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The fusion of traditional chemical descriptors with Graph Neural Networks (GNNs) offers a compelling 

strategy for enhancing ligand-based virtual screening methodologies. A comprehensive evaluation revealed that 

the benefits derived from this integrative strategy vary significantly among different GNNs. Specifically, while 

GCN and SchNet demonstrate pronounced improvements by incorporating descriptors, SphereNet exhibits only 

marginal enhancement. Intriguingly, despite SphereNet's modest gain, all three models-GCN, SchNet, and 

SphereNet-achieve comparable performance levels when leveraging this combination strategy. This observation 

underscores a pivotal insight: sophisticated GNN architectures may be substituted with simpler counterparts 

without sacrificing efficacy, provided that they are augmented with descriptors. Furthermore, our analysis reveals 

a set of expert-crafted descriptors' robustness in scaffold-split scenarios, frequently outperforming the combined 

GNN-descriptor models. Given the critical importance of scaffold splitting in accurately mimicking real-world 

drug discovery contexts, this finding accentuates an imperative for GNN researchers to innovate models that can 

adeptly navigate and predict within such frameworks. Our work not only validates the potential of integrating 

descriptors with GNNs in advancing ligand-based virtual screening but also illuminates pathways for future 

enhancements in model development and application. Our implementation can be found at 

https://github.com/meilerlab/gnn-descriptor. 

Keywords: artificial intelligence; graph neural network; virtual screening

 Introduction 

Virtual screening is a major way to supplement traditional high-throughput screening (HTS) 

for cost and time efficient drug discovery1. Two major branches of virtual screening exist: 

ligand-based, and structure-based. For the application of structure-based methods, detailed 

knowledge of the target’s structure is essential, typically acquired through experimental 

methods such as X-ray crystallography or nuclear magnetic resonance (NMR). In cases 

where experimental data is lacking, computational predictions like homology modeling are 

employed to infer the three-dimensional configurations of targets. Recently, there are many 

AI-driven protein structure prediction tools available as well, such as  AlphaFold 2, 

RosettaFold3, 4, ESMFold5.  

This work focuses on the ligand-based method, for situations where the target structure 

remains unknown or cannot be computationally predicted. These methods depend on the 

knowledge of previously identified active compounds that bind to the target, leveraging 

this information to identify new potential drugs6. Even in the age that computational protein 

structure prediction tools are available, ligand-based approaches are needed for several 

reasons. First, while structure prediction tools have made remarkable progress, there are 

still limitations in their ability to accurately predict all protein structures, especially for 

proteins with highly dynamic regions and transient conformations. The ligand-based 

method does not require structural information, making it valuable for targets where high-

quality structures are not available. Secondly, ligand-based methods can sometimes be 

faster and less resource-intensive than structure-based methods, especially in the early 

stages of drug discovery. They allow researchers to quickly screen vast chemical spaces or 

compound libraries to identify potential hits without detailed structural information. 
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Thirdly, some targets have multiple or flexible binding sites that can be challenging to 

characterize with structure-based methods alone. Ligand-based methods can help identify 

ligands that interact with such targets by leveraging data from known active compounds 

without relying on a fixed 3D structure.  

Meanwhile, numerous studies applied GNNs to molecule-related tasks, given the 

intrinsic graph nature of molecules 7-13. While some of those tasks achieve good results, 

several factors still make GNN for molecule representation learning challenging. First, data 

available for training in drug discovery campaigns is usually limited due to the high cost 

of experimental assays. Secondly, GNNs typically have difficulty learning molecular-level 

features due to their limited receptive field or learning non-additive molecular-level 

features such as total polar surface area. Thirdly, GNN intrinsically suffers from problems 

such as over-smoothing 14 and over-squashing 15 that introduce information loss in 

obtaining the global learned embedding from the atomic features. 

As a solution, integrating the expert knowledge in the GNN workflow has become a 

new trend 16. Expert knowledge can help supplement the data-hungry GNNs with prior 

knowledge to increase data efficiency and overcome intrinsic GNN shortcomings. One of 

the simplest ways to integrate expert knowledge is to combine the expert-crafted 

descriptors with GNN-learned representation through concatenation 17, 18. However, while 

commonly used, a thorough evaluation of this concatenation strategy is lacking.  

