1	Zn ²⁺ is Essential for Ca ²⁺ Oscillations in Mouse Eggs
2	
3	Hiroki Akizawa ¹ , Emily Lopes ^{1,2} , Rafael A. Fissore ^{1*}
4	
5	¹ Department of Veterinary and Animal Sciences, University of Massachusetts Amherst,
6	661 North Pleasant Street, Amherst, Massachusetts, 01003, United States.
7	² Molecular and Cellular Biology Graduate Program, University of Massachusetts,
8	Amherst, Massachusetts, 01003, United States.
9	
10	Running Title: Labile Zn ²⁺ and Ca ²⁺ release
11	
12	Key Words: Fertilization, mammals, Ca2+, IP ₃ R1, oocytes, eggs, sperm, divalent cations, chelators
13	
14	*Author for correspondence (<u>rfissore@umass.edu</u>)
15	
16	*Rafael A. Fissore
17	661 North Pleasant Street
18	ISB-427A
19	Department of Veterinary and Animal Science
20	University of Massachusetts, Amherst, 01003
21	Phone:413-687-5773
22	Email: <u>rfissore@umass.edu</u>
~~	

24 Abstract

Changes in the intracellular concentration of free calcium (Ca^{2+}) underpin egg 25 activation and initiation of development in animals and plants. In mammals, the Ca²⁺ 26 release is periodical, known as Ca^{2+} oscillations, and mediated by the type 1 inositol 1,4,5-27 trisphosphate receptor (IP₃R1). Another divalent cation, zinc (Zn^{2+}), increases 28 exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and 29 30 polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn^{2+} are 31 indispensable for sperm-initiated Ca²⁺ oscillations because Zn²⁺-deficient conditions 32 induced by cell-permeable chelators abrogated Ca²⁺ responses evoked by fertilization and 33 other physiological and pharmacological agonists. We also found that chemically- or 34 genetically generated eggs with lower levels of labile Zn^{2+} displayed reduced IP₃R1 35 sensitivity and diminished ER Ca^{2+} leak despite the stable content of the stores and IP₃R1 36 mass. Resupplying Zn^{2+} restarted Ca^{2+} oscillations, but excessive Zn^{2+} prevented and 37 terminated them, hindering IP₃R1 responsiveness. The findings suggest that a window of 38 Zn^{2+} concentrations is required for Ca^{2+} responses and IP₃R1 function in eggs, ensuring 39 optimal response to fertilization and egg activation. 40

41

42 Introduction

Vertebrate eggs are arrested at the metaphase stage of the second meiosis (MII) 43 when ovulated because they have an active Cdk1/cyclin B complex and inactive 44 APC/C^{Cdc20} (Heim et al., 2018). Release from MII initiates egg activation, the first 45 hallmark of embryonic development (Ducibella et al., 2002; Schultz and Kopf, 1995). 46 The universal signal of egg activation is an increase in the intracellular concentration of 47 calcium (Ca²⁺) (Ridgway et al., 1977; Stricker, 1999). Ca²⁺ release causes the inactivation 48 of the APC/C inhibitor Emi2, which enhances cyclin B degradation and induces meiotic 49 exit (Lorca et al., 1993; Shoji et al., 2006; Suzuki et al., 2010a). In mammals, the 50 stereotypical fertilization Ca²⁺ signal, oscillations, consists of transient but periodical 51 Ca²⁺ increases that promote progression into interphase (Deguchi et al., 2000; Miyazaki 52 53 et al., 1986). The sperm-borne Phospholipase C zeta1 (PLCζ) persistently stimulates the production of inositol 1,4,5-trisphosphate (IP₃) (Matsu-ura et al., 2019; Saunders et al., 54 2002; Wu et al., 2001) that binds its cognate receptor in the endoplasmic reticulum (ER), 55 IP₃R1 and causes Ca^{2+} release from the egg's main Ca^{2+} reservoir (Wakai et al., 2019). 56 The intake of extracellular Ca²⁺ via plasma membrane channels and transporters ensures 57 58 the persistence of the oscillations (Miao et al., 2012; Stein et al., 2020; Wakai et al., 2019, 59 2013).

60 Before fertilization, maturing oocytes undergo cellular and biochemical modifications (see for review (Ajduk et al., 2008)). The nucleus of immature oocytes, 61 known as the germinal vesicle (GV), undergoes the breakdown of its envelope marking 62 63 the onset of maturation and setting in motion a series of cellular events that culminate 64 with the release of the first polar body, the correct ploidy for fertilization, and re-arrest at MII (Eppig, 1996). Other organelles are also reorganized, such as cortical granules 65 migrate to the cortex for exocytosis and polyspermy block, mitochondria undergo 66 repositioning, and the cytoplasm's redox state becomes progressively reduced to promote 67 the exchange of the sperm's protamine load (Liu, 2011; Perreault et al., 1988; Wakai et 68 al., 2014). Wide-ranging adaptations also occur in the Ca^{2+} release machinery to produce 69 timely and protracted Ca²⁺ oscillations following sperm entry (Fujiwara et al., 1993; 70 Lawrence et al., 1998), including the increase in the content of the Ca²⁺ stores, ER 71 reorganization with cortical cluster formation, and increased IP₃R1 sensitivity (Lee et al., 72 2006; Wakai et al., 2012). The total intracellular levels of zinc (Zn^{2+}) also remarkably 73 increase during maturation, amounting to a 50% rise, which is necessary for oocytes to 74 proceed to the telophase I of meiosis and beyond (Kim et al., 2010). Remarkably, after 75 fertilization, Zn²⁺ levels need to decrease, as Emi2 is a Zn²⁺-associated molecule, and 76 high Zn² levels prevent MII exit (Bernhardt et al., 2012; Shoji et al., 2014; Suzuki et al., 77 2010b). Following the initiation of Ca^{2+} oscillations, approximately 10 to 20% of the Zn^{2+} 78 accrued during maturation is ejected during the Zn^{2+} sparks, a conserved event in 79 80 vertebrates and invertebrate species (Converse and Thomas, 2020; Kim et al., 2011; 81 Mendoza et al., 2022; Que et al., 2019; Seeler et al., 2021; Tokuhiro and Dean, 2018; Wozniak et al., 2020; Zhang et al., 2016). The use of Zn²⁺ chelators such as N,N,N,N-82 tetrakis (2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) to create Zn²⁺-deficient 83 conditions buttressed the importance of Zn^{2+} during meiotic transitions (Kim et al., 2010; 84 Suzuki et al., 2010b). However, whether the analogous dynamics of Ca^{2+} and Zn^{2+} during 85 maturation imply crosstalk and Zn^{2+} levels modulate Ca^{2+} release during fertilization is 86 87 unknown.

IP₃Rs are the most abundant intracellular Ca²⁺ release channel in non-muscle 88 89 cells (Berridge, 2016). They form a channel by assembling into tetramers with each 90 subunit of ~270kDa MW (Taylor and Tovey, 2010). Mammalian eggs express the type I IP₃R, the most widespread isoform (Fissore et al., 1999; Parrington et al., 1998). IP₃R1 is 91 essential for egg activation because its inhibition precludes Ca²⁺ oscillations (Miyazaki 92 and Ito, 2006; Miyazaki et al., 1992; Xu et al., 2003). Myriad and occasionally cell-93 specific factors influence Ca^{2+} release through the IP₃R1 (Taylor and Toyey, 2010). For 94 95 example, following fertilization, IP₃R1 undergoes ligand-induced degradation caused by

the sperm-initiated long-lasting production of IP₃ that effectively reduces the IP₃R1 mass 96 (Brind et al., 2000; Jellerette et al., 2000). Another regulatory mechanism is Ca²⁺, a 97 universal cofactor, which biphasically regulates IP₃Rs' channel opening (Iino, 1990; Jean 98 and Klee, 1986), congruent with several Ca²⁺ and calmodulin binding sites on the 99 channel's sequence (Sienaert et al., 1997; Sipma et al., 1999). Notably, Zn²⁺ may also 100 participate in IP₃R1 regulation. Recent studies using electron cryomicroscopy (cryoEM), 101 102 a technique that allows peering into the structure of IP₃R1 with a near-atomic resolution, have revealed that a helical linker (LNK) domain near the C-terminus mediates the 103 104 coupling between the N- and C-terminal ends necessary for channel opening (Fan et al., 105 2015). The LNK domain contains a putative Zinc-finger motif proposed to be vital for IP₃R1 function (Fan et al., 2015; Paknejad and Hite, 2018). Therefore, the exponential 106 increase in Zn^{2+} levels in maturing oocytes, besides its essential role in meiosis 107 progression, may optimize the IP₃R1 function, revealing hitherto unknown cooperation 108 109 between these cations during fertilization.

Here, we examined whether crosstalk between Ca^{2+} and Zn^{2+} is required to 110 initiate and sustain Ca²⁺ oscillations and maintain Ca²⁺ store content in MII eggs. We 111 found that Zn²⁺-deficient conditions inhibited Ca²⁺ release and oscillations without 112 reducing Ca²⁺ stores, IP₃ production, IP₃R1 expression, or altering the viability of eggs or 113 114 zygotes. We show instead that Zn^{2+} deficiency impaired IP₃R1 function and lessened the receptor's ability to gate Ca^{2+} release out of the ER. Remarkably, resupplying Zn^{2+} re-115 established the oscillations interrupted by low Zn²⁺, although persistent increases in 116 intracellular Zn^{2+} were harmful, disrupting the Ca^{2+} responses and preventing egg 117 activation. Together, the results show that besides contributing to oocyte maturation, Zn²⁺ 118 has a central function in Ca^{2+} homeostasis such that optimal Zn^{2+} concentrations ensure 119 IP₃R1 function and the Ca^{2+} oscillations required for initiating embryo development. 120

121

122 Results

TPEN dose-dependently lowers intracellular Zn²⁺ and inhibits sperm-initiated Ca²⁺ oscillations.

125 TPEN is a cell-permeable, non-specific chelator with a high affinity for transition 126 metals widely used to study their function in cell physiology (Arslan et al., 1985; Lo et 127 al., 2020). Mouse oocytes and eggs have exceedingly high intracellular concentrations of 128 Zn^{2+} (Kim et al., 2011, 2010), and the TPEN-induced defects in the progression of meiosis 129 have been ascribed to its chelation (Bernhardt et al., 2011; Kim et al., 2010). In support 130 of this view, the Zn^{2+} levels of cells showed acute reduction after TPEN addition, as 131 reported by indicators such as FluoZin-3 (Arslan et al., 1985; Gee et al., 2002; Suzuki et

al., 2010b). Studies in mouse eggs also showed that the addition of low μ M (40-100) 132 133 concentrations of TPEN disrupted Ca²⁺ oscillations initiated by fertilization or SrCl₂ 134 (Lawrence et al., 1998; Suzuki et al., 2010b), but the mechanism(s) and target(s) of the 135 inhibition remained unknown. To gain insight into this phenomenon, we first performed dose-titration studies to determine the effectiveness of TPEN in lowering Zn^{2+} in eggs. 136 The addition of 2.5 μ M TPEN protractedly reduced Zn²⁺ levels, whereas 5 and 10 μ M 137 TPEN acutely and persistently reduced FluoZin-3 fluorescence (Fig. 1A). These 138 concentrations of TPEN are higher than the reported free Zn^{2+} concentrations in cells, but 139 140 within range of those of found in typical culture conditions (Lo et al., 2020; Qin et al., 2011). We next determined the concentrations of TPEN required to abrogate fertilization-141 142 initiated oscillations. Following intracytoplasmic sperm injection (ICSI), we monitored Ca^{2+} responses while increasing TPEN concentrations. As shown in Fig. 1B, 5 and 10 μ M 143 TPEN effectively blocked ICSI-induced Ca^{2+} oscillations in over half of the treated cells, 144 and the remaining eggs, after a prolonged interval, resumed lower-frequency rises (Fig. 145 146 1B-center panels). Finally, 50 µM or greater concentrations of TPEN permanently 147 blocked these oscillations (Fig. 1B-right panel). It is noteworthy that at the time of addition, TPEN concentrations of 5 µM or above induce a sharp drop in basal Fura-2 148 F340/ F380 ratios, consistent with Fura-2's high affinity for Zn^{2+} (Snitsarev et al., 1996). 149

150 We next used membrane-permeable and -impermeable chelators to assess whether TPEN inhibited Ca^{2+} oscillations by chelating Zn^{2+} from intracellular or 151 extracellular compartments. The addition of the high-affinity but cell-impermeable Zn²⁺ 152 153 chelators DTPA and EDTA neither terminated nor temporarily interrupted ICSI-induced Ca²⁺ oscillations (Fig. 1C), although protractedly slowed them down, possibly because 154 of chelation and lowering of external Ca^{2+} (Fig. 1C). These results suggest that chelation 155 of external Zn²⁺ does not affect the continuation of oscillations. We cannot determine that 156 EDTA successfully chelated all external Zn^{2+} , but the evidence that the addition of EDTA 157 to the monitoring media containing cell impermeable FluoZin-3 caused a marked 158 reduction in fluorescence, suggests that a noticeable fraction of the available Zn^{2+} was 159 160 sequestered (Supplementary Fig. 1A). Similarly, injection of mPlc ζ mRNA in eggs incubated in Ca^{2+} and Mg^{2+} -free media supplemented with EDTA, to maximize the 161 chances of chelation of external Zn²⁺, initiated low-frequency but persistent oscillations, 162 and addition of Ca^{2+} and Mg^{2+} restored the physiological periodicity (Supplementary Fig. 163 **1B).** Lastly, another Zn^{2+} -permeable chelator, TPA, blocked the ICSI-initiated Ca^{2+} 164 165 oscillations but required higher concentrations than TPEN (Fig. 1D). Collectively, the data suggest that basal levels of labile internal Zn²⁺ are essential to sustain the 166 fertilization-initiated Ca²⁺ oscillations in eggs. 167

We next evaluated whether Zn^{2+} depletion prevented the completion of meiosis 168 and pronuclear (PN) formation. To this end, ICSI-fertilized eggs were cultured in the 169 170 presence of 10 µM TPEN for 8h, during which the events of egg activation were examined 171 (Fig. 1E and Table 1). All fertilized eggs promptly extruded second polar bodies 172 regardless of treatment (Fig. 1E). TPEN, however, impaired PN formation, and by 4- or 7-h post-ICSI, most treated eggs failed to show PNs, unlike controls (Fig. 1E and Table 173 1). Together, these results demonstrate that depletion of Zn^{2+} terminates Ca^{2+} oscillations 174 175 and delays or prevents events of egg activation, including PN formation.

