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Abstract

Inference of gene regulatory networks (GRNs) can reveal cell state transitions from single-cell
genomics data. However, obstacles to temporal inference from snapshot data are di�cult to
overcome. Single-nuclei multiomics data o�er means to bridge this gap and derive temporal
information from snapshot data using joint measurements of gene expression and chromatin
accessibility in the same single cells. We developed popInfer to infer networks that character-
ize lineage-specific dynamic cell state transitions from joint gene expression and chromatin
accessibility data. Benchmarking against alternative methods for GRN inference, we showed
that popInfer achieves higher accuracy in the GRNs inferred. popInfer was applied to study
single-cell multiomics data characterizing hematopoietic stem cells (HSCs) and the transition
from HSC to a multipotent progenitor cell state during murine hematopoiesis across age and
dietary conditions. From networks predicted by popInfer, we discovered gene interactions
controlling entry to/exit from HSC quiescence that are perturbed in response to diet or aging.
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Introduction

Hematopoietic stem cells (HSCs) maintain the blood system throughout life. Mammalian
hematopoiesis occurs primarily in the bone marrow, where HSCs, residing in restricted niches
[1, 2], give rise to multipotent progenitor cells, and subsequent lineage-restricted progenitor
cell populations of various identities [3, 4]. This process is tightly controlled by a range of
cell-intrinsic and extrinsic factors to avoid aberrant proliferation of stem/multipotent cells.
Regulatory mechanisms controlling the lineage commitment steps during hematopoiesis are
mediated primarily via gene regulatory networks (GRNs). The best-studied example of such
a GRN is the pair of mutually inhibitory transcription factors (GATA1 and PU.1) that controls
commitment of hematopoietic cells into erythroid vs. myeloid (granulocyte/monocyte) lineages
[5]. Another GRN motif controlling a cell fate decision is the same topology: mutual inhibition,
in this case between IRF8 and GFI1 that control lineage commitment of the granulocyte vs.
monocyte lineages [6]. Larger GRNs can also be constructed and validated, as in the case of a
network detailing transcription factor interactions that regulate cell state stability [7]. However,
hematopoiesis involves many other cell fate decisions — from entry into/exit from quiescence
to lineage commitment — for which the core GRN interactions responsible are incomplete or
unknown. Importantly, these include the early cell fate decision during hematopoiesis whereby
HSCs lose their self-renewal/stemness and transition to a non-stem multipotent progenitor
cell fate [8]. A combination of transcriptional and epigenetic factors are implicated in the
loss-of-stemness transition from HSCs to multipotent progenitors [9, 10].

Given their required longevity [11, 12], HSCs seldom divide, and are primarily kept in a
non-proliferating/quiescent state to protect against replication-induced damage [12]. Rounds
of HSC division –– and thus aging –– are associated with a reduced regenerative potential and
lymphopoiesis (myeloid skewing), and decreased clonal diversity [13]. These age-associated
e�ects lead to a increase in the total number of HSCs and altered composition of the peripheral
blood [12, 14, 15]. The age-related increase in HSC numbers is driven by the expansion of
myeloid-biased HSCs, giving rise to disproportionately myeloid progeny [12, 16, 15]. This
might partially depend on DNA damage and downstream e�ects [17]; more recently it emerged
that epigenetic remodeling and metabolic changes also contribute to impaired HSC function
[18].

Mild dietary restriction (DR), which typically consists of 60-80% of the ad libitum food
intake by weight, has been established as a highly geroprotective intervention, leading to
increases in lifespan between 20-30% in mice, which has been associated with attenuation of
the aging-associated rise in inflammation, and delaying the onset of cancer and frailty [19, 20].
We have previously shown that DR in young to middle aged mice (early aging) attenuates
aging-related increases in HSC numbers, and improves HSC repopulation capacity, potentially
through better maintenance of stem cell quiescence [15]. The transcriptional and metabolic
changes that DR induces remain largely unknown, as does the specific mechanisms by which DR
alleviates aging phenotypes in HSCs. The identification of GRNs controlling cell fate decisions
in hematopoiesis that are regulated through aging and/or DR could lead to an understanding
of how aging drives aberrant hematopoiesis and how it may be influenced by DR.

Gene regulatory network inference seeks to determine networks of gene-gene interactions
from data. Building on methods to infer GRNs from gene expression data in bulk samples
(RNA-seq) [21, 22], new methods to infer gene networks have been developed in light of
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the higher resolution obtained by single-cell RNA-sequencing (scRNA-seq). These are built
on the premise that the higher-resolution o�ered by decomposing bulk samples into single
cells can improve GRN inference, and that the single-cell noise does not overwhelm the signal.
These include methods rooted in statistical learning [23], dynamical systems theory [24], tree-
based approaches [25], information theory [26, 27, 28], and time series analysis [29]. More
recently, methods also consider dynamic changes to network topology itself [30]. Methods have
also been introduced that make use of chromatin accessibility in addition to gene expression
[31, 32, 33, 34, 35]. As a result of the variety of underlying models, these methods produce
di�ering networks, and thus benchmarks have sought to compare their performance on both
real and simulated data [36, 37, 38]. Despite their promise: it has been challenging to achieve
high performance on GRN inference with single-cell data overall, especially temporally ordered
data, let alone to move beyond static networks [39]. It has been shown that In some cases, the
performance of pseudotime-based methods actually improves when cells are randomly ordered
vs. the pseudotemporal ordering [29].

Inferences of gene regulatory interactions controlling development or stem cell di�erentia-
tion in hematopoiesis and beyond have improved as the resolution of the data has dramatically
increased with single-cell sequencing. More broadly, single-cell genomics approaches have
shed light onto cell types [40], transition dynamics [41, 42], and cell-cell communication
[43, 44] but gene expression alone may not be su�cient to accurately determine the GRNs
driving cell transitions. Recent advances in experimental technologies have enabled the joint
measurement of gene expression by RNA-sequencing (RNA-seq) and chromatin accessibility by
assay for transposase-accessible chromatin by sequencing (ATAC-seq) in the same single cells
[45, 46]. These joint multiomics data present a new opportunity to learn complex dynamic
gene regulatory processes.