This work contributes to the field by comprehensively evaluating this commonly used 

strategy in a virtual screening setting using nine well-curated HTS datasets. We find that 

although this strategy is often effective, it is not always the case. Additionally, we discover 

that the combined GNNs show convergence of performance metrics, suggesting the 

potential interchangeability of sophisticated GNN architectures with simpler counterparts 

under this integrative strategy. Moreover, surprisingly we found that descriptors are fairly 

robust under the scaffold split scenario, which is often a more realistic setting in a drug 

discovery campaign. These findings prompt the need to examine the current integration 

strategies to understand their limitations, find better ways to integrate domain expert 

knowledge and provide a path for more advanced ligand-based virtual screening. 
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 Results 

 Concatenate descriptors with GNNs 

As shown in Figure 1, the concatenation 

strategy 17, 18 examined in this work proposes to 

train a neural network to predict activity by 

combining a GNN-derived molecular 

representation with the expert-crafted 

descriptors 19. Specifically, for a representation 

h from the GNN, it is concatenated with the 

descriptor ℎ𝑑𝑝.  

ℎ =  𝐺𝑁𝑁(𝑚) 

𝑝̂ = 𝑓([ℎ||ℎ𝑑𝑝]) 

where 𝑚 is the input molecular graph and, ℎ𝑑𝑝 

is a descriptor. 𝑓(∙)  is a classifier, usually a 

Multi-Layer-Perceptron (MLP). 𝑝̂  is the 

predicted activity. 

The model is trained by optimizing the binary 

cross entropy loss 𝐿: 

𝐿 = −
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

log(𝑝̂) + (1 − 𝑦𝑖)log (1 − 𝑝̂)  

In this work, we used three GNN models in our experiments: GCN 20, SchNet 11 and 

SphereNet 13. We used the BioChemical Library (BCL) 21 to generate descriptors. 

 
Figure 1 ． Overview of the investigated 

method. The learned molecular representation of 

GNN is concatenated with expert-crafted 

descriptors to enhance the predictive power. 
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where 𝑛 is the number of samples in a batch, and yi is the experimentally determined 

active/inactive status of the i-th molecule. 

 Effectiveness of the Concatenation Strategy Varies for GNNs with 

Random Split 

In Figure 2 the boxplots of model performances evaluated using four different metrics are 

shown (Experiments are detailed in Section 3 Method). The p-value is calculated using 

paired t-test 22. 

The significant improvements observed in both GCN and SchNet models across four 

evaluation metrics highlight the investigated strategy's potential to facilitate the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Random Split: Performance of three GNNs with their corresponding descriptor-

integrated counterpart. 
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identification of bioactive compounds in drug discovery. Although the benefits were less 

pronounced for the SphereNet model (as a bigger p-value is observed), the overall results 

advocate for the integration strategy's adoption as a valuable tool in computational 

chemistry. 

There are three rationales for this approach. First, data available for training in drug 

discovery campaigns is usually limited due to the high cost of experimental assays. The 

expert-crafted descriptors supplement GNNs with prior knowledge, i.e., descriptors that 

worked well in virtual screening in the past, which reduces the need for GNNs to learn that 

knowledge from a large amount of data. Secondly, GNNs typically have difficulty learning 

molecular-level features due to their limited receptive field or learning non-additive 

molecular-level features such as total polar surface area. On the other hand, molecular-

level descriptors provide global features directly. Thirdly, GNN intrinsically suffers from 

problems such as over-smoothing 14 and overs-quashing 15 that introduce information loss 

in obtaining the global learned embedding from the atomic features. Meanwhile, the 

descriptors extract the molecular features directly and circumvent information loss, 

complementing GNN-learned embeddings.  

 All Descriptor-integrated GNNs Converge to Similar Performance with 

Random Split 

The analysis undertaken in this study revealed significant insight regarding the investigated 

strategy’s performance. Initially, the GNNs—each with its intrinsic computational 

complexities and capabilities—demonstrated disparate levels of efficacy. However, upon 

the integration of descriptors, a notable convergence in their performance metrics was 

observed, spanning all four evaluated metrics. As shown in Figure 2, SphereNet and 

SchNet, are more advanced GNNs compared with GCN. Yet, when these advanced GNNs 

were coupled with descriptors, the resultant performance was not just enhanced but aligned 

closely with that of their simpler counterparts GCN. 

This intriguing outcome underscores the potency of the integration strategy in 

equalizing the performance landscape among GNN architectures. By integrating expert-

crafted descriptors through the integration approach, even less complex GNN models could 

elevate their predictive accuracies to levels akin to those of more complex GNNs. 

