to be developed to address these 

challenges.
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6. Summary

Although the field is still at an early stage, spatial and contextual exposome-health studies 

provide an effective pathway to advance our understanding of environmental determinants of 

health. Several critical steps are involved in spatial and contextual exposome-health studies, 

including extensive data engineering to provide standardized measures of the spatial and 

contextual exposome, spatiotemporal linkage to assign spatial and contextual exposome 

data to individuals, statistical analysis to identify risk and protective factors associated 

with the health outcomes of interest, and outcome prediction using machine and deep 

learning methods. The wealth of existing historical spatial and contextual data from publicly 

available databases provides rich resources and a solid basis for spatial and contextual 

exposome-health studies; however, on the other hand, the unique correlation structures, 

large scalability, and various spatiotemporal scales of spatial and contextual exposome 

data also bring challenges into each stage of studies and require more consideration and 

methodological investigation.

In this review, we surveyed the existing resources, methods, and tools available for 

conducting spatial and contextual exposome-health studies and elaborated on the current 

knowledge gaps and future research needs for each step. In general, methodological 

challenges existing across different steps involved in spatial and contextual exposome-health 

studies include (1) data source and variable selection as well as data harmonization for 

spatial and contextual exposome data engineering, (2) computational scalability issues 

in spatiotemporal data linkage, (3) scalability challenges of existing statistical methods 

and heterogeneous spatiotemporal scales of spatial and contextual exposome factors in 

association studies, and (4) inapplicability of existing deep learning model architectures 

to spatial and contextual exposome data for disease prediction. It is critical for the field 

to make efforts to tackle these challenges by (1) creating reference databases, developing 

semantic standards and ontology-based approaches, and establishing state-of-the-art data 

harmonization methods, (2) developing tools specifically to facilitate spatiotemporal data 

linkages for spatial and contextual exposome studies, (3) improving scalability and 

systematically evaluating the performance of existing statistical methods in spatial and 

contextual exposome-health association studies, and developing new multi-resolution data 

analysis methods to handle the heterogeneous spatiotemporal scales, and (4) developing 

deep learning model architectures specifically to leverage spatial and contextual exposome 

data for disease prediction.
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Figure 1. 
Overview of the exposome categorizations and measurement methods
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Figure 2. 
Overview of data engineering and spatiotemporal data linkage in spatial and contextual 

exposome-health studies.
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