Here we present popInfer: network inference with pseudocells over pseudotime, a new
method to infer GRNs using joint single-cell multiomic data. popInfer learns directed signed
GRNs. That is, popInfer can distinguish not only the direction of interaction (regulator gene to
target gene) but also the sign (activating vs. inhibitory). We tested popInfer on unperturbed
hematopoiesis and on systems exposed to dietary restriction and/or aging, focusing on the
dynamics of the transition from stem cells to multipotent progenitors. Through comparison with
reference data gathered by chromatin immunoprecipitation assay with sequencing (ChIP-seq),
we demonstrated that during homeostasis (hematopoiesis in mice fed ad libitum) popInfer
outperforms alternative GRN inference methods that run on scRNA-seq data alone. We show that
the performance of popInfer is in part derived from incorporation of pseudotime; performance
drops when cells are randomly ordered.

popInfer predicted GRNs controlling the transition from HSCs to multipotent cells under
di�erent conditions. Comparative analysis of the networks revealed a core GRN governing HSC
quiescence by mutual inhibition between Mecom and Cdk6. We identified a direct association
between IGF signaling and the Mecom-Cdk6 dynamics. Thus, given the increased quiescence in
HSCs observed with DR at young age, we showed how HSC quiescence is controlled by IGF
signaling-mediated changes in young hematopoiesis by Mecom-Cdk6, and how this regulation
wanes as IGF signaling decreases with age.
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Results

The stem-to-multipotent hematopoietic transition is maintained throughout life-
time and dietary perturbations

We studied early hematopoiesis in young and old mice and their response to DR via joint multi-
omics: concurrent sequencing of single-nucleus gene expression (snRNA-seq) and chromatin
accessibility (snATAC-seq) using the 10X multiome platform (Fig. 1A). Data were generated
from young (⇠ 6 months) and old (⇠ 24 months) mice. Mice were either fed ad libitum
continually until bone marrow isolation at young (yAL) or old age (oAL), or underwent a mild
dietary restriction (DR; 30% reduction in food intake by weight) for the two weeks prior to
bone marrow isolation at young (yDR) or old age (oDR) to investigate early response to nutrient
deprivation. Bone marrow cells were isolated and Lineage� Sca-1+ cKit+ (LSK) cells were
sorted and used for nuclei isolation and subsequent single-nucleus joint multiome sequencing
(Fig. 1B). RNA-seq and ATAC-seq datasets were preprocessed (see Methods) and each modality
was analyzed and integrated in our new methodology for gene regulatory network inference:
popInfer.

Aging and diet both a�ect rates of cell division in the HSC pool, thereby influencing the self-
renewal and quiescence propensities of stem cells. These altered phenotypes in the HSC pool can
a�ect hematopoiesis overall, and manifest through di�erent frequencies of mature blood cells
in the bone marrow and peripheral blood. The earliest cell fate decisions during hematopoiesis
— whereby HSCs may lose their self-renewal capacity during asymmetric or symmetric cell
divisions when transiting to multipotent progenitor cells (MPPs) — exert influence over every
cell fate decision that follows. We thus investigated how hematopoietic subpopulations change
during early stages of di�erentiation; joint multiomic data provide a unique opportunity to
identify how these transitions are transcriptionally regulated.

Unsupervised clustering via the Louvain algorithm (see Methods) identified 5-7 clusters
in each condition. Via known marker genes of HSC, multipotent, and lineage-restricted early
progenitor populations, cell state identities were assigned to each cluster (Fig. 1C and SI Fig
1). Across all conditions, the majority of cells belong to HSC/multipotent clusters, although we
also identified lineage-primed and lineage-restricted cells for each condition (Fig. 1C).

We performed di�erential gene expression analysis and studied the stemness andmultipotent
gene expression signatures present across age and dietary conditions. We analyzed the top
di�erentially expressed genes between HSCs and multipotent cells in yAL (ranked by log2 fold
change) across samples in (Fig. 1D). Known marker genes for HSCs emerged including Mecom
and Mllt3; in the multipotent cluster prior multipotent marker genes were present, including
Flt3 and Mpo [6, 47]. Analysis of the pattern of HSC/multipotent di�erential expression
across all samples revealed a core hematopoietic di�erential gene expression pattern across all
conditions. Notably, despite the relative homogeneity of the HSC/multipotent progenitor cell
pool, and the clear changes that HSCs undergo throughout life, the transcriptional signature
distinguishing HSCs from multipotent progenitor cells is clearly maintained throughout life
and dietary restriction.
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Figure 1: Joint multiomic data characterize hematopoiesis across diet and age. A. Overview of
experimental design: mice undergo diet restriction (DR) at young or old age prior to sampling
of hematopoietic stem and progenitor cells (HSPCs) B. HSPCs are sorted from the bone marrow
and isolated for single nuclear (sn) RNA and ATAC sequencing, and re-integrated in a gene
regulatory network inference model: popInfer. C. HSPCs for each experimental condition are
clustered with cluster annotations made using hematopoietic marker genes. GMP: granulocyte-
monocyte progenitor; MEP: megakaryocyte-erythroid progenitor; CLP: common lymphoid
progenitor. D. Heatmaps of di�erentially expressed genes (top 20 ranked by log-fold change)
between HSCs and multipotent progenitors; heatmaps correspond to samples above in (C).
yAL: young ad libitum; yDR: young DR; oAL: old ad libitum; oDR: old DR.
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Concurrent measurement of gene expression and chromatin accessibility en-
ables inference of dynamic gene regulatory interactions

GRN inference methods that seek to infer gene regulatory interactions fall under two categories:
time-dependent and time-agnostic methods. Several time-dependent GRN inference methods
have been developed specifically for application to non-temporal (“snapshot”) data. These infer
the temporal process from a population of heterogeneous single cells via trajectory inference/use
of pseudotime [24, 26, 29, 48]. However, whether pseudotime values for individual genes
contain useful dynamical information is highly dataset-dependent and remains an open question.
Deshpande et al. [29] provided evidence that interpreting pseudotime values explicitly did
not improve inference versus considering only the order of cells along the pseudotime axis.
Moreover, results of GRN inference with pseudotime-ordered cells were in cases comparable to
the results obtained with randomly-ordered cells.