Essentially, the integration strategy acts as a performance catalyst, diminishing the gaps 

between GNN models of varying complexities and facilitating a more uniform field of 

competition. Such findings highlight the potential of combining deep learning techniques 

with established domain knowledge, suggesting a reevaluation of the necessity for complex 

GNNs in scenarios where their simpler counterparts can achieve comparable outcomes 

through integration with descriptors. 
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 Expert-crafted Descriptor Still Outperforms Most GNNs Using Scaffold 

Split 

Besides random split, we also conducted experiments on scaffold split. This is a realistic 

scenario because medicinal chemists often need to determine the activity of structures 

substantially different from those in the known training set. They seek these structural 

differences for various reasons, such as avoiding patented structures, finding simpler 

synthetic routes, improving compound properties etc 23.  

As expected, the overall performance under the scaffold split decreased compared with 

that under the random split. This decrease is due to the greater difficulty in predicting the 

performance of structures significantly different from the training set, as the data 

distribution differs between training and testing. However, as shown in Figure 3, the results 

from the scaffold split evaluation solidify the potential of the integration strategy in 

enhancing the performance of various GNN architectures for ligand-based virtual 

screening. The combined GNN-derived molecular representations with descriptors, 

improve the identification and prioritization of active compounds (Although outliers exist, 

which is consistent with our results for random split that the effectiveness of this strategy 

varies).  

Most interestingly, we found that the descriptors alone outperform many GNNs. In 

some cases, it even outperforms the integrated-version GNNs. We hypothesize that this 

could result from the fact that deep learning-based methods are more easily overfit to the 

training data and therefore will perform worse than the expert-crafted ones when the data 

distribution is shifted. This finding prompts us to reconsider whether data-driven methods 

alone, despite their growing popularity, are the best approach for real-world drug discovery 
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campaigns. Moreover, this also shows that even when coupled with descriptors, the 

performance of the integrated model may decrease and not always offer benefits. Finally, 

this finding emphasizes the need for developing better frameworks that integrate domain 

knowledge for improved predicted power under scaffold split scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. Scaffold Split: Performance of different models. The concatenation strategy 

still enhances the GNNs for most cases. Notably, descriptors perform better than many 

models across different metrics, especially salient in logAUC[0.001, 0.1] and BEDROC. 
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 Method 

 Datasets 

We validate the effectiveness of the proposed strategy via nine well-curated high-

throughput screening (HTS) datasets. To avoid issues with experimental artifacts and high 

false positive rates 24, for the validation of our strategy, we chose datasets carefully curated 
25 from high throughput screens in the PubChem database 26. Only datasets with robust 

secondary validation of compounds were considered. Datasets details are shown in Table 

1. 

SMILES from the datasets were converted to SDF files using Open Babel 27. 

Standardized 3D coordinates are generated using Corina 28. Molecules are further filtered 

with atom type validity and duplicates with the BioChemical Library (BCL) 21. 

Random split is used for the experiments, and each dataset is split into 80% for training 

and 20% for testing. Because preliminary results and previous literature 19 have shown that 

dropout can help avoid overfitting and the number of known active compounds is limited, 

we take the model from the last training epoch instead of the one from early stopping 

determined by validation performance. Multiple splits are used to prove the robustness of 

the proposed strategy. 

 Evaluation Metric 

1. Logarithmic Receiver-Operating-Characteristic Area Under the Curve with the False 

Positive Rate in the range [0.001, 0.1] (logAUC[0.001,0.1]) 

Ranged logAUC 29 is used because only a small percentage of molecules predicted with 

high activity can be selected for experimental tests in consideration of cost in a real-world 

drug discovery campaign 24. This high decision cutoff corresponds to the left side of the 

Receiver-Operating-Characteristic (ROC) curve, i.e., those False Positive Rates (FPRs) 

with small values. Also, because the threshold cannot be predetermined, the area under the 

curve is used to consolidate all possible thresholds within a certain small FPR range. 

Finally, the logarithm is used to bias towards smaller FPRs. Following prior work 19, we 

choose to use logAUC[0.001,0.1]. A perfect classifier achieves a logAUC[0.001,0.1] of 1, while a 

random classifier reaches a logAUC[0.001,0.1] of around 0.0215, as shown below: 
∫ 𝑥

0.1

0.001
d log10𝑥

∫ 1 d
0.1

0.001
log10𝑥

=
∫ 10𝑢d𝑢

−1

−3

∫ 1d
−1

−3
𝑢

≈ 0.0215 

 

 

2. Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) 
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BEDROC 25 is a metric that evaluates the early recognition ability of a given model. It 

prioritizes the identification of active compounds early in the ranked list. BEDROC ranges 

from 0 to 1, where a score closer to 1 indicates better performance in recognizing active 

compounds early in the list.  