176

177 **TPEN** is a universal inhibitor of Ca^{2+} oscillations in eggs.

Mammalian eggs initiate Ca^{2+} oscillations in response to numerous stimuli and 178 conditions (Miyazaki and Ito, 2006; Wakai and Fissore, 2013). Fertilization and its release 179 of PLC ζ stimulate the phosphoinositide pathway, producing IP₃ and Ca²⁺ oscillations 180 (Miyazaki, 1988; Saunders et al., 2002). Neurotransmitters such as acetylcholine (Ach) 181 182 and other G-protein coupled receptor agonists engage a similar mechanism (Dupont et al., 183 1996; Kang et al., 2003), although in these cases, IP₃ production occurs at the plasma membrane and is short-lived (Kang et al., 2003; Swann and Parrington, 1999). Agonists 184 185 such as SrCl₂ and thimerosal generate oscillations by sensitizing IP₃R1 without producing 186 IP₃. The mechanism(s) of SrCl₂ is unclear, although its actions are reportedly directly on 187 the IP₃R1 (Hajnóczky and Thomas, 1997; Hamada et al., 2003; Nomikos et al., 2015, 2011; Sanders et al., 2018). Thimerosal oxidizes dozens of thiol groups in the receptor, 188 which enhances the receptor's sensitivity and ability to release Ca²⁺ (Bootman et al., 189 1992; Evellin et al., 2002; Joseph et al., 2018). We took advantage of the varied points at 190 191 which the mentioned agonists engage the phosphoinositide pathway to examine TPEN's 192 effectiveness in inhibiting their effects. mPlc z mRNA injection, like fertilization, induces persistent Ca^{2+} oscillations, although m*Plc* ζ 's tends to be more robust. Consistent with 193 this, the addition of 10 and 25 µM TPEN transiently interrupted or belatedly terminated 194 195 oscillations, whereas 50 µM acutely stopped all responses (Fig. 2A). By contrast, SrCl₂-196 initiated rises were the most sensitive to Zn^{2+} -deficient conditions, with 2.5 μ M TPEN nearly terminating all oscillations that 5 µM did (Fig. 2B). TPEN was equally effective 197 in ending the Ach-induced Ca²⁺ responses (Fig. 2C), but curbing thimerosal responses 198 199 required higher concentrations (Fig. 2D). Lastly, we ruled out that downregulation of 200 IP₃R1 was responsible for the slow-down or termination of the oscillations by TPEN. To 201 accomplish this, we examined the IP₃R1 mass in eggs (Jellerette et al., 2004) with and 202 without TPEN supplementation and injection of mPlc mRNA. By 4h post-injection, PLC^z induced the expected down-regulation of IP₃R1 reactivity, whereas was 203

insignificant in TPEN-treated and *Plc* ζ mRNA-injected eggs, as it was in uninjected control eggs (**Fig. 2F**). These findings together show that Zn²⁺ deficiency inhibits the IP₃R1-mediated Ca²⁺ oscillations independently of IP₃ production or loss of receptor, suggesting a role of Zn²⁺ on IP₃R1 function (**Fig. 2E**).

208

209 Zn^{2+} depletion reduces IP_3R1 -mediated Ca^{2+} release.

To directly assess the inhibitory effects of TPEN on IP₃R1 function, we used caged 210 IP₃ (cIP₃) that, after short UV pulses, releases IP₃ into the ooplasm (Wakai et al., 2012; 211 Walker et al., 1987). To exclude the possible contribution of external Ca^{2+} to the responses, 212 we performed the experiments in Ca^{2+} -free media. In response to sequential cIP₃ release 213 5 min apart, control eggs displayed corresponding Ca^{2+} rises that occasionally 214 transitioned into short-lived oscillations (Fig. 3A). The addition of TPEN after the third 215 cIP_3 release prevented the subsequent Ca^{2+} response and prematurely terminated the in-216 217 progress Ca²⁺ rises (Fig. 3B and inset). Pre-incubation of eggs with TPEN precluded cIP₃-induced Ca^{2+} release, even after 5 sec UV exposure (Fig. 3C). The addition of excess 218 ZnSO₄ (100 µM) overcame TPEN's inhibitory effects only if added before (Fig. 3E) and 219 not after the addition of TPEN (Fig. 3D). Similar concentrations of MgCl₂ or CaCl₂ failed 220 to reverse TPEN effects (Fig. 3F, G). Together, the results show that Zn^{2+} is required for 221 222 IP₃R1-mediated Ca²⁺ release downstream of IP₃ production, appearing to interfere with receptor gating, as suggested by TPEN's rapid termination of in-progress Ca²⁺ rises and 223 224 ongoing oscillations.

ERp44 is an ER luminal protein of the thioredoxin family that interacts with the 225 IP₃R1, reportedly inhibiting its ability to mediate Ca^{2+} release (Higo et al., 2005). The 226 227 localization of ERp44 in the ER-Golgi intermediate compartment of somatic cells correlates with Zn²⁺'s availability and changes dramatically after TPEN treatment (Higo 228 229 et al., 2005; Watanabe et al., 2019). To rule out the possibility that TPEN suppresses the 230 function of IP₃R1 by modifying the subcellular distribution of ERp44, we overexpressed ERp44 by injecting HA tagged-Erp44 mRNA into MII eggs and monitored the effect on 231 Ca²⁺ release. TPEN did not alter the localization of ERp44 (Supplementary Fig. 2A), 232 and overexpression of ERp44 modified neither the Ca²⁺ oscillations induced by agonists 233 (Supplementary Fig. 2B) nor the effectiveness of TPEN to block them (data not shown). 234 Thus, TPEN and Zn^{2+} deficiency most likely inhibits Ca^{2+} release by directly interfering 235 with IP₃R1 function rather than modifying this particular regulator. 236

237

238 Zn^{2+} depletion diminishes the ER Ca²⁺ leak and increases Ca²⁺ store content.

Our above cIP₃ results that TPEN inhibited IP₃R1-mediated Ca²⁺ release and 239 interrupted in-progress Ca^{2+} rises despite the presence of high levels of environmental IP₃ 240 241 suggest its actions are probably independent of IP₃ binding, agreeing with an earlier report 242 showing that TPEN did not modify IP₃'s affinity for the IP₃R (Richardson and Taylor, 1993). Additionally, the presence of a Zn^{2+} -binding motif near the C-term cytoplasmic 243 domain of the IP₃R1's channel, which is known to influence agonist-induced IP₃R1 gating 244 (Fan et al., 2015), led us to posit and examine that Zn^{2+} deficiency may be disturbing Ca^{2+} 245 release to the cytosol and out of the ER. To probe this possibility, we queried if pre-246 treatment with TPEN inhibited Ca²⁺ release through IP₃R1. We first used Thapsigargin 247 (Tg), a Sarcoplasmic/ER Ca²⁺ ATPase pump inhibitor (Thastrup et al., 1990) that unmasks 248 a constitutive Ca²⁺ leak out of the ER (Lemos et al., 2021); in eggs, we have demonstrated 249 it is mediated at least in part by IP₃R1 (Wakai et al., 2019). Treatment with TPEN for 15 250 min slowed the Tg-induced Ca²⁺ leak into the cytosol, resulting in delayed and lowered 251 252 amplitude Ca^{2+} responses (Fig. 4A; P < 0.05). To test whether the reduced response to Tg means that TPEN prevented the complete response of Tg, leaving a temporarily increased 253 Ca^{2+} content in the ER, we added the Ca^{2+} ionophore ionomycin (Io), which empties all 254 stores independently of IP₃Rs. Io-induced Ca²⁺ responses were 3.3-fold greater in TPEN-255 treated cells, supporting the view that TPEN interferes with the ER Ca^{2+} leak (Fig. 4A; P 256 257 < 0.05). We further evaluated this concept using *in vitro* aged eggs that often display reduced Ca²⁺ store content than freshly collected counterparts (Abbott et al., 1998). After 258 culturing eggs in the presence or absence of TPEN for 2h, we added Io during Ca²⁺ 259 monitoring, which in TPEN-treated eggs induced bigger Ca²⁺ rises than in control eggs 260 (Fig. 4B; P < 0.05). We confirmed that this effect was independent of IP₃R1 degradation 261 262 because TPEN did not change IP₃R1 reactivity in unfertilized eggs (Fig. 4C; P < 0.05).

263 Next, we used the genetically encoded FRET sensor D1ER (Palmer et al., 2004) to assess the TPEN's effect on the ER's relative Ca²⁺ levels changes following the additions 264 of Tg or Ach. TPEN was added 10 min before 10 µM Tg or 50 µM Ach, and we 265 simultaneously monitored changes in cytosolic and intra-ER Ca²⁺ (Fig. 4D, E). For the 266 267 first three min, the Tg-induced decrease in Ca²⁺-ER was similar between groups. However, while the drop in Ca^{2+} content continued in control eggs, in TPEN-treated eggs, it came 268 to an abrupt halt, generating profound differences between the two groups (Fig. 4D; P 269 <0.05). TPEN had even more pronounced effects following the addition of Ach, leading 270 to a reduced- and prematurely terminated- Ca²⁺ release from the ER in treated eggs (Fig. 271 **4E;** *P* <0.05). 272

273 Lastly, we sought to use a cellular model where low labile Zn^{2+} occurred without 274 pharmacology. To this end, we examined a genetic model where the two non-selective

plasma membrane channels that could influx Zn^{2+} in maturing oocytes have been deleted 275 (Bernhardt et al., 2017; Carvacho et al., 2016, 2013), namely, the transient receptor 276 potential melastatin-7 (TRPM7) and TRP vanilloid 3 (TRPV3), both members of the TRP 277 superfamily of channels (Wu et al., 2010). We found that eggs from double knockout 278 females (dKOs) had lower levels of labile Zn^{2+} (Fig. 4F), and the addition of Tg revealed 279 an expanded Ca^{2+} store content in these eggs vs. control WT eggs (Fig. 4G). Remarkably, 280 in dKO eggs, the Ca^{2+} rise induced by Tg showed a shoulder or inflection point before 281 the peak delaying the time to peak (Fig. 4G, inset; *P* < 0.001). These results in dKO eggs 282 show a changed dynamic of the Tg-induced Ca²⁺ release, suggesting that lower levels of 283 labile Zn^{2+} modify ER Ca²⁺ release independently of chelators. 284

- 285
- 286

Ca^{2+} oscillations in eggs occur within a window of Zn^{2+} concentrations.

We next examined if resupplying Zn^{2+} could restart the Ca^{2+} oscillations 287 terminated by Zn^{2+} depletion. Zn pyrithione (ZnPT) rapidly increases cellular Zn^{2+} upon 288 extracellular addition (Barnett et al., 1977; Robinson, 1964). Dose titration studies and 289 imaging fluorimetry revealed that 0.01 µM ZnPT caused subtle and protracted increases 290 in Zn^{2+} levels, whereas 0.1 μ M ZnPT caused rapid increases in eggs' Zn^{2+} baseline (Fig. 291 **5A**). We induced detectable Ca^{2+} oscillations by injection of m*Plc* ζ mRNA followed by 292 50 µM TPEN (Fig. 5B), which terminated them. After 30 min, we added 0.1 µM ZnPT, 293 294 and within 15 min the oscillations restarted in most TPEN-treated eggs (Fig. 5C). We repeated this approach using Thimerosal (Fig. 5D, E). Adding 0.1 µM ZnPT did not 295 restore the Ca²⁺ oscillations retrained by TPEN, but 0.5 µM ZnPT did so (Fig. 5E). These 296 results demonstrate that Zn²⁺ plays a pivotal, enabling role in the generation of Ca²⁺ 297 298 oscillations in mouse eggs.