A motivating factor in the use of pseudotime for temporal inference is the expected time
lag between transcriptional changes in the regulator and those of the target (Fig. 2A). By
assigning pseudotime values to cells, time lags can be modeled, even for “snapshot” data with
no explicit measurement of the dynamics. Key to implementing time-series-based methods
is data comprising cells that are equally spaced in time (or interpolating time-equidistant
cells). That is, a reliance on the explicit use of pseudotime values in the model, which as
discussed above, is an assumption that stands on shaky ground. However, inference without
a temporal/pseudotemporal measure precludes the investigation of dynamic relationships
between regulator genes and their targets, impeding attempts to address causality.

Joint multiomics o�er more contemporaneous measurements of interacting genes, regulator
and target, via the gene expression of the transcription factor (regulator gene) and the chromatin
accessibility of the target. popInfer leverages these data to fit a regression model predicting the
chromatin accessibility of the target gene from the gene expression of the regulator (Fig. 2A).
While there are certainly caveats to this approach, such as the di�erent methods used to assay
each modality, these values occur more closely in time than regulator expression with target
expression. Thus the assumption at the heart of popInfer is that if a TF regulates a given target,
there should be a relationship between the pseudotemporal gene expression profile of the TF
and the pseudotemporal chromatin accessibility of the target gene.

Single-nuclei RNA-seq and ATAC-seq data are sparse measurements in which many per-cell
transcripts or peaks will be missed in sampling. This motivates our construction of pseudocells:
bins of several single nuclei measurements for a given gene or ATAC-seq peak. The construction
of pseudocells required means by which to partition cells into groups that were transcriptionally
similar along the axis of interest (in this case stem cell di�erentiation). Our hypothesis is that
this constitutes an appropriate opportunity to use pseudotime: as a means to order cells by their
similarity along a trajectory, i.e. avoiding the need to interpret pseudotime values explicitly.
Thus, we used pseudotime to order cells along a trajectory as input to partitioning into bins.
Bins of cells were used to construct pseudocells, which are the input data to GRN inference by
popInfer (Fig. 2B). Pseudocell gene expression (xp) is defined as the average expression of the
cells in that bin. From the snATAC-seq data, we summarized the accessibility of a gene and its
promoter region via ArchR’s GeneScoreMatrix gene accessibility scores. This score takes into
account peaks that lie in the gene body and the promoter region (5kb upstream of the TSS).
Pseudocell gene expression (xp) and gene accessibility (yp) scores are then defined to be the
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Figure 2: popInfer: gene regulatory network inference with multiomic data. A. Schematic depicting
transcription factor (TF) gene expression and its regulation of a target gene. TF transcription is
followed by a time delay before TF regulation can be detected in the target gene expression.
TF expression is more concurrent with accessibility of the target gene. B. Overview of data
processing for popInfer. Cells are ordered over pseudotime and binned into n equally sized
bins of k cells. B. Overview of popInfer workflow. Cells belonging to a bin are aggregated to
form a pseudocell, where xpj is the single-cell expression of the jth cell in a pseudocell bin
and xp is the pseudocell gene expression. ysj is the gene accessibility score of the jth cell in a
pseudocell bin, and yp is pseudocell gene accessibility. A LASSO regression model is run on the
n pseudocells, where pseudocell accessibility yp is predicted from pseudocell gene expression
xp. The selection of the regularization term �g is gene-specific, governed by a tradeo� between
sparsity and the mean squared error (MSE); ↵ 2 [0, 1]. MSE� is the MSE of the LASSO model
for a given � value and MSE trivial is the MSE for a trivial model with � = 0. The number
of nonzero � coe�cients is calculated for the LASSO model for a given �, and for the LASSO
model that achieves the optimal MSE (�MSE).
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average over these values for the cells in the corresponding bin (Fig. 2C).
After constructing pseudocells with expression and gene accessibility scores, popInfer

performs LASSO regression [49] using pseudocell gene expression values to predict pseudocell
gene accessibility scores (Fig. 2B). For each target gene (g), gene-specific sparsity (�g) is
determined via a tradeo� between model sparsity and mean-squared error (MSE). This tradeo�
is controlled by a parameter ↵ 2 [0, 1], which is fixed for all genes. When ↵ = 0, �g is selected
such that we obtain a trivial model whereby � = 0. When ↵ = 1, �g is selected such that we
obtain a model with optimal MSE.

For a given ↵, the LASSO outputs a matrix of inferred coe�cients �. These values are
binarized, with their sign maintained, to obtain a network matrix W↵ (Fig. 2C). Preserving the
sign of the LASSO coe�cients allows popInfer to learn information regarding activation versus
inhibition for interacting genes. The final output of popInfer is W , the averaged sum of the
W↵ for a sequence of ↵ values in the range [0, 1]. Choosing ↵ closer to zero produces sparser
networks; larger values of ↵ produce denser networks. In this study we explored the sequence
of ↵ values {0, 0.001, 0.002, . . . , 0.4}. As a result, most gene-gene pairs are assigned weights of
0. While this has the potential to inflate the false negative rate, we believe this to be overall
advantageous because it is often unclear how to assign weight thresholds to select a network
during GRN inference. popInfer assigned edges with zero weight are automatically be ruled
out. Subsequently, a weight threshold > 0 can be set if desirable to select networks with the
highest confidence edges.

popInfer outperforms GRN inference methods based only on gene expression

To evaluate the performance of our proposed methods, we studied the results of networks
inferred by popInfer and compared these with other methods for GRN inference from single-cell
gene expression data. As a point of comparison, we used reference ChIP-seq data from ChIP-atlas,
as defined by the benchmarking framework BEELINE [37]. For the inference methods to which
we compare popInfer, we selected GENIE3 [21], PIDC [27], TENET [26], and SINCERITIES
[48]. These methods have all shown strong performance under di�erent conditions, and are
built upon diverse mathematical frameworks. Benchmarking methods is inherently di�cult
given the challenge of identifying large sets of true positive interactions. Here we use ChIP-seq
performed on hematopoietic cells from the bone marrow, which o�ers a set of true interactions
but is an imperfect reference: since we are looking at a small subset of bone marrow cells, using
a small set of variable genes, we cannot expect to recover all the true positive relationships in
the reference data which measured TF-gene interactions in whole bone marrow cell populations.
It is however informative to compare the relative performance of methods at recovering the
highest weighted interactions from the reference dataset.