3. Enrichment factor with cutoff 100 (EF100)  

Enrichment factor 26 is often used metric in virtual screening. It measures how well a 

screening method can increase the proportion of active compounds in a selection set, 

compared to a random selection set. Here we select the top 100 compounds as the selection 

set. And the EF100 can be defined as follows.  

𝐸𝐹100 =
𝑛100/𝑁100

𝑛/𝑁
  

Where 𝑛100  is the number of true active compounds in the ranked top 100 predicted 

compounds given by the model, 𝑁100 is the number of compounds in the top 100 predicted 

compounds (i.e., 100), 𝑛 is the number of active compounds in entire dataset, 𝑁 is the 

number of compounds in the entire dataset. It is essentially a measure of the method’s 

ability to “enrich” the set of compounds for further testing. 

A random selection set receives a EF100 of 1. If no true active compounds are in the top 100 

compounds, the EF100 becomes 0.  

4. Discounted cumulative gain with cutoff 100 (DCG100)  

DCG 27 is a measure of ranking quality often used in web search. In a web search, it is 

obvious that a method is better when it positions highly relevant documents at the top of 

the search results. Virtual screening has a similar evaluation logic where we desire the 

active molecules to appear at the top of the selection set.  

To calculate DCG, a simpler version metric named cumulative gain (CG) 27 is introduced 

below. CG is the sum of the relevance value of a compound in the selection set. In our case, 

a true active compound receives a relevance value of 1, while a true inactive compound 

receives a relevance value of 0. So, the CG with cutoff 100 (CG100) equals the number of 

true active compounds in the top 100 compounds, i.e.,  

𝐶𝐺100 = ∑ 𝑦𝑖

100

𝑖=1

 

It can be observed that CG100 is unaffected by changes in the ordering of compounds. DCG 

hence aims to penalize a true active molecule appearing lower in the selection set by 

logarithmically reducing the relevance value proportional to the predicted rank of the 

compound, i.e.,  

𝐷𝐶𝐺100 = ∑ 𝑦𝑖/ log2(𝑖 + 1)

100

𝑖=1
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Table 1. Dataset statistics. 

Protein Target 

Class 

PubChem 

AID 
Protein Target 

Total 

Molecules 

Active 

Molecules 

GPCR 

435008 Orexin1 Receptor 218,156 233 

1798 
M1 Muscarinic Receptor 

Agonists 
61,832 187 

435034 
M1 Muscarinic Receptor 

Antagonists 
61,755 362 

Ion Channel 

1843 Potassium Ion Channel Kir2.1 301,490 172 

2258 KCNQ2 Potassium Channel 302,402 213 

463087 
Cav3 T-type Calcium 

Channels 
100,874 703 

Transporter 488997 Choline Transporter 302,303 252 

Kinase 2689 Serine/Threonine Kinase 33 319,789 172 

Enzyme 485290 
Tyrosyl-DNA 

Phosphodiesterase 
341,304 281 

 

 Baseline Models 

We used three GNN models in our experiments: GCN 20, SchNet 11 and SphereNet 13. We 

used the BCL 21 to generate traditional QSAR descriptors. Following previous examples 19, 

30, we use the optimal descriptors where 391-element molecular-level features are 

generated. We provide a brief introduction to each of the models and the BCL below. 

GCN extends the concept of convolution from regular, grid-like data (such as images) 

to graphs, which have arbitrary structures. GCNs work by aggregating information from a 

node’s neighbors (potentially the node itself) to learn a representation of each node that 

captures both its features and local topology. 

SchNet is a GNN designed for processing 3D molecules. The core design is continuous 

filters that are capable of handling unevenly spaced data, particularly, atoms. It also 

contains blocks that model interactions between atoms in a molecule.  
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SphereNet incorporates unique spherical message passing (SMP) for processing 3D 

molecules.  The is encoded in a spherical coordinate system consisting of distance, angle 

and torsion. The SMP then uses the spherical coordinate system for the message passing 

process. 

BCL is an application-based, open-source software package that integrates traditional 

small molecule cheminformatics tools with machine learning-based quantitative structure-

activity/property relationship (QSAR/QSPR) modeling. It is designed to facilitate various 

cheminformatics tasks such as computing chemical properties, estimating druglikeness etc. 