299

300

Excessive intracellular Zn^{2+} *inhibits* Ca^{2+} *oscillations.*

 Zn^{2+} is necessary for diverse cellular functions, consistent with numerous amino 301 acids and proteins capable of binding Zn^{2+} within specific and physiological ranges (Pace 302 and Weerapana, 2014). Excessive Zn^{2+} , however, can cause detrimental effects on cells 303 and organisms (Broun et al., 1990; Hara et al., 2022; Sikora and Ouagazzal, 2021). 304 Consistent with the deleterious effects of Zn^{2+} , a previous study showed that high 305 concentrations of ZnPT, ~50 µM, prevented SrCl₂-induced egg activation and initiation 306 of development (Bernhardt et al., 2012; Kim et al., 2011). We examined how ZnPT and 307 excessive Zn²⁺ levels influence Ca²⁺ oscillations. Our conditions revealed that pre-308 309 incubation or continuous exposure to 0.1 µM or 1.0 µM ZnPT delayed or prevented egg 310 activation induced by mPlc C mRNA injection (Supplementary Fig. 3). We used these

311 ZnPT concentrations to add it into ongoing oscillations induced by ICSI and monitored 312 the succeeding Ca²⁺ responses. The addition of 0.05 to 10 μ M ZnPT caused an immediate 313 elevation of the basal levels of Fura-2 and termination of the Ca²⁺ oscillations (**Fig. 6A-**314 **D**). m*Plc* ζ mRNA-initiated Ca²⁺ responses were also interrupted by adding 0.1 μ M ZnPT, 315 whereas untreated eggs continued oscillating (**Fig. 6E, F**). ZnPT also inhibited IP₃R1-316 mediated Ca²⁺ release triggered by cIP₃, suggesting that excessive Zn²⁺ directly inhibits 317 IP₃R1 function (**Fig. 6G**).

- A noticeable feature of ZnPT is the increased basal ratios of Fura-2 AM. These 318 changes could reflect enhanced IP₃R1 function and increased basal Ca²⁺ concentrations 319 caused by Zn²⁺ stimulation of IP₃R1. This seems unlikely, however, because extended 320 elevated cytosolic Ca²⁺ would probably induce cellular responses, such as the release of 321 the second polar body, egg fragmentation, or cell death, neither of which happened. It 322 might reflect, instead, Fura-2's ability to report changes in Zn^{2+} levels, which seemed the 323 case because the addition of TPEN lowered fluorescence without restarting the Ca²⁺ 324 oscillations (Fig. 6F). To ensure the impact of ZnPT abolishing Ca^{2+} oscillations was not 325 an imaging artifact obscuring ongoing rises, we simultaneously monitored cytoplasmic 326 and ER Ca²⁺ levels with Rhod-2 and D1ER, respectively. This approach allowed 327 synchronously observing Ca2+ changes in both compartments that should unfold in 328 329 opposite directions. In control, uninjected eggs, the fluorescent values for both reporters 330 remained unchanged during the monitoring period, whereas in mPlc mRNA-injected eggs, the reporters' signals displayed simultaneous but opposite changes, as expected (Fig. 331 332 6H, I). The addition of ZnPT in uninjected eggs rapidly increased Rhod-2 signals but not D1ER's, which was also the case in oscillating eggs, as the addition of ZnPT did not 333 immediately alter the dynamics of the ER's Ca²⁺ release, suggesting D1ER faithfully 334 reports in Ca^{2+} changes but cannot detect changes in Zn^{2+} levels, at least to this extent; 335 ZnPT progressively caused fewer and lower amplitude changes in D1ER fluorescence, 336 consistent with the diminishing and eventual termination of the Ca^{2+} oscillations. 337 Noteworthy, in these eggs, the basal D1ER fluorescent ratio remained unchanged after 338 ZnPT, demonstrating its unresponsiveness to Zn²⁺ changes of this magnitude. The ZnPT-339 340 induced increases in Rhod-2 fluorescence without concomitant changes in D1ER values suggest that the changes in the dyes' fluorescence do not represent an increase in basal 341 Ca^{2+} and, more likely, signal an increase in intracellular Zn^{2+} . We confirmed that both 342 reporters were still in working order, as the addition of Io triggered Ca²⁺ changes detected 343 344 by both reporters (Fig. 6H, I).
- 345

346 **Discussion**

The present study demonstrates that appropriate levels of labile Zn^{2+} are essential for initiating and maintaining IP₃R1-mediated Ca²⁺ oscillations in mouse eggs regardless of the initiating stimuli. Both deficient and excessive Zn^{2+} compromise IP₃R1 sensitivity, diminishing and mostly terminating Ca²⁺ oscillations. The results demonstrate that IP₃R1 and Zn²⁺ act in concert to modulate Ca²⁺ signals, revealing previously unexplored crosstalk between these ions at fertilization (**Fig. 7**).

 Zn^{2+} is an essential micronutrient for living organisms (Kaur et al., 2014) and is 353 required for various cellular functions, such as proliferation, transcription, and 354 355 metabolism (Lo et al., 2020; Maret and Li, 2009; Yamasaki et al., 2007). Studies using Zn^{2+} chelators have uncovered what appears to be a cell-specific, narrow window of Zn^{2+} 356 concentrations needed for cellular proliferation and survival (Carraway and Dobner, 357 358 2012; Lo et al., 2020). Further, TPEN appeared especially harmful, and in a few cell lines, even low doses provoked oxidative stress, DNA fragmentation, and apoptosis (Mendivil-359 Perez et al., 2012). We show here that none of the Zn^{2+} chelators, permeable or 360 impermeable, affected cell viability within our experimental observations, confirming 361 findings from previous studies that employed high concentrations of TPEN to interrupt 362 the Ca^{2+} oscillations (Lawrence et al., 1998) or inducing egg activation of mouse eggs 363 364 (Suzuki et al., 2010b). Our data demonstrating that $\sim 2.5 \,\mu\text{M}$ is the threshold concentration 365 of TPEN in eggs that first causes noticeable changes in basal Zn^{2+} , as revealed by FluoZin, is consistent with the ~ 2 to 5-µM Zn²⁺ concentrations in most culture media without 366 serum supplementation (Lo et al., 2020), and with the ~ 100 pM basal Zn²⁺ in cells (Oin 367 et al., 2011). Lastly, the effects on Ca²⁺ release observed here with TPEN and other 368 chelators were due to the chelation of Zn^{2+} , as pretreatment with $ZnSO_4$ but not with equal 369 370 or greater concentrations of MgCl₂ or CaCl₂ rescued the inhibition of the responses, which 371 is consistent with results by others (Kim et al., 2010; Lawrence et al., 1998).

To identify how Zn^{2+} deficiency inhibits Ca^{2+} release in eggs, we induced Ca^{2+} 372 oscillations using various stimuli and tested the effectiveness of membrane-permeable 373 and impermeable chelators to abrogate them. Chelation of extracellular Zn^{2+} failed to 374 terminate the Ca²⁺ responses, whereas membrane-permeable chelators did, pointing to 375 intracellular labile Zn^{2+} levels as essential for Ca^{2+} release. All agonists used here were 376 susceptible to inhibition by TPEN, whether their activities depended on IP₃ production or 377 allosterically induced receptor function, although the effective TPEN concentrations 378 379 varied across stimuli. Some agents, such as mPlc mu mRNA or thimerosal, required higher concentrations than SrCl₂, Ach, or cIP₃. The reason underlying the different agonists' 380 381 sensitivities to TPEN will require additional research, but the persistence of IP3 382 production or change in IP₃R1 structure needed to induce channel gating might explain

it. However, the universal abrogation of Ca^{2+} oscillations by TPEN supports the view 383 drawn from cryo-EM-derived IP₃R1 models that signaling molecules can allosterically 384 385 induce channel gating from different starting positions in the receptor by mechanically 386 coupling the binding effect to the ion-conducting pore in the C-terminal end of IP₃R (Fan 387 et al., 2015). The cytosolic C-terminal domain of each IP₃R1 subunit is alongside the IP₃-388 binding domain of another subunit and, therefore, well positioned to sense IP₃ binding and induce channel gating (Fan et al., 2015). Within each subunit, the LNK domain, which 389 contains a Zn²⁺-finger motif (Fan et al., 2015), connects the opposite domains of the 390 391 molecule. Although there are no reports regarding the regulation of IP₃R1 sensitivity by Zn^{2+} , such evidence exists for RyRs (Woodier et al., 2015), which also display a conserved 392 Zn²⁺-finger motif (des Georges et al., 2016). Lastly, mutations of the two Cys or two His 393 394 residues of this motif, without exception, resulted in inhibition or inactivation of the IP₃R1 395 channel (Bhanumathy et al., 2012; Uchida et al., 2003). These results are consistent with the view that the C-terminal end of IP₃Rs plays a dominant role in channel gating 396 (Bhanumathy et al., 2012; Uchida et al., 2003). We propose that TPEN inhibits Ca²⁺ 397 oscillations in mouse eggs because chelating Zn^{2+} interferes with the function of the LNK 398 domain and its Zn^{2+} -finger motif proposed role on the mechanical coupling induced by 399 agonist binding to the receptor that propagates to the pore-forming region and required to 400 401 gate the channel's ion-pore (Fan et al., 2022, 2015).

In support of this possibility, TPEN-induced Zn^{2+} deficient conditions altered the 402 Ca²⁺-releasing kinetics in resting eggs or after fertilization. Tg increases intracellular Ca²⁺ 403 by inhibiting the SERCA pump (Thastrup et al., 1990) and preventing the reuptake into 404 the ER of the ebbing Ca^{2+} during the basal leak. Our previous studies showed that the 405 406 downregulation of IP₃R1 diminishes the leak, suggesting it occurs through IP₃R1 (Wakai and Fissore, 2019). Consistent with this view, TPEN pre-treatment delayed the Ca²⁺ 407 response induced by Tg, implying that Zn^{2+} deficiency hinders Ca^{2+} release through IP₃R1. 408 An expected consequence would be increased Ca^{2+} content in the ER after Tg. Io that 409 mobilizes Ca²⁺ independently of IP₃Rs (Toeplitz et al., 1979) induced enhanced responses 410 in TPEN-treated eggs vs. controls, confirming the accumulation of Ca^{2+} - ER in Zn^{2+} 411 deficient conditions. We demonstrated that this accumulation is due to hindered emptying 412 of the Ca²⁺ ER evoked by agonists in Zn²⁺-deficient environments, resulting in reduced 413 cytosolic Ca²⁺ increases, as IP₃R1 is the pivotal intermediary channel between these 414 compartments. Noteworthy, the initial phase of the Tg-induced Ca²⁺ release out of the ER 415 did not appear modified by TPEN, as if it was mediated by a Zn²⁺-insensitive Ca²⁺ 416 channel(s)/transporter, contrasting with the abrogation of Ach-induced ER emptying from 417 the outset. Remarkably, independently of Zn^{2+} chelators, emptying of Ca^{2+} ER was 418

419 modified in a genetic model of Zn^{2+} -deficient oocytes lacking two TRP channels, 420 confirming the impact of Zn^{2+} on Ca^{2+} release. It is worth noting that TPEN did not reduce 421 but maintained or increased the mass of IP₃R1, which might result in the inhibition of 422 Zn^{2+} -dependent ubiquitin ligase Ubc7 by the Zn-deficient conditions (Webster et al., 423 2003). We cannot rule out that these conditions may undermine other conformational 424 changes required to trigger IP₃R1 degradation, thereby favoring the accumulation of 425 IP₃R1.