We began by studying the HSC to multipotent transition in the yAL sample. As input to
GRN inference methods, we used the same set of 104 genes that were identified as di�erentially
expressed between HSCs and multipotent progenitors (see Methods). For evaluation, we
compare the results of each method via the area under the early precision-recall curve (AUEPRC).
For a specified range of recall values, the AUEPRC is the area under the precision recall curve for
the specified range of recall values, normalized by the total recall range. We focused on early

Page 8 of 25



Gene regulatory network inference with popInfer reveals dynamic regulation of hematopoietic stem
cell quiescence upon diet restriction and aging

0.00

0.01

0.02

0.03

po
pIn

fer

GENIE3
PIDC

TENET

SINCERITIES

po
pIn

fer
−R

NA−
on

ly

AU
EP

R
C

yAL AUEPRC cc regr

0.00

0.01

0.02

0.03

po
pIn

fer

GENIE3
PIDC

TENET

SINCERITIES

po
pIn

fer
−R

NA−
on

ly

AU
EP

R
C

yAL AUEPRC

0.00

0.02

0.04

Randomly Sampled Pseudocells

AU
EP

R
C

C

D

BA

0.000

0.005

0.010

0.015

0.020

po
pIn

fer

GENIE3
PIDC

TENET

SINCERITIES

AU
EP

R
C

oAL GMP Branch AUEPRCE

Randomly Sampled Pseudocells

Figure 3: popInfer benchmark comparison with alternative GRN inference methods. A. Network
inference evaluation on the HSC to multipotent transition in yAL for cell cycling pseudotime.
Bar plots give the area under the early precision-recall curve (AUEPRC) for recall values in
the range [0.0.1]. Networks were compared against a set of true positive gene interactions
defined by ChIP-Atlas. B. Network inference evaluation with AUEPRC as for (A), with cell cycle
e�ects regressed out. C. Violin plot of the area under the early precision-recall curve for yAL
for popInfer, using pseudocells that were comprised of single-cells randomly sampled from
cell-type clusters (as opposed to pseudotime-ordered). Green dashed line: popInfer AUEPRC
from (A); green dotted line: popInfer AUEPRC from (B). D. Benchmarking the HSC to GMP
transition in oAL; true positives from ChIP-Atlas. Early precision-recall curves for each method
are shown. E. Bar plot of AUEPRC for the curves in (D); recall range [0, 0.015] for the HSC to
GMP transition in oAL.
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precision-recall since we expect true networks to be sparse relative to the number of possible
interactions. Under these conditions, the AUEPRC is well-suited to assess method performance
(assesses whether methods perform well on the highest-weighted gene pairs). For the HSC to
multipotent transition in yAL, we evaluate AUEPRC over recall values in the range [0, 0.1].

In yAL, we ran inference twice on two di�erent sets of pseudotime values: one which was
computed on expression counts that included cell cycle e�ects, and one which was computed
on cell cycle regressed expression counts (see next section for full justification). We found that
popInfer outperforms the other methods in both the cell cycle (Fig. 3A) and cell cycle regressed
(Fig. 3B) iterations of inference on the yAL data. We also tested how popInfer performs when run
on RNA data alone (i.e. predicting gene expression values from gene expression, as opposed to
predicting gene accessibility values from gene expression; “popInfer-RNA-only”). In agreement
with our logic in constructing the model (Fig. 2A), we observed a decrease in performance
when using the RNA-only model, in-keeping with the assumption that the time delay between
TF expression and target gene transcription incurs a cost. We found that popInfer-RNA-only
performed similarly to GRN inference methods relying on scRNA-seq data alone (Figs. 3A-B).

Next, we challenged our assumption that pseudotime was necessary for the construction of
pseudocells as input to popInfer. We constructed new sets of pseudocells by randomly sampling
cells from within each cluster (either HSC or multipotent) to create pseudocells. Figure 3C
shows the AUEPRC of popInfer applied to these cell-type specific random pseudocells for 50
replicates. The dashed and dotted green lines are the AUEPRC value of popInfer from Fig. 3A
and Fig. 3B respectively, showing that constructing psuedocells using pseudotime improves
results over using cell-type resolution to create pseudocells.

Since relatively few genes comprised the set that were di�erentially expressed along the
HSC to multipotent transition (total of 111 TF-target pairs in the reference ChIP-seq data), we
also studied a hematopoietic trajectory described by a larger set of genes: di�erentiation from
HSCs to granulocyte-monocyte progenitors (GMPs). We selected those cell belonging to HSC,
intermediate multipotent, and GMP populations and studied these hematopoietic fate decisions
in oAL. For features, we selected the set of di�erentially expressed genes between the HSC and
GMP clusters in the oAL dataset, giving us 565 genes. As a result of the larger set of input genes,
there were 4374 TF-target gene pairs included in the reference. We chose to use the cell cycle
regressed pseudotime values for this branch of di�erentiation in order that cell cycle e�ects
did not dominate over subtler gene expression/accessibility di�erences from the relatively few
cells in the GMP cluster.

Looking at this di�erentiation trajectory, popInfer again outperforms other methods (Fig.
3D-E). In the early precision-recall curve, the precision values of popInfer are large relative
to the other methods for small recall values, meaning that popInfer performs well at early
detection of true positives (Fig. 3D). This behavior was conserved across di�erent numbers of
pseudocells and ↵ sequences inputted to popInfer (SI Fig 2).

popInfer identifies a gene regulatory network controlling HSC quiescence via
IGF signaling

To study the impact of aging and dietary restriction on the HSC to multipotent cell fate
transition, we ran popInfer on a set of 104 genes di�erentially expressed between HSCs and
multipotent cells in at least one experimental condition. Gene interactions predicted by popInfer

Page 10 of 25



Gene regulatory network inference with popInfer reveals dynamic regulation of hematopoietic stem
cell quiescence upon diet restriction and aging

were defined as those with GRN network edge weights > 0.4. In the resulting networks, we
considered two scenarios. Cell cycle e�ects can dominate pseudotime ordering, and cell cycle
regression can thus be performed to avoid such cell cycle e�ects obscuring other regulatory
interactions. However, it is not entirely possible to separate hematopoietic cell state identity
with its proliferation status. Thus, we considered GRNs as predicted in each of two instances:
cell cycling pseudotime, and cell-cycle regressed (non-cycling) pseudotime. For the former, no
cell cycle regression is performed and cell cycle e�ects can be observed across cell populations
(SI Fig 1B, 3); in the latter, cell cycle e�ects are regressed out from the snRNA-seq data before
pseudotime assignment (SI Fig 1D). In both cases, di�usion pseudotime is used to construct a
pseudotemporal ordering of cells (SI Fig 1C,E) [50].