It serves as a valuable resource for researchers in the computer-aided drug discovery field 

by providing a modular toolkit that supports the integration of cheminformatics and 

machine learning tools into their research workflows. 

 Future Work 

In future work, we plan to expand our investigation by incorporating a broader array of 

GNN architectures and descriptor sets. This expansion will allow us to evaluate the 

generalizability and scalability of our integrative approach across a wider spectrum of 

computational models and chemical descriptor libraries. 

We aim to explore advanced GNN models that may offer distinct advantages in 

capturing molecular features and interactions, potentially leading to improved predictive 

performance in virtual screening tasks. By comparing a diverse range of GNN 

architectures, we can better understand the nuances of how different models interact with 

various descriptor sets, and identify optimal combinations that maximize screening 

efficacy and accuracy. 

Additionally, we intend to experiment with an expanded set of expert-crafted 

descriptors, including those that capture more intricate chemical and physical properties of 

molecules. This will enhance our ability to assess the impact of different types of 

descriptors on the performance of GNNs in virtual screening. By systematically evaluating 

the contribution of each descriptor type, we can refine our integration strategies to leverage 

the strengths of both GNNs and traditional chemical descriptors effectively. 

Ultimately, our goal is to develop a comprehensive framework that can adapt to the 

evolving landscape of drug discovery, accommodating new advances in machine learning 

and cheminformatics. 

 Conclusion 

Our study has rigorously evaluated the impact of integrating expert-crafted descriptors with 

GNNs and demonstrated that this integrative approach can significantly enhance the 

predictive power of virtual screening processes. Notably, the use of descriptors in 

conjunction with GNN architectures like GCN and SchNet has led to substantial 

improvements in identifying bioactive compounds. 
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In addition, The convergence in performance metrics across different GNN models, 

when supplemented with descriptors, suggests the potential for simpler GNN architectures 

to achieve results comparable to their more complex counterparts within this integrative 

framework. This finding underscores the viability of leveraging traditional knowledge and 

computational simplicity to advance the state-of-the-art in virtual screening. 

Furthermore, our experiments with scaffold split scenarios revealed the robustness of 

descriptors, often outperforming combined GNN-descriptor models. This highlights the 

enduring value of expert knowledge in the face of evolving computational techniques and 

stresses the necessity for future models to effectively integrate this knowledge to enhance 

predictive power in realistic drug discovery settings. 

In conclusion, our study serves as a compelling demonstration of how the synergistic 

integration of GNNs and expert-crafted descriptors can significantly advance the field of 

ligand-based virtual screening. As we move forward, it is imperative that we continue to 

explore and refine these integrative strategies, with the aim of developing more 

sophisticated and effective tools for drug discovery. The journey towards optimizing 

virtual screening methodologies is far from complete, but our work provides a significant 

step forward, offering a blueprint for future research in this dynamic and evolving field. 
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Appendix A.   Descriptor Features  

The descriptor sets used in this study are from 19. There are 391 elements of features in 

total. Each signed 2D autocorrelation (2DA 31) contains 32 bins. Each signed 3D 

autocorrelation (3DA 31) contains 60 bins. See the original paper 19 for individual feature 

naming details. 
Table 2. Features used in the descriptor set. Originally used in 19. 

Scalar Features Signed 2D Autocorrelation Signed 3D Autocorrelation 

Weight Atom_SigmaCharge Atom_SigmaCharge 

HbondDonor Atom_Vcharge Atom_Vcharge 

HbondAcceptor IsHTernary IsHTernary 

LogP Atom_IsInAromaticRingTer

nary 

Atom_IsInAromaticRingTer

nary 

TotalCharge   

NRotBond   

NaromaticRings   

Nrings   

TopologicalPolarSurfaceArea   

Girth   

BondGrith   

MaxRingSize   

Limit(MinRingSize, max=8, min=0)   

MoleculeSum(Atom_InAromaticRingInters

ection), 
  

MoleculeSum(Atom_InRingIntersection)   

MoleculeStandardDeviation(Atom_Vcharge

) 
  

MoleculeStandardDeviation(Atom_SigmaC

harge) 

  

MoleculeMax(Atom_Vcharge)   

MoleculeMin(Atom_Vcharge)   
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MoleculeMax(Atom_SigmaCharge)   

MoleculeMin(Atom_SigmaCharge)   

MoleculeSum(Abs(Atom_Vcharge))   

MoleculeSum(Abs(Atom_SigmaCharge)   
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