Despite accruing Zn²⁺ during oocyte maturation, fertilization witnesses a 426 necessary Zn²⁺ release into the external milieu, known as "Zn²⁺ sparks" (Converse and 427 Thomas, 2020; Kim et al., 2011; Mendoza et al., 2022; Que et al., 2019, 2015; Seeler et 428 al., 2021). This release of Zn^{2+} is a conserved event in fertilization across species and is 429 associated with several biological functions, including those related to fending off 430 431 polyspermy (Kim et al., 2011; Que et al., 2019; Wozniak et al., 2020). The concomitant 432 decrease in Zn^{2+} facilitates the resumption of the cell cycle and exit from the MII stage (Kim et al., 2011). Congruent with this observation, artificial manipulation that maintains 433 high Zn^{2+} levels prevents egg activation (Kim et al., 2011), whereas lowering Zn^{2+} with 434 chelators leads to egg activation without Ca²⁺ mobilization (Suzuki et al., 2010b). As 435 posed by others, these results suggest that meiosis completion and the early stages of 436 437 fertilization unfold within a narrow window of permissible Zn^{2+} (Kim et al., 2011, 2010). Here, we extend this concept and show that IP₃R1 function and the Ca²⁺ oscillations in 438 mouse eggs require this optimal level of labile Zn^{2+} because the Ca^{2+} responses 439 interrupted by TPEN-induced Zn²⁺-insufficiency are rescued by restoring Zn²⁺ levels with 440 ZnPT. Furthermore, unopposed increases in Zn²⁺ by exposure to ZnPT abrogated 441 fertilization-initiated Ca^{2+} oscillations and prevented the expected egg activation events. 442 It is unclear how excess Zn^{2+} disturbs the function of IP₃R1. Nevertheless, IP₃R1s have 443 multiple cysteines whose oxidation enhances the receptor sensitivity to IP₃ (Joseph et al., 444 2018), and it is possible that excessive Zn^{2+} aberrantly modifies them, disturbing IP₃R1 445 structure and function or, alternatively, preventing their oxidation and sensitization of the 446 receptor. Lastly, we cannot rule out that high Zn^{2+} levels directly inhibit the receptor's 447 channel. These results reveal a close association between the Zn^{2+} levels controlling 448 meiotic transitions and the Ca²⁺ release necessary for egg activation, placing the IP₃R1 at 449 the center of the crosstalk of these two divalent cations. 450

451 Abrupt Zn^{2+} changes have emerged as critical signals for meiotic and mitotic 452 transitions in oocytes, eggs, embryos, and somatic cells (Kim et al., 2011, 2010; Lo et al., 453 2020). Fertilization relies on prototypical Ca²⁺ rises and oscillations, and Zn²⁺ sparks are 454 an egg activation event downstream of this Ca²⁺ release, establishing a functional

455 association between these two divalent cations that continues to grow (Kim et al., 2011). 456 Here, we show that, in addition, these cations actively crosstalk during fertilization and 457 that the fertilization-induced Ca^{2+} oscillations rely on optimized IP₃R1 function 458 underpinned by ideal Zn^{2+} levels set during oocyte maturation. Future studies should 459 explore if artificial alteration of Zn^{2+} levels can extend the fertile lifespan of eggs, 460 improve developmental competence, or develop methods of non-hormonal contraception.

461

463

462 Materials and Methods

Key resour	ces table			
Reagent type (species) or	Designation	Source or reference	Identifiers	Addition al informati
resource				on
Genetic reagent (Mu musculus)	CD1 s	Charles River	022	
Genetic reagent (<i>Mu</i> <i>musculus</i>)	C57BL/6J	JAX	JAX: 000664	
Genetic reagent (Mus musculus)	<i>Trpm7</i> -floxed	A generous gift from Dr. Carmen P. Williams (NIEHS) (PMID: 30322909)		C57BL6/J and 129s4/SvJae mixed background
Genetic reagent (Mus musculus)	Gdf9-cre	JAX	JAX: 011062	
Genetic reagent (Mus musculus)	<i>Trpv3^{-/-}</i>	A generous gift from Dr H. Xu (PMID: 20403327)		C57BL/6J and 129/SvEv mixed background
Biological sample (mouse oocyte)	Mus musculus	this paper		Eggs at the metaphas e of the second meiosis
Biological sample (mouse	Mus musculus	this paper		Matured sperm from

sperm)				cauda epididymi s
Recombinant DNA reagent	pcDNA6-mouse <i>Plcz1-</i> <i>venus</i> (plasmid used as a template for mRNA synthesis)	Published in previous Fissore lab paper PMID: 34313315. Mouse <i>Plcz1</i> sequence was a generous gift from Dr. Kiyoko Fukami (PMID:1802889 8)		mouse <i>Plcz1</i> mRNA was fused with Venus and inserted in pcDNA6 vector
Recombinant DNA reagent	pcDNA6-CALR-D1ER- KDEL (plasmid used as a template for mRNA synthesis)	Published in previous Fissore lab paper PMID: 24101727. Original D1ER vector was a generous gift from Dr. Roger Y Tsien (PMID: 15585581)		FRET construct D1ER was inserted between ER- targeting sequence of calreticuli n and KDEL ER retention signal in pcDNA6 vector
Recombinant DNA reagent	pcDNA6-human <i>ERp44-HA</i> (plasmid used as a template for mRNA synthesis)	This paper. Original human ERp44 sequence was a generous gift from Dr. Roberto Sitia (PMID: 11847130)		human <i>ERp44</i> mRNA fused with HA in pcDNA6/ Myc-His B vector
Antibody	Monoclonal HA (Mouse monoclonal)	Roche	115818160 01	Dilution: 1:200
Antibody	Polyclonal IP ₃ R1 (Rabbit polyclonal)	(Parys et al., 1995)		Dilution: 1:1000
Antibody	Monoclonal α-tubulin	Sigma-Aldrich	T-9026	Dilution:

	(Mouse monoclonal)			1:1000
Antibody	Alexa Fluor 488 (goat anti mouse)	Invitrogen	Invitrogen: A32723	Dilution: 1:400
Commercial assay or kit	T7 mMESSAGE mMACHINE Kit	Invitrogen	Invitrogen: AM1344	Used for <i>in vitro</i> mRNA synthesis
Commercial assay or kit	Poly(A) Tailing Kit	Invitrogen	Invitrogen: AM1350	Used for poly (A) tailing of synthesiz ed mRNA
Chemical compound, drug	Hyaluronidase from bovine testes	Sigma-Aldrich	H3506	
Chemical compound, drug	3-Isobutyl-1- methylxanthine (IBMX)	Sigma-Aldrich	15879	
Chemical compound, drug	Polyvinylpyrrolidone (PVP) (average molecular weight: 360,000)	Sigma-Aldrich	PVP360	Used for mRNA microinje ction and ICSI
Chemical compound, drug	N,N, N',N'-Tetrakis (2- pyridylmethyl) ethylenediamine (TPEN)	Sigma-Aldrich	P4413	Prepared in DMSO and kept at -20 °C until use
Chemical compound, drug	Zinc Pyrithione (ZnPT)	Sigma-Aldrich	PHR1401	Prepared in DMSO and kept at -20 °C until use
Chemical compound, drug	Strontium chloride hexahydrate (SrCl ₂)	Sigma-Aldrich	255521	Freshly dissolved in water on the day of experime nt
Chemical compound, drug	Calcium chloride dihydrate (CaCl ₂)	Sigma-Aldrich	C3881	Freshly dissolved in water on the day of experime nt

Chemical compound, drug	Magnesium chloride hexahydrate (MgCl ₂)	Sigma-Aldrich	M2393	Freshly dissolved in water on the day of experime nt
Chemical compound, drug	Zinc sulfate monohydrate (ZnSO ₄)	Acros Organics	389802500	Freshly dissolved in water on the day of experime nt
Chemical compound, drug	Ethylenediaminetetraacet ic acid sodium dihydrate (EDTA)	LabChem	LC137501	Prepared as 0.5M aqueous solution with pH 8.0 adjusted by NaOH
Chemical compound, drug	Diethylenetriaminepentaa cetic acid (DTPA)	Sigma-Aldrich	D6518	
Chemical compound, drug	Tris (2-pyridylmethyl) amine (TPA)	Santa Cruz	sc-477037	
Chemical compound, drug	Dimethyl sulphoxide (DMSO)	Sigma-Aldrich	D8418	Used as a solvent
Chemical compound, drug	Acetylcholine chloride	Sigma-Aldrich	A6625	
Chemical compound, drug	Thimerosal	Sigma-Aldrich	T5125	Freshly dissolved in water on the day of experime nt and kept on ice until use
Chemical compound, drug	Ionomycin calcium salt	Tocris	1704	Working concentra tion: 2.5

				μΜ
Chemical compound, drug	Thapsigargin	Calbiochem	#586500	Working concentra tion: 10 µM
Other	Pluronic F-127 (20% solution in DMSO) (Pluronic acid)	Invitrogen	P3000MP	
Other	Fura-2 AM	Invitrogen	F1221	Used at 1.25 µM in TL- HEPES containin g 0.02% Pluronic acid
Other	FluoZin-3 AM	Invitrogen	F24195	Used at 1.25 µM in TL- HEPES containin g 0.02% Pluronic acid
Other	Fluo-4 AM	Invitrogen	F14201	Used at 1.25 µM in TL- HEPES containin g 0.02% Pluronic acid
Other	Rhod2-AM	Invitrogen	R1244	Used at 2.2 µM in TL- HEPES containin g 0.02% Pluronic acid.
Other	ci-IP3/ PM	Tocris	6210	Dissolved in DMSO and kept at -20 °C. Before use, the stock was

Other	Pme1	New England BioLabs	R0560S	diluted with water to make a final concentra tion of 0.25 mM. Used to linearize pcDNA6 vectors
				for mRNA synthesis
Software, algorithm	Prism	GraphPad Software		Version 5.01

464

N,N,N',N'-tetrakis (2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) and Zinc pyrithione 465 466 (ZnPT) were dissolved in dimethyl sulfoxide (DMSO) at 10 mM and stored at -20°C until 467 use. SrCl₂, CaCl₂, ZnSO₄, and MgCl₂ were freshly dissolved with double-sterile water at 1M and diluted with the monitoring media just before use. Ethylenediaminetetraacetic 468 469 acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were reconstituted with 470 double-sterile water at 0.5M and 10 mM, respectively, and the pH was adjusted to 8.0. Tris(2-pyridylmethyl) amine (TPA) was diluted in DMSO at 100 mM and stored at -20°C 471 472 until use. Acetylcholine chloride and Thimerosal were dissolved in double-sterile water at 550 mM and 100 mM, respectively. Acetylcholine was stored at -20°C until use, 473 474 whereas Thimerosal was made fresh in each experiment.

475

476 **Mice**

The University of Massachusetts Institutional Animal Care and Use Committee (IACUC) approved all animal experiments and protocols. *Trpm7*-floxed (*Trpm7*^{fl/fl}) *Gdf9-Cre* and *Trpv3^{-/-}* mice were bred at our facility. *Trpm7*^{fl/fl} mice were crossed with *Trpv3^{-/-}* to generate *Trpm7*^{fl/fl}; *Trpv3^{-/-}* mouse line. Female *Trpm7*^{fl/fl}; *Trpv3^{-/-}* mice were crossed with *Trpm7*^{fl/fl}; *Trpv3^{-/-}*; *Gdf9-cre* male to generate females null for *Trpv3* and with oocyte-specific deletion for *Trpm7*. Ear clips from offspring were collected prior to weaning, and confirmation of genotype was performed after most experiments.

484

485 Egg Collection

486 All gamete handling procedures are as previously reported by us (Wakai and Fissore,

487 2019). MII eggs were collected from the ampulla of 6- to 8-week-old female mice. 488 Females were superovulated via intraperitoneal injections of 5 IU pregnant mare serum 489 gonadotropin (PMSG, Sigma, St. Louis, MO) and 5 IU human chorionic gonadotropin 490 (hCG, sigma) at 48hr. interval. Cumulus-oocyte-complexes (COCs) were obtained 13.5 491 hr. post-hCG injection by tearing the ampulla using forceps and needles in TL-HEPES 492 medium. COCs were treated with 0.26% (w/v) of hyaluronidase at room temperature (RT) 493 for 5 min to remove cumulus cells.

494

495 Intracytoplasmic sperm injection (ICSI)

496 ICSI was performed as previously reported by us (Kurokawa and Fissore, 2003) using 497 described setup and micromanipulators (Narishige, Japan). Sperm from C57BL/6 or CD1 498 male mice (7-12 weeks old) were collected from the cauda epididymis in TL-HEPES 499 medium, washed several times, heads separated from tails by sonication (XL2020; Heat 500 Systems Inc., USA) for 5 s at 4°C. The sperm lysate was washed in TL-HEPES and 501 diluted with 12% polyvinylpyrrolidone (PVP, MW = 360 kDa) to a final PVP 502 concentration of 6%. A piezo micropipette-driving unit was used to deliver the sperm into 503 the ooplasm (Primetech, Ibaraki, Japan); a few piezo-pulses were applied to puncture the 504 eggs' plasma membrane following penetration of the zona pellucida. After ICSI, eggs 505 were either used for Ca²⁺ monitoring or cultured in KSOM to evaluate activation and 506 development at 36.5°C in a humidified atmosphere containing 5% CO₂.