Two genes stood out as hub regulators of the HSC to multipotent transition across all eight
conditions (four experimental conditions; cell cycle regressed/not regressed). The first of which,
Mds1 and Evi1 complex locus (Mecom), is a transcriptional regulator and oncogene; the second
of which, cyclin-dependent kinase 6 (Cdk6), is a protein kinase that acts as a regulator of the
cell cycle (Fig. 4A). For cell cycling pseudotime, popInfer identified Cdk6 among the highest
ranked network hubs across conditions. For cell cycle-regressed pseudotime, popInfer identified
Mecom as a top ranked hub gene in all samples except yAL. popInfer also predicted direct
interactions between Mecom and Cdk6, leading us to give closer inspection to the networks
involving these genes (Fig. 4B).

As a means of comparison for popInfer predicted results, we compared them with di�er-
entially expressed genes (DEGs) that were observed upon EVI1 activation in hematopoietic
progenitor cells [51]. EVI1 is a transcription factor encoded by Evi1, one of the alternative
transcripts of Mecom. We found that the majority (3/5) of the target genes of Mecom predicted
by popInfer in yAL were di�erentially expressed in [51], and that popInfer correctly identified
the sign of the interaction in all cases (Fig. 4B). To compare popInfer results with those for other
GRN inference methods, we studied how alternative methods could identify Mecom-associated
DEGs. Using a gene interaction weight cuto� of 0.4, popInfer infers 178 network edges. For
comparison, we chose the top 178 network edges for each alternative method. We found that
popInfer identified EVI1-associated DEGS (as reported by Kustikova et al. [51]) with a success
rate of almost twice the next best method (Fig. 4C and SI Fig 4), without sacrificing false
positives (Fig. 4C lower panel).

To investigate further the relationship between the two top regulators Cdk6 and Mecom
during HSC to multipotent transition networks, we identified GRN interactions that overlapped
between multiple experimental conditions. In young hematopoiesis, for cell cycling pseudotime,
a conserved network of Txnip inhibition of Cdk6, and Cdk6 inhibition of Mecom were identified
(Fig. 4D). For cell cycle-regressed pseudotime, the conserved subnetwork consisted of Mecom
inhibition of Cdk6 (Fig. 4D). In old hematopoiesis, a conserved subnetwork consisting of Mecom
inhibition of Cdk6 was identified (Fig. 4D) with cell cycle pseudotime. For cell cycle-regressed
pseudotime, there were no conserved interactions between control vs dietary intervention in
old age. The predicted interactions are also supported by previous literature, where Txnip
inhibition of Cdk6 and Mecom inhibition of Cdk6 have been previously reported [52, 51]. Txnip
is a target of Insulin-like Growth Factor 1 (IGF1) of the IGF signaling pathway: an important
regulator of HSC aging [53], whereby Igf1 inhibits Txnip. Thus, the consensus network connects
cell cycle regulation with HSC quiescence activity (popInfer predicted edges shown in red)
with regulation from IGF signaling (interaction from literature shown in black) (Fig. 4E).
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Analysis of the dynamics of gene expression and accessibility over the HSC to multipotent
transition shed light on changes to regulatory networks with diet and upon aging. Pseudocell
dynamics show that in yDR there is a strong negative correlations between Txnip expression
and Cdk6 accessibility, as well as between Cdk6 expression and Mecom accessibility (Fig. 4F). In
contrast, the dynamics of these genes in oDR are altered. While we see similar pattern of Txnip
expression over pseudotime, its correlation with Cdk6 accessibility is much lower due to Cdk6
plateauing in multipotent cells both at the start and near the end of pseudotime. Concordant
with its accessibility, Cdk6 expression also plateaus at both the beginning and end of pseudotime.
In contrast, Mecom accessibility decreases, linearly until near the end of pseudotime.

We have demonstrated how regulation of HSC quiescence is perturbed with age and diet.
While Txnip inhibits Cdk6 and Cdk6 inhibits Mecom during hematopoiesis in young mice, these
core inhibitory regulations are lost with age. Diet restriction-mediated suppression of IGF
signaling increases HSC quiescence [15]. Our results described the means by which this occurs:
Reduced IGF signaling upon DR leads to higher levels of Txnip and Mecom, reducing HSC cell
cycle activity and driving stem cells towards a more quiescent state.

Discussion

The ability to accurately predict GRNs that govern dynamic cell state transitions during cell
di�erentiation and development could transform our understanding of cell fate decision-making
with far-reaching consequences and applications. A persistent obstacle to achieving this goal
has been the non-temporal nature of genomics data at single-cell resolution. Pseudotime has
powerful applications, but is a wholly imperfect substitute for biological time, particularly in
use cases for GRN inference from single-cell genomics data. Here, we proposed a solution.
Joint multiomic datasets (measuring gene expression and accessibility in the same single cells)
enable inference of GRNs controlling dynamic transitions via construction of pseudocells over
pseudotime. We focused on the contemporaneous measurements of the gene expression of
the regulatory and the chromatin accessibility of the target gene, and developed popInfer to
predict directed gene regulatory interactions along with their sign (activating or inhibitory).

Through benchmarking on networks describing transitions during early hematopoiesis (HSC
to multipotent progenitors, or HSC to granulocyte/monocyte progenitors), we showed that
popInfer consistently outperforms alternative methods that rely on measurements of the gene
expression alone. Indeed, a variant of the popInfer model that excludes chromatin accessibility
data performed similarly to alternative RNA-only methods. The accuracy of networks inferred
by popInfer is maintained on both small and large gene sets. Moreover, a consistent pattern
emerged whereby top-weighted gene interactions predicted by popInfer were enriched with
more true positive interactions (assessed by a previously published ChIP-seq reference) than
alternative methods. On closer inspection of specific subnetworks, we found that for networks
involving hematopoietic stem cell marker Mecom, popInfer predicted nearly double the fraction
of true positive interactions than the next-best method. popInfer did not sacrifice sparsity to
obtain these results, that is, maintaining a low false positive rate with a high true positive rate.