507

508 Preparation and microinjection of mRNA

509 pcDNA6-mPlcζ-mEGFP, pcDNA6-CALR-D1ER-KDEL, and pcDNA6-humanERp44-510 HA were linearized with the restriction enzyme PmeI and in vitro transcribed using the 511 T7 mMESSAGE mMACHINE Kit following procedures previously used in our 512 laboratory (Ardestani et al., 2020). A poly(A) tail was added to the in vitro synthesized RNA (mRNA) using Tailing Kit followed by quantification and dilution to 0.5 µg/µL in 513 514 nuclease-free water and stored at -80°C until use. Before microinjection, mPlc ζ , D1ER, and *ERp44* mRNA were diluted to 0.01, 1.0, and 0.5 µg/µL, respectively, in nuclease-free 515 516 water, heated at 95°C for 3 min followed by centrifugation at $13400 \times g$ for 10 min at 4°C. 517 Cytoplasm injection of mRNA was performed under microscopy equipped with micromanipulators (Narishige, Japan). The zona pellucida and the plasma membrane of 518 MII eggs were penetrated by applying small pulses generated by the piezo 519 520 micromanipulator (Primetech, Ibaraki, Japan). The preparation of the injection pipette 521 was as for ICSI (Kurokawa and Fissore, 2003), but the diameter of the tip was $\sim 1 \mu m$. 522

523 Ca²⁺ and Zn²⁺ imaging

Before Ca²⁺ imaging, eggs were incubated in TL-HEPES containing 1.25 µM Fura2-AM, 524 525 1.25 µM FluoZin3-AM, or 2.2 µM Rhod2-AM and 0.02% Pluronic acid for 20 min at 526 room temperature and then washed. The fluorescent probe-loaded eggs were allowed to 527 attach to the bottom of the glass dish (Mat-Tek Corp., Ashland, MA). Eggs were 528 monitored simultaneously using an inverted microscope (Nikon, Melville, NY) outfitted 529 for fluorescence measurements. Fura-2 AM, FluoZin3-AM, and Rhod2-AM fluorescence 530 were excited with 340 nm and 380 nm, 480 nm, and 550 nm wavelengths, respectively, 531 every 20 sec, for different intervals according to the experimental design and as 532 previously performed in the laboratory. The illumination was provided by a 75-W Xenon 533 arc lamp and controlled by a filter wheel (Ludl Electronic Products Ltd., Hawthorne, NY). The emitted light above 510 nm was collected by a cooled Photometrics SenSys CCD 534 535 camera (Roper Scientific, Tucson, AZ). Nikon Element software coordinated the filter 536 wheel and data acquisition. The acquired data were saved and analyzed using Microsoft 537 Excel and GraphPad using Prism software (Ardestani et al., 2020). For Figures 1A, 4A-C, 5A, and 6H-I, values obtained from FluoZin3-AM, Fura2-AM, or Rhod2-AM 538 539 recordings were divided by the average of the first five recordings for each treatment that 540 was used as the F_0 .

To estimate relative changes in Ca^{2+} -ER, emission ratio imaging of the D1ER (YFP/CFP) was performed using a CFP excitation filter, dichroic beamsplitter, CFP and YFP emission filters (Chroma technology, Rockingham, VT; ET436/20X, 89007bs, ET480/40m, and ET535/30m). To measure Ca²⁺-ER and cytosolic Ca²⁺ simultaneously, eggs that had been injected with D1ER were loaded with Rhod-2AM, and CFP, YFP, and Rhod-2 intensities were collected every 20 sec.

547

548 Caged IP3

549 Caged-IP₃/PM (cIP₃) was reconstituted in DMSO and stored at -20°C until use. Before 550 injection, cIP₃ stock was diluted to 0.25 mM with water and microinjected as above. After 551 incubation in KSOM media at 37°C for 1-hr., the injected eggs were loaded with the 552 fluorophore, 1.25 μ M Fluo4-AM, and 0.02% Pluronic acid and handled as above for Fura-553 2 AM. The release of cIP₃ was accomplished by photolysis using 0.5 to 5-sec pulses at 554 360 nm wavelengths. Ca²⁺ imaging was as above, but Fluo4 was excited at 488 nm 555 wavelength and emitted light above 510 nm collected as above.

556

557 Western blot analysis

558 Cell lysates from 20-50 mouse eggs were prepared by adding 2X- Laemmli sample buffer.

559 Proteins were separated on 5% SDS-PAGE gels and transferred to PVDF membranes 560 (Millipore, Bedford, MA). After blocking with 5% fat-free milk + TBS, membranes were probed with the rabbit polyclonal antibody specific to IP₃R1 (1:1000; a generous gift from 561 562 Dr. Jan Parys, Katholieke Universiteit, Leuven, Belgium; Parys et al., 1995). Goat anti-563 rabbit antibody conjugated to horseradish peroxidase (HRP) was used as a secondary 564 antibody (1:5000; Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, 565 HRP; Invitrogen, Waltham, Ma). For detection of chemiluminescence, membranes were 566 developed using ECL Prime (Sigma) and exposed for 1-3 min to maximum sensitivity 567 film (VWR, Radnor, PA). Broad-range pre-stained SDS-PAGE molecular weight 568 markers (Bio-Rad, Hercules, CA) were run in parallel to estimate the molecular weight 569 of the immunoreactive bands. The same membranes were stripped at 50°C for 30 min 570 (62.5 mM Tris, 2% SDS, and 100 mM 2-beta mercaptoethanol) and re-probed with anti-571 α -tubulin monoclonal antibody (1:1000).

572

573 Immunostaining and confocal microscopy

- 574 Immunostaining was performed according to our previous study (Akizawa et al., 2021). 575 After incubation with or without TPEN, MII eggs were fixed with 4% (w/v) 576 paraformaldehyde in house-made phosphate-buffered saline (PBS) for 20 min at room 577 temperature and then permeabilized for 60 min with 0.2% (v/v) Triton X-100 in PBS. 578 Next, the eggs were blocked for 45 min with a blocking buffer containing 0.2% (w/v) 579 skim milk, 2% (v/v) fetal bovine serum, 1% (w/v) bovine serum albumin, 0.1% (v/v) 580 TritonX-100, 0.75% (w/v) glycine in PBS. Eggs were incubated overnight at 4°C with 581 mouse anti-HA antibody (1:200) diluted in blocking buffer. Eggs were washed in blocking 582 buffer 3X for 10 min, followed by incubation at room temperature for 30 min with a 583 secondary antibody, Alexa Fluor 488 goat anti-mouse IgG (H + L) (1:400) diluted in 584 blocking buffer. Fluorescence signals were visualized using a laser-scanning confocal 585 microscope (Nikon A1 Resonant Confocal with six-color TIRF) fitted with a 63×, 1.4 NA 586 oil-immersion objective lens.
- 587

588 Statistical analysis

589 Comparisons for statistical significance of experimental values between treatments and 590 experiments were performed in three or more experiments performed on different batches 591 of eggs in most studies. Given the number of eggs needed, WB studies were repeated 592 twice. Prism-GraphPad software was used to perform the statistical comparisons that 593 include unpaired Student's t-tests, Fisher's exact test, and One-way ANOVA followed by 594 Tukey's multiple comparisons, as applicable, and the production of graphs to display the

595 data. All data are presented as mean \pm s.d. Differences were considered significant at *P* < 596 0.05.

597

598 Acknowledgments

We thank Ms. Changli He for technical support and Dr. James Chambers for support with confocal microscopy support. We thank all members of the Fissore lab for useful discussions and suggestions. We thank Jan B. Parys, K.U. Leuven, Belgium, for initial discussions and advice.

603

604 **Competing interests**

- 605 The authors declare no competing or financial interests.
- 606

607 Additional information

608 Funding Sources

Funder	Grant reference number	Author					
National Institute of	RO1 HD092499	Rafael A. Fissore					
Health							
National Institute of	2021-06893	MG. Gervasi, R.A.					
Food and Agriculture		Fissore, P.E. Visconti					
Japan Society for the	Postdoctoral fellowship	Hiroki Akizawa					
Promotion of Science							
Overseas Research	Overseas Research						
Fellowship							
The funders had no role in study design, data collection and interpretation, or the							
decision to submit the work for publication.							

609

610 Author contributions

Hiroki Akizawa, Data curation, Formal analysis, Validation, Investigation, Visualization,
Writing—original draft, Writing—review and editing; Emily Lopes, Data curation,
Formal analysis, Validation; Rafael A Fissore, Conceptualization, Formal analysis,
Supervision, Funding acquisition, Methodology, Writing—original draft, Project
administration, Writing—review and editing

616

617 **References**

- Abbott AL, Xu Z, Kopf GS, Ducibella T, Schultz RM. 1998. In vitro culture retards
 spontaneous activation of cell cycle progression and cortical granule exocytosis that
 normally occur in vivo unfertilized mouse eggs. *Biol Reprod* 59:1515–1521.
 doi:10.1095/biolreprod59.6.1515
- 622 Ajduk A, Małagocki A, Maleszewski M. 2008. Cytoplasmic maturation of mammalian

623 oocytes: Development of a mechanism responsible for sperm-induced Ca2+
624 oscillations. *Reprod Biol* 8:3–22. doi:10.1016/S1642-431X(12)60001-1

- Akizawa H, Saito S, Kohri N, Furukawa E, Hayashi Y, Bai H, Nagano M, Yanagawa Y,
 Tsukahara H, Takahashi M, Kagawa S, Kawahara-Miki R, Kobayashi H, Kono T,
 Kawahara M. 2021. Deciphering two rounds of cell lineage segregations during
 bovine preimplantation development. *FASEB J* 35:1–14.
- 629 doi:10.1096/fj.202002762RR
- Ardestani G, Mehregan A, Fleig A, Horgen FD, Carvacho I, Fissore RA. 2020. Divalent
 cation influx and calcium homeostasis in germinal vesicle mouse oocytes. *Cell Calcium* 87:102181. doi:10.1016/j.ceca.2020.102181
- Arslan P, Di Virgilio F, Beltrame M. 1985. Cytosolic Ca2+ homeostasis in Ehrlich and
 Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals
 that these ascites tumor cell lines have normal cytosolic free Ca2+. *J Biol Chem*260:2719–2727. doi:10.1016/s0021-9258(18)89421-2
- Barnett B, Kretshmar H, Hartman F. 1977. Structural Characterization of Bis (jVoxopyridine-2-thionato) zinc (II). *Inorg Chem* 16:1834–1838.
- Bernhardt ML, Kim AM, O'Halloran T V., Woodruff TK. 2011. Zinc requirement during
 meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK
 pathway. *Biol Reprod* 84:526–536. doi:10.1095/biolreprod.110.086488
- Bernhardt ML, Kong BY, Kim AM, O'Halloran T V., Woodruff TK. 2012. A ZincDependent Mechanism Regulates Meiotic Progression in Mammalian Oocytes. *Biol Reprod* 86:1–10. doi:10.1095/biolreprod.111.097253
- Bernhardt ML, Padilla-Banks E, Stein P, Zhang Y, Williams CJ. 2017. Store-operated
 Ca2+ entry is not required for fertilization-induced Ca2+ signaling in mouse eggs. *Cell Calcium* 65:63–72. doi:10.1016/j.ceca.2017.02.004
- Berridge MJ. 2016. The inositol trisphosphate/calcium signaling pathway in health and
 disease. *Physiol Rev* 96:1261–1296. doi:10.1152/physrev.00006.2016
- Bhanumathy C, Da Fonseca PCA, Morris EP, Joseph SK. 2012. Identification of
 functionally critical residues in the channel domain of inositol trisphosphate
 receptors. *J Biol Chem* 287:43674–43684. doi:10.1074/jbc.M112.415786
- Bootman MD, Taylor CW, Berridge MJ. 1992. The thiol reagent, thimerosal, evokes
 Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J *Biol Chem* 267:25113–25119. doi:10.1016/s0021-9258(19)74013-7
- Brind S, Swann K, Carroll J. 2000. Inositol 1,4,5-trisphosphate receptors are
 downregulated in mouse oocytes in response to sperm or adenophostin A but not to
 increases in intracellular Ca2+ or egg activation. *Dev Biol* 223:251–265.

659 doi:10.1006/dbio.2000.9728

- Broun ER, Greist A, Tricot G, Hoffman R. 1990. Excessive Zinc Ingestion: A Reversible
 Cause of Sideroblastic Anemia and Bone Marrow Depression. JAMA J Am Med
 Assoc 264:1441–1443. doi:10.1001/jama.1990.03450110087033
- 663 Carraway RE, Dobner PR. 2012. Zinc pyrithione induces ERK- and PKC-dependent
 664 necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. *Biochim* 665 *Biophys Acta Mol Cell Res* 1823:544–557. doi:10.1016/j.bbamcr.2011.09.013
- Carvacho I, Ardestani G, Lee HC, McGarvey K, Fissore RA, Lykke-Hartmann K. 2016.
 TRPM7-like channels are functionally expressed in oocytes and modulate post fertilization embryo development in mouse. *Sci Rep* 6:1–12. doi:10.1038/srep34236
- Carvacho I, Lee HC, Fissore RA, Clapham DE. 2013. TRPV3 Channels mediate
 strontium-induced mouse-egg activation. *Cell Rep* 5:1375–1386.
 doi:10.1016/j.celrep.2013.11.007
- 672 Converse A, Thomas P. 2020. The zinc transporter ZIP9 (Slc39a9) regulates zinc
 673 dynamics essential to egg activation in zebrafish. *Sci Rep* 10:1–14.
 674 doi:10.1038/s41598-020-72515-4
- Deguchi R, Shirakawa H, Oda S, Mohri T, Miyazaki S. 2000. Spatiotemporal analysis of
 Ca2+ waves in relation to the sperm entry site and animal-vegetal axis during Ca2+
 oscillations in fertilized mouse eggs. *Dev Biol* 218:299–313.
 doi:10.1006/dbio.1999.9573
- des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson
 WA, Marks AR, Frank J. 2016. Structural Basis for Gating and Activation of RyR1. *Cell* 167:145-157.e17. doi:10.1016/j.cell.2016.08.075
- Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux
 S, Ozil J-P. 2002. Egg-to-Embryo Transition Is Driven by Differential Responses to
 Ca2+ Oscillation Number. *Dev Biol* 250:280–291. doi:10.1006/dbio.2002.0788
- 685Dupont G, McGuinness OM, Johnson MH, Berridge MJ, Borgese F. 1996. Phospholipase686C in mouse oocytes: Characterization of β and γ isoforms and their possible687involvement in sperm-induced Ca2+ spiking. *Biochem J* **316**:583–591.688doi:10.1042/bj3160583
- Eppig JJ. 1996. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian
 mammals. *Reprod Fertil Dev* 8:485–489. doi:10.1071/RD9960485
- Evellin S, Nolte J, Tysack K, Dorp F Vom, Thiel M, Oude Weernink PA, Jakobs KH,
 Webb EJ, Lomasney JW, Schmidt M. 2002. Stimulation of phospholipase C-ε by
 the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase
 Rap2B. *J Biol Chem* 277:16805–16813. doi:10.1074/jbc.M112024200

695 Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva

- II. 2015. Gating machinery of InsP3R channels revealed by electron cryomicroscopy.
 Nature 527:336–341. doi:10.1038/nature15249
- Fan G, Baker MR, Terry LE, Arige V, Chen M, Seryshev AB, Baker ML, Ludtke SJ,
 Yule DI, Serysheva II. 2022. Conformational motions and ligand-binding underlying
 gating and regulation in IP3R channel. *Nat Commun* 13:1–15. doi:10.1038/s41467022-34574-1
- Fissore RA, Longo FJ, Anderson E, Parys JB, Ducibella T. 1999. Differential distribution
 of inositol trisphosphate receptor isoforms in mouse oocytes. *Biol Reprod* 60:49–57.
 doi:10.1095/biolreprod60.1.49
- Fujiwara T, Nakada K, Shirakawa H, Shunichi M. 1993. Development of inositol
 trisphosphate-induced calcium release mechanism during maturation of hamster
 oocytes. *Dev Biol.*
- Gee KR, Zhou ZL, Qian WJ, Kennedy R. 2002. Detection and imaging of zinc secretion
 from pancreatic, β-cells using a new fluorescent zinc indicator. *J Am Chem Soc* 124:776–778. doi:10.1021/ja011774y
- Hajnóczky G, Thomas AP. 1997. Minimal requirements for calcium oscillations driven
 by the IP3 receptor. *EMBO J* 16:3533–3543. doi:10.1093/emboj/16.12.3533
- Hamada K, Terauchi A, Mikoshiba K. 2003. Three-dimensional Rearrangements within
 Inositol 1,4,5-Trisphosphate Receptor by Calcium. *J Biol Chem* 278:52881–52889.
 doi:10.1074/jbc.M309743200
- Hara T, Yoshigai E, Ohashi T, Fukada T. 2022. Zinc transporters as potential therapeutic
 targets: An updated review. *J Pharmacol Sci* 148:221–228.
 doi:10.1016/j.jphs.2021.11.007
- Heim A, Tischer T, Mayer TU. 2018. Calcineurin promotes APC/C activation at meiotic
 exit by acting on both XErp1 and Cdc20. *EMBO Rep* 19:1–10.
 doi:10.15252/embr.201846433
- Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K. 2005. Subtypespecific and ER lumenal environment-dependent regulation of inositol 1,4,5trisphosphate receptor type 1 by ERp44. *Cell* 120:85–98.
 doi:10.1016/j.cell.2004.11.048
- Iino M. 1990. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca
 release in smooth muscle cells of the guinea pig taenia caeci. *J Gen Physiol* 95:1103–
 1122. doi:10.1085/jgp.95.6.1103
- Jean T, Klee CB. 1986. Calcium modulation of inositol 1,4,5-trisphosphate-induced
 calcium release from neuroblastoma x glioma hybrid (NG108-15) microsomes. J

731 Biol Chem 261:16414-16420. doi:10.1016/s0021-9258(18)66582-2 732 Jellerette T, He CL, Wu H, Parys JB, Fissore RA. 2000. Down-regulation of the Inositol 733 1,4,5-Triphosphate Receptor in Mouse Eggs Following Fertilization or 734 Parthenogenetic Activation. Dev Biol 223:238-250. doi:10.1006/dbio.2000.9675 735 Jellerette T, Kurokawa M, Lee B, Malcuit C, Yoon SY, Smyth J, Vermassen E, De Smedt 736 H, Parys JB, Fissore RA. 2004. Cell cycle-coupled [Ca2+]i oscillations in mouse 737 zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Dev Biol 274:94-738 109. doi:10.1016/j.ydbio.2004.06.020 739 Joseph SK, Young MP, Alzavady K, Yule DI, Ali M, Booth DM, Hajnóczky G. 2018. 740 Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. 741 J Biol Chem 293:17464-17476. doi:10.1074/jbc.RA118.005624 742 Kang D, Park JY, Han J, Bae IH, Yoon SY, Kang SS, Choi WS, Hong SG. 2003. 743 Acetylcholine induces Ca2+ oscillations via m3/m4 muscarinic receptors in the 744 mouse oocyte. Pflugers Arch Eur J Physiol 447:321-327. doi:10.1007/s00424-003-745 1184-y 746 Kaur K, Gupta R, Saraf SA, Saraf SK. 2014. Zinc: The metal of life. Compr Rev Food 747 *Sci Food Saf* **13**:358–376. doi:10.1111/1541-4337.12067 748 Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, O'Halloran T V. 749 2011. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption 750 in mammalian eggs. ACS Chem Biol 6:716-723. doi:10.1021/cb200084y 751 Kim AM, Vogt S, O'Halloran T V., Woodruff TK. 2010. Zinc availability regulates exit 752 from meiosis in maturing mammalian oocytes. Nat Chem Biol 6:674-681. 753 doi:10.1038/nchembio.419 754 Kurokawa M, Fissore RA. 2003. ICSI-generated mouse zygotes exhibit altered calcium 755 oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo 756 development. Mol Hum Reprod 9:523-533. doi:10.1093/molehr/gag072 757 Lawrence Y, Ozil JP, Swann K. 1998. The effects of a Ca2+ chelator and heavy-metal-758 ion chelators upon Ca2+ oscillations and activation at fertilization in mouse eggs 759 suggest a role for repetitive Ca2+ increases. Biochem J 335:335-342. 760 doi:10.1042/bj3350335 761 Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys 762 JB, Fissore RA. 2006. Phosphorylation of IP3R1 and the regulation of [Ca2+]i 763 responses at fertilization: A role for the MAP kinase pathway. Development 764 133:4355-4365. doi:10.1242/dev.02624 765 Lemos FO, Bultynck G, Parys JB. 2021. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca2+-leak channels. Biochim Biophys Acta 766

767 - Mol Cell Res 1868:119020. doi:10.1016/j.bbamcr.2021.119020

- Liu M. 2011. The biology and dynamics of mammalian cortical granules. *Reprod Biol Endocrinol* 9:1–17. doi:10.1186/1477-7827-9-149
- Lo MN, Damon LJ, Tay JW, Jia S, Palmer AE. 2020. Single cell analysis reveals multiple
 requirements for zinc in the mammalian cell cycle. *Elife* 9:1–24.
 doi:10.7554/eLife.51107
- Lorca T, Cruzalegui FH, Fesquet D, Cavadore J, Méry J, Means A, Marcel D. 1993.
 Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon
 fertilization of Xenopus eggs. *Nature* 366:270–273.
- Maret W, Li Y. 2009. Coordination dynamics of zinc in proteins. *Chem Rev* 109:4682–
 4707. doi:10.1021/cr800556u
- Matsu-ura T, Shirakawa H, Suzuki KGN, Miyamoto A, Sugiura K, Michikawa T, Kusumi
 A, Mikoshiba K. 2019. Dual-FRET imaging of IP 3 and Ca 2+ revealed Ca 2+ induced IP 3 production maintains long lasting Ca 2+ oscillations in fertilized mouse
 eggs. *Sci Rep* 9:1–11. doi:10.1038/s41598-019-40931-w
- 782 Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. 2012. TPEN induces apoptosis 783 independently of zinc chelator activity in a model of acute lymphoblastic leukemia 784 and Ex vivo acute leukemia cells through oxidative stress and mitochondria caspase-785 3and AIF-dependent pathways. Oxid Med Cell Longev 2012. 786 doi:10.1155/2012/313275
- Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O'halloran T V.
 2022. Dynamic zinc fluxes regulate meiotic progression in Caenorhabditis elegans.
 Biol Reprod 107:406–418. doi:10.1093/biolre/ioac064
- Miao YL, Stein P, Jefferson WN, Padilla-Banks E, Williams CJ. 2012. Calcium influx mediated signaling is required for complete mouse egg activation. *Proc Natl Acad Sci U S A* 109:4169–4174. doi:10.1073/pnas.1112333109
- Miyazaki S. 1988. Inositol 1,4,5-trisphosphate-induced calcium release and guanine
 nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs.
 J Cell Biol 106:345–353.
- Miyazaki S, Ito M. 2006. Calcium signals for egg activation in mammals. *J Pharmacol Sci* 100:545–552. doi:10.1254/jphs.CPJ06003X
- Miyazaki SI, Hashimoto N, Yoshimoto Y, Kishimoto T, Igusa Y, Hiramoto Y. 1986.
 Temporal and spatial dynamics of the periodic increase in intracellular free calcium
 at fertilization of golden hamster eggs. *Dev Biol* 118:259–267. doi:10.1016/00121606(86)90093-X
- 802 Miyazaki SI, Yuzaki M, Nakada K, Shirakawa H, Nakanishi S, Nakade S, Mikoshiba K.

803 1992. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5804 trisphosphate receptor in fertilized hamster eggs. *Science (80-)* 257:251–255.
805 doi:10.1126/science.1321497

- Nomikos M, Elgmati K, Theodoridou M, Calver BL, Nounesis G, Swann K, Lai FA. 2011.
 Phospholipase Cζ binding to PtdIns(4,5)P 2 requires the XY-linker region. *J Cell Sci* 124:2582–2590. doi:10.1242/jcs.083485
- Nomikos M, Sanders JR, Parthimos D, Buntwal L, Calver BL, Stamatiadis P, Smith A,
 Clue M, Sideratou Z, Swann K, Lai FA. 2015. Essential role of the EF-hand domain
 in targeting sperm phospholipase Cζ to membrane phosphatidylinositol 4,5bisphosphate (PIP2). *J Biol Chem* 290:29519–29530. doi:10.1074/jbc.M115.658443
- Pace NJ, Weerapana E. 2014. A competitive chemical-proteomic platform to identify
 zinc-binding cysteines. ACS Chem Biol 9:258–265. doi:10.1021/cb400622
- Paknejad N, Hite RK. 2018. Structural basis for the regulation of inositol trisphosphate
 receptors by Ca2+ and IP3. *Nat Struct Mol Biol* 25:660–668. doi:10.1038/s41594018-0089-6
- Palmer AE, Jin C, Reed JC, Tsien RY. 2004. Bcl-2-mediated alterations in endoplasmic
 reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. *Proc Natl Acad Sci U S A* 101:17404–17409. doi:10.1073/pnas.0408030101
- Parrington J, Brind S, De Smedt H, Gangeswaran R, Anthony Lai F, Wojcikiewicz R,
 Carroll J. 1998. Expression of inositol 1,4,5-trisphosphate receptors in mouse
 oocytes and early embryos: The type I isoform is upregulated in oocytes and
 downregulated after fertilization. *Dev Biol* 203:451–461.
 doi:10.1006/dbio.1998.9071
- Parys JB, De Smedt H, Missiaen L, Bootman MD, Sienaert I, Casteels R. 1995. Rat
 basophiliv leukemia cells as model system for inositol 1,4,5-trisphosphate receptor
 IV, a receptor of the type II family: functional comparison and immunological
 detection. *Cell Calcium* 17:239–249. doi:10.1016/0143-4160(95)90070-5
- Perreault SD, Barbee RR, Slott VL. 1988. Importance of glutathione in the acquisition
 and maintenance of sperm nuclear decondensing activity in maturing hamster
 oocytes. *Dev Biol* 125:181–186. doi:10.1016/0012-1606(88)90070-X
- Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE. 2011. Measuring steady-state and
 dynamic endoplasmic reticulum and Golgi Zn 2+ with genetically encoded sensors. *Proc Natl Acad Sci U S A* 108:7351–7356. doi:10.1073/pnas.1015686108
- Que EL, Bleher R, Duncan FE, Kong BY, Gleber SC, Vogt S, Chen S, Garwin SA, Bayer
 AR, Dravid VP, Woodruff TK, O'Halloran T V. 2015. Quantitative mapping of zinc
 fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