As we have shown, jointly assaying gene accessibility and gene expression increases our
power to detect gene regulatory relationships. GRN inference tools have also incorporated
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information regarding chromatin states in alternative ways. CellOracle constructs GRNs from
single-cell gene expression and chromatin accessibility information using chromatin accessibility
to construct a basis of possible GRN interactions (based on transcription factor binding and
cis regulatory information [54]) and then inferring active interactions via regression using
the single-cell gene expression [31]. Topic modeling methods have also been developed to
characterize patterns of co-variation based on joint multiomics [55]. Argelaguet et al. [32]
present a joint multiomic dataset of mouse embryonic development, and develop methods for
GRN inference also making use of pseudocells [56]. Other recent approaches have employed
joint multiomic data to learn GRNs from single time point data [33, 34, 35]. SCENIC+ [35]
uses a large pool of putative TF-target gene interactions learnt from data to build models for
GRN inference. However, despite the utility of the information gained through ATAC-seq, these
GRN inference approaches still decouple the relationship between genome accessibility and
target gene expression, which as we have seen (Fig. 3C), hinders our ability to learn GRNs
capturing interactions during cell state transitions.

In application to early cell fate decisions during hematopoiesis, we studied hematopoietic
stem and progenitor cells in young and old mice that were fed either ad libitum or diet restricted.
For each condition, we considered two approaches: either leaving in or regressing out the
e�ects of the cell cycle. From these analyses, we discovered a core regulatory network predicted
by popInfer, governed by mutual inhibition of Mecom and Cdk6. This network regulated the
transition of HSCs to multipotent cells by modulating quiescence. The network is also a target
of IGF signaling, known to be reduced upon diet restriction. Thus, we have demonstrated a
mechanism by which HSC quiescence is increased upon diet restriction in young age [15],
concordant with decreases in Cdk6 and increases inMecom. In old age, the GRNmotif regulating
Mecom in response to IGF signaling is lost. This aligns with the finding that systemic levels of
Igf1 that influence HSC signaling decrease with aging [53]. Moreover, the expression of Igf2bp2
— a HSC-intrinsic activator of IGF signaling — is strongly diminished in aging HSCs [57]. These
HSC extrinsic and intrinsic reductions in IGF signaling fit well with the reduced IGF-dependent
regulation of the Mecom GRN in our single cell multiome analysis of aged HSCs.

We note some limitations of popInfer. The current model does not consider genome proper-
ties (e.g. TF motifs, binding sites, or genome shape [58, 59]) in its analysis of gene accessibility,
nor does it consider enhance regions or other distal regulatory elements. Incorporation of
additional genome features — such as peaks from enhancer regions — into a gene accessibility
score could improve specificity, although the combinatorial complexity of such a model could
quickly become unwieldy. Another limitation of popInfer regards hyperparameter selection.
While for the most part, popInfer-predicted networks were robust to choice of the ↵ sequence,
we saw that networks could be sensitive to the number of pseudocells used to bin the data.
There is an inevitable trade-o�: if the number of pseudocells is too small, the data become
over-smoothed and transcriptional dynamic information is lost. If the number of pseudocells
is too large, the data becomes too noisy and performance drops. Choice of the number of
pseudocells ought to be made with care and in light of the specific dynamics under investigation.
In future work use of semi-supervised methods for pseudotime could help [60]. We would also
caution that if pseudocell dynamics are discontinuous or ultrasensitive (which can result from
e.g. cell lineage branching in pseudotime) the assumptions underlying popInfer may no longer
hold.

We have presented a model for GRN inference that uses joint multiomics in a novel way,
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through the integration of gene accessibility and gene expression data via regression. We
anticipate wide applicability of popInfer to study cell state transitions in development and stem
cell di�erentiation. In application to single-nucleus multiomic data describing hematopoietic
stem and progenitor cells, we have elucidated a regulatory network underlying the transition
from HSCs to multipotent cells. We have identified how changes in IGF signaling induced by
diet restriction result in an increase in HSC quiescence via the Mecom-Cdk6 mutual inhibitory
GRN motif. Finally, we discovered that the regulation of HSC quiescence by IGF signaling is lost
with aging, paving the way for future studies into mechanisms by which the loss of function in
HSCs upon aging could be slowed or even reversed.

Data and Code Availability

Single-nucleus multiome datasets are deposited and available for shared usage in the Na-
tional Center for Biotechnology Information’s Gene Expression Omnibus (accession num-
ber: GSE229892). popInfer in implemented in R and available under an MIT license at:
https://github.com/maclean-lab/popInfer.
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Methods

Joint multiomics experimental methods

Animal experiments and housing conditions All mouse experiments were approved by the
state Government of Thuringia under the application "FLI19-009". Male and female C57BL/6J
mice were obtained from Janvier, bred in the FLI’s animal facility and kept in groups of 3-5
same sex littermates on a 12:12 hour light:dark cycle in 20-24°C and 40-60% air humidity.
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The animal facilities were specific pathogen free and the mice’s cages (Tecniplast) were either
individually ventilated or provided with a filter top.

Dietary interventions Young (⇠ 6 months old) and aged (⇠ 24 months old) mice were
randomly distributed into age- and weight-matched groups. The mice were single-housed and
fed with chow prepared from commercially available powder (VRF1, SNIFF). Over the course
of the first week the food intake of the individual mice was measured. At the beginning of the
second week the DR group were fed once a day shortly before the onset of darkness with a
food portion corresponding to 70% of the normal intake of the respective mouse. Animals were
scored and weighed every other day.

Cell isolation and staining The mice’s hind limbs (including hip bones joints), forelimbs
and spines were dissected, cleaned, and crushed in 2% FBS using mortar and pestle. Bone
marrow cells were incubated with APC-conjugated anti–c-Kit antibody, and c-Kit+ cells were
enriched using anti-APC magnetic beads (MACS Milteny Biotec 130-09-855) and LS columns.
C-kit positive cells were then stained with an antibody mix against mature cells (Table SI 1) for
30 minutes and overnight with a second fluorescent AB mix to stain markers used to discern
di�erent populations of HSPC (Table SI 2). The cells were sorted on an ARIA III cell sorter (BD
bioscience) according to the markers in Table SI 3. 50, 000 LSK cells per mouse were sorted
and cells from 2 mice per group were pooled.

Nuclei isolation Cells were collected by centrifugation (10’, 300g, 4°C), the supernatant was
removed and the cells were resuspended in 50µl 0.04% sterile filtered BSA in 1x PBS. Cells
were pelleted (10’, 300g, 4°C), supernatant was discarded and nuclei isolation was conducted
in accordance with the manufacturer’s protocol. In brief, 45µl ice-cold lysis bu�er (Table SI 4)
were added to the cells. Cells were pipetted up and down 3 times and incubated on ice for 3’.
Subsequently 50µl ice-cold wash bu�er (Table SI 5) were added. The samples were centrifuged
for 5’ at 500g and 4°C and 95µl supernatant were removed. The nuclei were washed with 45µl
ice-cold 1x nuclei bu�er (Table SI 6) and centrifuged for 5’ at 500g and 4°C. 40µl supernatant
were removed with a 100µl pipette, the remainder with a 10µl pipette. The nuclei pellet was
resuspended in 7µl ice-cold 1x nuclei bu�er.

10x Multiome Protocol 1µl aliquot of the nuclei suspension were stained with DAPI and
analysed with flow cytometry (LSRFortessa BD Bioscience) to measure final nuclei stock con-
centration was. Nuclei stock concentrations ranged from 3178 to 8887 nuclei/µl. Samples
were immediately processed for scATAC-seq and scRNA-seq targeting 10,000 nuclei per sample.
Samples were loaded separately onto the channels of the 10x Genomics Chromium Controller
and processed with Single Cell Multiome ATAC + Gene Expression (v1 chemistry) following the
standard manufacturer’s protocol (Document Number CG000338 Rev E). For ATAC-seq libraries,
7 cycles were used for the Sample Index PCR reaction and final libraries were evaluated using
D5000 ScreenTape (Agilent 4200 TapeStation System) and DNA 7500 (Agilent 2100 Bioana-
lyzer). For scRNA-seq libraries, cDNA was amplified by 7 cycles and the total yield of cDNA
was assessed on High Sensitivity DNA Assay (Agilent 2100 Bioanalyzer) resulting on average
in 168 ng. A total of 13 cycles was then used for the Sample Index PCR reaction and final
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libraries were evaluated using D5000 ScreenTape (Agilent 4200 TapeStation System). Each
type of library was pooled and sequenced using Illumina NovaSeq6000 System on SP flowcells
[61]. scATAC-seq: Read 1 and Read 2 53 bp for DNA Insert, i7 8 bp for sample index and i5 24
bp for 10x Barcode and Spacer. scRNA-seq: Read 1 28 bp for 10x Barcode and UMI; Read 2 90
bp for Insert, i7 and i5 10 bp for sample index. The initial analysis with 10x Genomics Cell
Ranger 2.0.0 (bcl2fastq v2.20.0.422) and corresponding pre-built mouse reference package
(mm10-2020-A) estimated 2,576 to 5,833 nuclei per sample with at least 50,000 reads per
nuclei.

Joint multiomics data analysis pipeline

Data preprocessing and quality control yAL, yDR, oAL, and oDR single-nucleus multiome
ATAC + RNA data were processed using 10X Genomics Cell Ranger ARC (v2.0.0) mapped to
the GRCm38 reference genome. Seurat (v3.2.3) and ArchR (v1.0.2) packages were used for all
further analysis [62, 63].

For oAL, we began with 4754 cells. We first removed ambient RNA using SoupX [64],
manually setting the contamination to 10%. Using ArchR for ATAC quality control, cells with
TSS enrichment < 5.0 or number of fragments < 1200 were removed. Using Seurat for RNA
quality control, we remove cells with RNA counts > 15000 or < 1500, cells with number of
features < 1300, or cells with mitochondrial percentage > 20%. After this initial quality control,
4082 cells remained. Lastly, we ran Doublet Finder [65] with 3% doublet formation rate and PC
neighborhood size pK = 0.29, removing 122 doublets and leaving us with a final set of 3960
cells (Fig. 1A).

For oDR, we began with 2576 cells. We first removed ambient RNA using SoupX, manually
setting the contamination to 10%. Using ArchR for ATAC quality control, cells with TSS
enrichment < 8.0 or number of fragments < 2000 were removed. Using Seurat for RNA quality
control, we remove cells with RNA counts > 10000 or < 1000, cells with number of features
< 500, or cells with mitochondrial percentage> 35%. After this initial quality control, 2299 cells
remained. Lastly, we ran Doublet Finder with 3% doublet formation rate and PC neighborhood
size pK = 0.17, removing 69 doublets and leaving us with a final set of 2230 cells.

For yAL, we began with 4185 cells. We first removed ambient RNA using SoupX, manually
setting the contamination to 10%. Using ArchR for ATAC quality control, cells with TSS
enrichment < 5.0 or number of fragments < 2000 were removed. Using Seurat for RNA quality
control, we remove cells with RNA counts > 9000 or < 1000, cells with number of features
< 700, or cells with mitochondrial percentage> 25%. After this initial quality control, 3423 cells
remained. Lastly, we ran Doublet Finder with 3% doublet formation rate and PC neighborhood
size pK = 0.29, removing 103 doublets and leaving us with a final set of 3320 cells.

For yDR, we began with 3616 cells. We first removed ambient RNA using SoupX, manually
setting the contamination to 10%. Using ArchR for ATAC quality control, cells with TSS
enrichment < 5.0 or number of fragments < 3000 were removed. Using Seurat for RNA quality
control, we remove cells with RNA counts > 9000 or < 700, cells with number of features < 500,
or cells with mitochondrial percentage > 40%. After this initial quality control, 3146 cells
remained. Lastly, we ran Doublet Finder with 3% doublet formation rate and PC neighborhood
size pK = 0.27, removing 94 doublets and leaving us with a final set of 3052 cells.
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Hematopoietic cell subpopulation clustering and peak calling For all datasets, RNA
counts were transformed by regressing out G2M and S phase cell cycle scores (from the
CellCycleScoring Seurat function) using the Seurat function SCTransform prior to clustering
(Fig. 1B,D). In all datasets, the first 30 principal components were used for louvain clustering
and Uniform Manifold Approximation and Projection (UMAP) in Seurat. Clustering resolution
was set to 0.25 for oAL and oDR, 0.35 for yAL, and 0.31 for yDR, resulting in 6 distinct clusters
in oAL, 7 distinct clusters in oDR and yAL, and 5 clusters in yDR. Corresponding cell types were
annotated using canonical hematopoietic cell type markers. For peak calling, all four datasets
were used to create a single ArchR object. Using the clusters defined using the RNA, the two
smallest clusters in both oAL and oDR were removed prior to peak calling and the smallest
cluster in yDR was removed prior to peak calling. Pseudo-bulk replicates were made in ArchR
using the addGroupCoverages function with maxReplicates set to 10 and groupBy set to the
samples and clusters defined using the RNA data. The pseudo-bulk replicates were used for
peak calling via the addReproduciblePeakSet ArchR function.