839 *Nat Chem* **7**:130–139. doi:10.1038/nchem.2133

- Que EL, Duncan FE, Lee HC, Hornick JE, Vogt S, Fissore RA, O'Halloran T V.,
 Woodruff TK. 2019. Bovine eggs release zinc in response to parthenogenetic and
 sperm-induced egg activation. *Theriogenology* 127:41–48.
 doi:10.1016/j.theriogenology.2018.12.031
- Richardson A, Taylor CW. 1993. Effects of Ca2+ chelators on purified inositol 1,4,5trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. *J Biol Chem* 268:11528–11533. doi:10.1016/s0021-9258(19)50232-0
- Ridgway EB, Gilkey JC, Jaffe LF. 1977. Free calcium increases explosively in activating
 medaka eggs. *Proc Natl Acad Sci U S A* 74:623–627. doi:10.1073/pnas.74.2.623
- Robinson MA. 1964. Complexes of 1-hydroxy 2-pyridinethione. *J Inorg Nucl Chem* 26:1277–1281. doi:10.1016/0022-1902(64)80210-4
- 851 Sanders JR, Ashley B, Moon A, Woolley TE, Swann K. 2018. PLC₁ induced Ca2+ 852 oscillations in mouse eggs involve a positive feedback cycle of Ca2+ induced InsP3 853 formation cytoplasmic PIP2. Front Cell from Dev Biol **6**:1–14. 854 doi:10.3389/fcell.2018.00036
- Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai
 FA. 2002. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and
 embryo development. *Development* 129:3533–44.
- Schultz RM, Kopf GS. 1995. Molecular Basis of Mammalian Egg Activation. *Curr Top Dev Biol* 30:21–62. doi:10.1007/978-3-642-83139-3_7
- Seeler JF, Sharma A, Zaluzec NJ, Bleher R, Lai B, Schultz EG, Hoffman BM, LaBonne
 C, Woodruff TK, O'Halloran T V. 2021. Metal ion fluxes controlling amphibian
 fertilization. *Nat Chem* 13:683–691. doi:10.1038/s41557-021-00705-2
- Shoji S, Muto Y, Ikeda M, He F, Tsuda K, Ohsawa N, Akasaka R, Terada T, Wakiyama
 M, Shirouzu M, Yokoyama S. 2014. The zinc-binding region (ZBR) fragment of
 Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and
 UBE2C-mediated ubiquitylation. *FEBS Open Bio* 4:689–703.
 doi:10.1016/j.fob.2014.06.010
- Shoji S, Yoshida N, Amanai M, Ohgishi M, Fukui T, Fujimoto S, Nakano Y, Kajikawa 868 869 E, Perry ACF. 2006. Mammalian Emi2 mediates cytostatic arrest and transduces the 870 for meiotic exit via Cdc20. EMBO **25**:834–845. signal J871 doi:10.1038/sj.emboj.7600953
- Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R. 1997. Molecular and
 functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5trisphosphate receptor. J Biol Chem 272:25899–25906.

doi:10.1074/jbc.272.41.25899

- Sikora J, Ouagazzal AM. 2021. Synaptic zinc: An emerging player in Parkinson's disease.
 Int J Mol Sci 22:1–16. doi:10.3390/ijms22094724
- Sipma H, De Smet P, Sienaert I, Vanlingen S, Missiaen L, Parys JB, De Smedt H. 1999.
 Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligandbinding site of the type-1 inositol 1,4,5-trisphosphate receptor by Ca2+ and
- calmodulin. *J Biol Chem* **274**:12157–12162. doi:10.1074/jbc.274.17.12157
- Snitsarev VA, McNulty TJ, Taylor CW. 1996. Endogenous heavy metal ions perturb fura2 measurements of basal and hormone-evoked Ca2+ signals. *Biophys J* 71:1048–
 1056. doi:10.1016/S0006-3495(96)79305-0
- Stein P, Savy V, Williams AM, Williams CJ. 2020. Modulators of calcium signalling at
 fertilization. *Open Biol* 10. doi:10.1098/rsob.200118
- Stricker SA. 1999. Comparative biology of calcium signaling during fertilization and egg
 activation in animals. *Dev Biol* 211:157–176. doi:10.1006/dbio.1999.9340
- Suzuki T, Suzuki E, Yoshida N, Kubo A, Li H, Okuda E, Amanai M, Perry ACF. 2010a.
 Mouse Emi2 as a distinctive regulatory hub in second meiotic metaphase. *Development* 137:3281–3291. doi:10.1242/dev.052480
- Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. 2010b. Full-term mouse
 development by abolishing Zn2+-dependent metaphase II arrest without Ca2+
 release. *Development* 137:2659–2669. doi:10.1242/dev.049791
- Swann K, Parrington J. 1999. Mechanism of Ca2+ release at fertilization in mammals. J
 Exp Zool 285:267–275. doi:10.1002/(SICI)1097-010X(19991015)285:3<267::AID-
 JEZ10>3.0.CO;2-P
- Taylor CW, Tovey SC. 2010. IP3 Receptors: Toward Understanding Their Activation.
 Cold Spring Harb Perspect Biol 2:1–23.
- Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. 1990. Thapsigargin, a
 tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the
 endoplasmic reticulum Ca2+-ATPase. *Proc Natl Acad Sci U S A* 87:2466–2470.
 doi:10.1073/pnas.87.7.2466
- Toeplitz BK, Cohen AI, Funke PT, Parker WL, Gougoutas JZ. 1979. Structure of
 Ionomycin—A Novel Diacidic Polyether Antibiotic Having High Affinity for
 Calcium Ions. J Am Chem Soc 101:3344–3353. doi:10.1021/ja00506a035
- Tokuhiro K, Dean J. 2018. Glycan-Independent Gamete Recognition Triggers Egg Zinc
 Sparks and ZP2 Cleavage to Prevent Polyspermy. *Dev Cell* 46:627-640.e5.
 doi:10.1016/j.devcel.2018.07.020
- 910 Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. 2003. Critical regions

911 for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem
912 **278**:16551–16560. doi:10.1074/jbc.M300646200

- Wakai T, Fissore RA. 2019. Constitutive IP3R1-mediated Ca2+ release reduces Ca2+
 store content and stimulates mitochondrial metabolism in mouse GV oocytes. *J Cell Sci* 132. doi:10.1242/jcs.225441
- Wakai T, Fissore RA. 2013. Ca2+ homeostasis and regulation of ER Ca2+ in mammalian
 oocytes/eggs. *Cell Calcium* 53:63–67. doi:10.1016/j.ceca.2012.11.010
- Wakai T, Harada Y, Miyado K, Kono T. 2014. Mitochondrial dynamics controlled by
 mitofusins define organelle positioning and movement during mouse oocyte
 maturation. *Mol Hum Reprod* 20:1090–1100. doi:10.1093/molehr/gau064
- Wakai T, Mehregan A, Fissore RA. 2019. Ca2+ signaling and homeostasis in mammalian
 oocytes and eggs. *Cold Spring Harb Perspect Biol* 11.
 doi:10.1101/cshperspect.a035162
- Wakai T, Vanderheyden V, Yoon SY, Cheon B, Zhang N, Parys JB, Fissore RA. 2012.
 Regulation of inositol 1,4,5-trisphosphate receptor function during mouse oocyte
 maturation. *J Cell Physiol* 227:705–717. doi:10.1002/jcp.22778
- Wakai T, Zhang N, Vangheluwe P, Fissore RA. 2013. Regulation of endoplasmic
 reticulum Ca2+ oscillations in mammalian eggs. J Cell Sci 126:5714–5724.
 doi:10.1242/jcs.136549
- Walker JW, Somlyo A V., Goldman YE, Somlyo AP, Trentham DR. 1987. Kinetics of
 smooth and skeletal muscle activation by laser pulse photolysis of caged inositol
 1,4,5-trisphosphate. *Nature* 327:249–252.
- Watanabe S, Amagai Y, Sannino S, Tempio T, Anelli T, Harayama M, Masui S,
 Sorrentino I, Yamada M, Sitia R, Inaba K. 2019. Zinc regulates ERp44-dependent
 protein quality control in the early secretory pathway. *Nat Commun* 10:1–16.
 doi:10.1038/s41467-019-08429-1
- 937 Webster JM, Tiwari S, Weissman AM, Wojcikiewicz RJH. 2003. Inositol 1,4,5-938 trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component 939 of the endoplasmic reticulum-associated degradation pathway, and is inhibited by 940 chelation of intracellular Zn2+. Biol Chem **278**:38238–38246. J941 doi:10.1074/jbc.M305600200
- Woodier J, Rainbow RD, Stewart AJ, Pitt SJ. 2015. Intracellular zinc modulates cardiac
 ryanodine receptor-mediated calcium release. *J Biol Chem* 290:17599–17610.
 doi:10.1074/jbc.M115.661280
- Wozniak KL, Bainbridge RE, Summerville DW, Tembo M, Phelps WA, Sauer ML,
 Wisner BW, Czekalski ME, Pasumarthy S, Hanson ML, Linderman MB, Luu CH,

Boehm ME, Sanders SM, Buckley KM, Bain DJ, Nicotra ML, Lee MT, Carlson AE.

- 2020. Zinc protection of fertilized eggs is an ancient feature of sexual reproduction
 in animals. *PLoS Biol* 18:1–17. doi:10.1371/journal.pbio.3000811
- Wu H, Smyth J, Luzzi V, Fukami K, Takenawa T, Black SL, Allbritton NL, Fissore RA.
 2001. Sperm factor induces intracellular free calcium oscillations by stimulating the
 phosphoinositide pathway. *Biol Reprod* 64:1338–1349.
 doi:10.1095/biolreprod64.5.1338
- Wu L, Sweet T, Clapham DE. 2010. Current Progress in the Mammalian TRP Ion
 Channel Family. *Pharmocol Rev* 62:381–404.
 doi:10.1124/pr.110.002725.Abbreviations
- Xu Z, Williams CJ, Kopf GS, Schultz RM. 2003. Maturation-associated increase in IP3
 receptor type 1: Role in conferring increased IP3 sensitivity and Ca2+ oscillatory
 behavior in mouse eggs. *Dev Biol* 254:163–171. doi:10.1016/S00121606(02)00049-0
- 961 Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T,
 962 Yamashita S, Tokunaga M, Nishida K, Hirano T. 2007. Zinc is a novel intracellular
 963 second messenger. *J Cell Biol* 177:637–645. doi:10.1083/jcb.200702081
- Zhang N, Duncan FE, Que EL, O'Halloran T V., Woodruff TK. 2016. The fertilizationinduced zinc spark is a novel biomarker of mouse embryo quality and early
 development. *Sci Rep* 6:1–9. doi:10.1038/srep22772

967

968 **Table**

969 Table 1. Addition of TPEN after ICSI does not prevent extrusion of the second polar

970 **body but precludes pronuclear (PN) formation.**

Crown*	No. of zygotes	2 nd polar body (2.5h)	PN		
Group			4h	7h	
Untreated	26	25 (96.1%)	23 (88.5%)	23 (88.5%)	
TPEN (10µM)	27	24 (88.9%)	$1(3.7\%)^{***}$	$2(7.4\%)^{***}$	
***		·	•		

971 $^{***}P < 0.001$

972 *Data from three different replicates for each group.

973 Figures Legends

974 Figure 1. TPEN-induced Zn²⁺ deficiency inhibits fertilization-initiated Ca²⁺ 975 oscillations in a dose-dependent manner.

- (A) (Left panel) Representative normalized Zn^{2+} recordings of MII eggs loaded with 976 FluoZin-3AM following the addition of increasing concentrations of TPEN (0 µM, 977 978 DMSO, black trace; 2.5 µM, sky blue; 5 µM, blue; 10 µM, navy). TPEN was directly 979 added to the monitoring media. (Right panel) Representative fluorescent images of MII 980 eggs loaded FluoZin-3AM supplemented with 0, 2.5, and 10 µM of TPEN. Scale bar: 10 μ m. (**B-D**). (**B**) Representative Ca²⁺ oscillations following ICSI after the addition of 0, 5, 981 10, or 50 µM TPEN (arrowheads). Insets show representative traces for eggs that resumed 982 Ca^{2+} oscillations after TPEN. (C) As above, but following the addition of 100 μ M EDTA, 983 100 or 500 μ M DTPA (time of addition denoted by arrowheads). (**D**) Ca²⁺ oscillations 984 following ICSI after the addition of 50, 100, and 500 µM TPA (horizontal bars of 985 986 increasing thickness). (E) Representative bright field images of ICSI fertilized eggs 2.5, 987 4, and 7 h after sperm injection. Arrows and arrowheads denote the second polar body 988 and PN formation, respectively. Scale bar: 10 µm.
- 989

Figure 2. TPEN dose-dependently inhibits Ca²⁺ oscillations in eggs triggered by a broad-spectrum of agonists that stimulate the PI pathway or IP₃R1.