popInfer model for gene regulatory network inference

Feature selection for network inference To select features to use as input to the gene
regulatory network inference model, we first identified genes that were di�erentially expressed
between the HSC and multipotent progenitor clusters for each of the four samples using Seurat’s
FindMarkers function. We defined a gene to be di�erentially expressed if it’s adjusted p-value
was less than 0.05. We then took the union over these four sets of DEGs, giving us 107 genes.
From this set of genes, we removed three genes that weren’t found in the reference chromatin
annotation. The remaining 104 genes were used as the input features to the network inference
method. For the transition from HSCs to GMPs in oAL, we used the 565 di�erentially expressed
genes between the HSC and GMP clusters as the input features.

Pseudotime ordering and pseudocell construction On each dataset, DPT [50] was ap-
plied to the RNA assay to assign pseudotime values. The root cell of DPT was set to be the cell
with highest expression of the sum of Mecom and Mpl, two canonical HSC markers. For yAL,
the root cell was defined as the cell with the fourth highest expression of the sum of Mecom
and Mpl because the top three ranking cells either did not lie in the HSC cluster or were on the
boarder between the HSC cluster and another cluster in the UMAP. The expression of the top
2000 variable features were used as input to DPT.

For each dataset, two di�erent pseudotime assignments were produced: one which was
computed on expression counts that included cell cycle e�ects, and one which was computed on
cell cycle regressed expression counts (Fig. 1C,E). DPT [50] was therefore applied twice to each
sample. The first iteration of DPT was run on counts that were transformed after quality control
using the Seurat function SCTransform. The second iteration of DPT was run on counts were
transformed by regressing out G2M and S phase cell cycle scores (from the CellCycleScoring
Seurat function) using the Seurat function SCTransform.

For each dataset and for each pseudotime assignment, we constructed pseudocells. To
do so, for each dataset, cells were first ordered along pseudotime. Cells are then partitioned
into similarly sized pseudocell bins where the first n mod ` bins contain bn` c+ 1 cells and the
remaining n� (n mod `) bins contain bn` c cells. Pseudocell expression (xp) was defined as the
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average of the expression of the k cells within it’s corresponding bin:

xp =
1

k

kX

j=1

xsj

where xs1, x
s
2, . . . x

s
k are the expression values of the cells in the pseudocell bin.

For constructing pseudocell gene accessiblity scores, we used ArchR’s GeneScoreMatrix
function. Using the default parameters, gene scores are computed using genes in the gene body
and 5kb upstream of the TSS. Pseudocell accessibility (yp) was defined as the average of the
expression of the k cells within it’s corresponding bin:

yp =
1

k

kX

j=1

ysj

where ys1, y
s
2, . . . y

s
k are the ArchR GeneScoreMatrix accessibility scores of the cells in the

pseudocell bin for pseudocell p.

Pseudotime-ordered pseudocell (POP) inference model From our pre-processing, we
have n pseudocells, for which we have pseudocell expression scores xp1, x

p
2, . . . , x

p
n and pseudocell

gene accessibility scores yp1 , y
p
2 , . . . , y

p
n. From our feature selection, we have genes G. For each

gene g 2 G, we run a lagged LASSO regularized linear regression model using glmnet [66]:

min
�0,�

1

n

nX

i=1

(ypi (g)� �0 � (xpi )
T�)2 + �g||�||1

where �g is selected via the optimization:

�g = min
�

����↵
MSE�

(MSE trivial)
� (1� ↵)

(# nonzero �)�
(# nonzero �)�MSE

����

where ↵ 2 [0, 1], MSE� is the MSE of the LASSO model for �, MSE trivial is the MSE
when we have a trivial model (� = 0), (# nonzero �)� is the number of nonzero coe�cients of
the LASSO model for a given � value, and �MSE is the value of � for which the LASSO model
achieves optimal MSE. We implement gene-specific sparsity parameters (�g) because we found
that using the same � value across all genes resulted in inconsistent levels of sparsity (relative
to the sparsity in the optimal MSE model for that gene). The optimization we defined thus
allows for a better control over global sparsity of the model. We evaluate this optimization for a
given ↵ value by running glmnet for 200 � values and solving [66].

After running for a fixed ↵ value, we define a G⇥G output matrix,

W↵(gi, gj) =

8
><

>:

1, if �gi,gj > 0

�1, if �gi,gj < 0

0, otherwise
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for all gi, gj 2 G, i 6= j. Finally, we run for a sequence of ↵ values ↵1,↵2, . . . ,↵s 2 [0, 1] and
define the final output of popInfer to be the weight matrix:

W =
1

s

sX

j=1

W↵j .

In this work, we use the sequence of ↵ values: ↵ 2 {0.001, 0.002, . . . , 0.4} with the excep-
tion of the oAL GMP branch testing, for which we used the sequence of ↵ values: ↵ 2
{0.001, 0.002, . . . , 0.6}. We select ↵ values closer to 0 because we expect GRNs to be sparse
and according to our defined optimization problem, values of ↵ closer to zero will be more
sparse. Averaging over the results of a sequence of ↵ values as opposed to only running for
a single value of ↵ is helpful in a number of situations, such as when a gene has a nonzero
value of � only a few times by chance or if a gene interaction has inconsistent predicted sign
(activating/inhibiting) for di�erent ↵ values. In both of these examples, sporadic or inconsistent
relationships between a predictor and target gene will be mitigated by running for a sequence
of ↵ values.
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