- (A-D) Representative Ca²⁺ responses induced by (A) mPlc ζ mRNA microinjection (0.01 992 ug/ul, black traces), (B) strontium chloride (10 mM, green), (C) acetylcholine chloride 993 994 (50 µM, orange), and (D) thimerosal (25 µM, purple) in MII eggs. Increasing 995 concentrations of TPEN were added to the monitoring media (arrowheads above traces 996 denotes the time of adding). Insets in the upper row show representative traces of eggs 997 that stop oscillating despite others continuing to oscillate. (E) Each bar graph summarizes 998 the TPEN effect on Ca^{2+} oscillations at the selected concentrations for each of the agonists in A-D. (F) Western blot showing the intensities of IP₃R1 and alpha-tubulin bands in MII 999 1000 eggs or in eggs injected with mPlc ζ mRNA and incubated or not with TPEN above (P < 0.01). Thirty eggs per lane in all cases. This experiment was repeated twice, and the mean 1001 1002 relative intensity of each blot is shown in the bar graph below.
- 1003

Figure 3. TPEN inhibition of cIP₃-induced Ca²⁺ release is precluded by ZnSO₄ supplementation before TPEN exposure.

1006 (A-G) Representative Ca^{2+} responses in MII eggs triggered by the release of caged IP₃

- 1007 (cIP₃) induced by UV light pulses of increasing duration (arrows). (A) A representative
- 1008 control trace without TPEN, and (B) following the addition of 10 μ M TPEN between the

third and the fourth pulses. The broken line rectangle is magnified in the inset, farthestright side of the panel displaying the near immediate termination of an ongoing rise. (C,

- 1011 **D**) Recordings started in the presence of 10 μ M TPEN but in (**D**) 100 μ M ZnSO₄ was
- 1012 added between the second and the third pulses. (E) Recording started in the presence of
- 1013 $100 \,\mu\text{M}$ ZnSO₄ followed by the addition of 10 μM TPEN between the third and the fourth
- 1014 pulses. (F, G) Recording started in the presence of 100 µM MgSO₄ (F) or 100 µM CaCl₂
- 1015 (G) and 10 µM TPEN added as above. Arrowheads above the different panels indicate
- 1016 the time of TPEN or divalent cation addition. (H) Bar graphs summarizing the number 1017 and percentages of eggs that responded to a given duration of UV pulses under each of 1018 the TPEN±divalent ions.
- 1019

Figure 4. Zn²⁺ depletion alters Ca²⁺ homeostasis and increases Ca²⁺ store content independent of IP₃R1 mass.

 (\mathbf{A}, \mathbf{B}) Representative Ca²⁺ traces of MII eggs after the addition of Tg and Io in the 1022 presence or absence of TPEN. Blue trace recordings represent TPEN-treated eggs 1023 1024 whereas gray traces represent control, untreated eggs. (A) Io was added to fresh MII eggs once Ca^{2+} returned to baseline after treatment with Tg. Comparisons of mean peak 1025 amplitudes after Tg and Io are shown in the bar graphs in the right panel (P < 0.001). 1026 (B) MII eggs were aged by 2h. incubation supplemented or not with TPEN followed by 1027 Io addition and Ca^{2+} monitoring (P < 0.001). (C) Western blot showing the intensities of 1028 IP₃R1 bands in MII eggs freshly collected, aged by 4h. incubation without TPEN, and 1029 with TPEN. Thirty eggs per lane in all cases. This experiment was repeated three times. 1030 (**D**, **E**) (Left panels) Representative traces of Ca^{2+} values in eggs loaded with the Ca^{2+} -1031 sensitive dye Rhod-2 AM and the ER Ca²⁺reporter, D1ER (1 μ g/ μ l mRNA). TPEN was 1032 1033 added into the media followed 10 min later by (**D**) 10 μ M Tg and (**E**) 50 μ M Ach. 1034 (Right panel) Bars represent the difference of FRET value between at the time of Tg/ Ach addition and at 3 and 5 min later of the addition (P < 0.05). Experiments were 1035 repeated two different times for each treatment. Black and green traces represent 1036 cytosolic Ca²⁺ and Ca²⁺-ER, respectively. Blue and black arrowheads indicate the time 1037 of addition of TPEN and Tg/Ach, respectively. (F) Basal Zn^{2+} level comparison in WT 1038 (open bar) and *Trpv3^{-/-}/Trpm7^{-/-}* (dKO, orange bar) MII eggs. Each plot represents the 1039 Fluozin3 measurement at 5 min after starting monitoring. (G) (Left panel) 1040 Representative Ca²⁺ traces of WT (black trace) and dKO (orange trace) MII eggs after 1041 adding Tg. Insets represent the magnified traces at the peak of Ca²⁺ spike from different 1042 1043 sets of eggs. (Middle panel) Individual traces of WT and dKO eggs after Tg addition. Dashed circles represent the flection point in dKO traces. (Right panel) Comparisons of 1044

1045 mean peak amplitudes after Tg and the time between Tg addition and the Ca^{2+} peak are 1046 shown in the bar graphs in the right panel (P < 0.001).

1047

Figure 5. Restoring Zn²⁺ levels with ZnPT rescues oscillations interrupted by TPEN induced Zn²⁺ deficiency.

- (A) Representative traces of Zn^{2+} in MII eggs following the addition of 0.01 to 0.1 μ M 1050 concentrations of ZnPT. The broken rectangular area is amplified in the next panel to 1051 appreciate the subtle increase in basal Zn^{2+} caused by the addition of ZnPT. (**B**, **C**) mPlc ζ 1052 mRNA (0.01 µg/µl)-induced oscillations followed by the addition of TPEN (black 1053 1054 arrowhead) (B), or after the addition of TPEN followed by ZnPT (red arrowhead) (C). (D, 1055 **E**) Thimerosal (25 μ M) induced oscillations using the same sequence of TPEN (**D**) and ZnPT (E), but higher concentrations of ZnPT were required to rescue Thimerosal-initiated 1056 oscillations (E). These experiments were repeated at least two different times. 1057
- 1058

1059 **Figure 6. Excess Zn²⁺ hinders Ca²⁺ oscillations.**

- (A-D) ICSI-initiated Ca^{2+} response without (A) or following the addition of ZnPT (B, C) 1060 (the time of ZnPT addition and concentration are denoted above the tracing). (E, F) 1061 Representative Ca^{2+} responses induced by injection of 0.01 $\mu g/\mu l$ mPlc ζ mRNA in 1062 untreated eggs (E) or in eggs treated with 0.1 µM ZnPT followed by 10 µM TPEN first 1063 and then 50 μ M (F). (G) cIP₃-induced Ca²⁺ release as expected when the UV pulses in 1064 the absence but not in the presence of $0.05 \,\mu\text{M}$ ZnPT (the time of addition is denoted by 1065 a bar above the tracing). (H, I) Representative traces of Ca²⁺ values in eggs loaded with 1066 the Ca²⁺-sensitive dye Rhod-2 AM and the ER Ca²⁺reporter, D1ER (1 μ g/ μ l mRNA). 1067 Uninjected and 0.01 μg/μl mPlcζ mRNA-injected eggs were monitored. After initiation 1068 1069 and establishment of the oscillations, 0.1 µM ZnPT was added into the media followed 1070 30 min later by 2.5 µM Io. Experiments were repeated two different times. Red and black arrowheads indicate the time of addition of ZnPT and Io, respectively. 1071
- 1072

Figure 7. Schematic of proposed regulation of IP₃R1 function by Zn²⁺ in eggs and fertilized zygotes.

- 1075 In MII eggs, left panel, IP₃R1s are in a Ca²⁺-release permissive state with optimal levels 1076 of cytoplasmic Ca²⁺ and Zn²⁺ and maximum ER content, but Ca²⁺ is maintained at resting 1077 levels by the combined actions of pumps, ER Ca²⁺ leak, and reduced influx. Once 1078 fertilization takes place, left center panel, robust IP₃ production induced by the sperm-1079 borne PLC ζ leads to Ca²⁺ release through ligand-induced gating of IP₃R1. Continuous IP₃
- 1080 production and refilling of the stores via Ca^{2+} influx ensure the persistence of the

oscillations. Zn^{2+} release occurs in association with first few Ca^{2+} rises and cortical 1081 granule exocytosis, Zn^{2+} sparks, lowering Zn^{2+} levels but not sufficiently to inhibit IP₃R1 1082 function. Zn^{2+} deficiency caused by TPEN or other permeable Zn^{2+} chelators, right center 1083 panel, dose-dependently impairs IP₃R1 function and limits Ca^{2+} release. We propose this 1084 is accomplished by stripping the Zn^{2+} bound to the residues of the zinc-finger motif in the 1085 LNK domain of IP₃R1 that prevents the allosteric modulation of the gating process 1086 induced by IP₃ or other agonists. We propose that excess Zn^{2+} , right panel, also inhibits 1087 IP₃R1-mediate Ca²⁺ release, possibly by non-specific binding of thiol groups present in 1088 cysteine residues throughout the receptor (denoted by a ?). We submit that optimal Ca^{2+} 1089 oscillations in mouse eggs unfold in the presence of a permissive range of Zn^{2+} 1090 concentration. 1091

1092 Supplementary Figure Legends

1093

Supplementary Figure 1. Cell-impermeable chelators effectively reduce Zn²⁺ levels in external media but do prevent initiation or continuation of Ca²⁺ oscillations.

1096 (A) A representative trace of FluoZin3 fluorescence in replete monitoring media (TL-HEPES). The 1097 media was supplemented with cell-impermeable FluoZin-3, and after initiation of monitoring, the 1098 addition of EDTA (100 µM) occurred at the designated point (triangle). (B) The left black trace represents Ca²⁺ oscillations initiation by injection of mPlc ζ mRNA (0.01 µg/µl). The oscillations were 1099 monitored in Ca^{2+} and Mg^{2+} -free media and in the presence of EDTA (110 μ M) to chelate residual 1100 divalent cations derived from the water source or reagents used to make the media. The right red trace 1101 1102 represents the initiation of oscillations as above, but after a period indicated by the black and green bars, Ca²⁺ and Mg²⁺ were sequentially added back. 1103

1104

1105Supplementary Figure 2. Overexpression of ER accessory protein ERp44 did not1106change the Ca^{2+} responses initiated by mPlc ζ mRNA microinjection, Actylcholine,1107or SrCl₂.

1108 (A) Representative immunofluorescent images of MII eggs with overexpression of 1109 ERp44. At 5 hr. post microinjection, eggs were treated with 10 or 50 μ M of TPEN and 1110 incubated for 1 hr, after which they were fixed and stained. An anti-HA antibody was 1111 used. Scale bar: 10 μ m. (B) Representative Ca²⁺ responses induced by m*Plc* ζ mRNA 1112 microinjection (0.01 μ g/ μ l-left column), SrCl₂ (10 mM-center column), and 1113 acetylcholine (50 μ M-right column) in eggs with (top panels) or without (bottom panels) 1114 ERp44 overexpression.

1115

Supplementary Figure 3. Elevated Zn²⁺ impairs egg activation and the subsequent embryo development.

(A) MII eggs were incubated in TL-HEPES containing 0, 0.1, or 1.0 µM ZnPT at room 1118 temperature for 10 min and washed several times with fresh TL-HEPES and injected with 1119 mPlc z mRNA. After it, eggs and zygotes were cultured in KSOM for 24h. PN formation 1120 1121 and 2-cell development were checked at 7 and 24h post-microinjection. Bars represent 1122 the percentages of injected eggs that reached the PN and the 2-cell stage. Scale bar: 50 1123 μ m. (B) MII eggs injected with mPlc ζ mRNA were incubated in KSOM without ZnPT for an hr. and then incubated in KSOM with 0 or 0.1 µM ZnPT for 24h. The second polar 1124 body extrusion, PN formation, and 2-cell development were checked at 2.5-, 7- and 24h. 1125 post-microinjection. Bars represent the percentages of injected eggs that reached the PN 1126 and the 2-cell stage. Scale bar: 50 µm. 1127

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 7.

Zn²⁺
 Ca²⁺

Supplementary Figure 1.

Supplementary Figure 2.

Α

Supplementary Figure 3.

1.0 µM

