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Abstract

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established
method for analyzing intracellular communications over the last few decades. What’s more, BNs provide
a course-grained approach, not only to understanding molecular communications, but also for targeting
pathway components that alter the long-term outcomes of the system. This has come to be known as
phenotype control theory. In this review we study the interplay of various approaches for controlling gene
regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs.
The study will also include comparative discussion between the methods, using an established cancer
model of T-Cell Large Granular Lymphocyte (T-LGL) Leukemia. Further, we explore possible options
for making the control search more efficient using reduction and modularity. Finally, we will include
challenges presented such as the complexity and the availability of software for implementing each of
these control techniques.

1 Introduction and Motivation

In biology, phenotypes represent observable features such as apoptosis, proliferation, senescence, au-
tophagy, and more. Mathematically, a phenotype is associated with a group of attractors where a subset of
the system’s variables have a shared state. We define an attractor as a set of states from which there is no
escape as the system evolves, and an attractor with a singleton state is called a fixed point. These shared
states are then used as biomarkers that indicate diverse hallmarks of the system that one might view as
rolling a ball down Waddington’s epigenetic landscape [1]. Thus, phenotype control is the ability to drive
the system to a predetermined phenotype from any initial state by inducing the appropriate gene knockouts
or knock-ins [2].

One way mathematicians are able to assist biological researchers is through modeling cell signal trans-
duction pathways. However, these pathways can be highly complex due to signaling motifs like feedback
loops, crosstalk, and high-dimensional nonlinearity [3]. To address these complexities, mathematical mod-
elers have developed many strategies for creating and analyzing networks, traditionally classified based on
the time and population of gene products. For instance, there are techniques for continuous population with
continuous time such as ordinary differential equations [3,4], discrete population with continuous time such
as the Gillespie formulation [5, 6], and discrete population with discrete time such as BNs, logical models,
and also their related stochastic counterparts [7–11]. There are also numerous well developed statistical,
agent based, and PDE models which are outside the scope of this review [2]. For this review, the framework
of choice utilizes Boolean networks.

Today increasingly extensive effort is dedicated to understanding more than just the cancer cells them-
selves. Modelers have developed multicellular models including cancer, stromal, immune, and other cells
to study the interplay between cancer cells and their surrounding tumor microenvironment [12–15]. These
models are typically referred to as multiscale because they integrate interactions at differing size and time
scales, making it possible to simulate clinically relevant spatiotemporal scales, and at the same time simulate
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the effect of molecular drugs on tumor progression [16–21]. The high complexity of these models generates
challenges for model validation such as the need to estimate too many model parameters and controlling
variables at differing scales [12,22].

Understanding such mechanisms is quite convoluted and is not presently well-established . Even though
multiscale or hybrid models would likely provide more realistic simulations, there are currently no control
methods that apply directly to such models [2, 12, 22]. For this reason, we elect to utilize Boolean networks
because they provide a course-grained description of gene regulatory networks without the need for tedious
parameter discovery [23]. This framework would also allow for approximating multistate, multiscale, or
even continuous systems by projecting into a Boolean setting for analysis [12,24,25]. While there are many
techniques available for controlling Boolean networks, we will highlight methods that provide overarching
theory, as well as some emerging techniques. These methods include computational algebra [26,27], control
kernel [28,29], feedback vertex set [30,31], and stable motifs [32], where each tactic provides a complimentary
approach depending on the information available [22,33]. We will also include techniques to address efficiency
with network modularity [34] and reduction [33,35–37].

Phenotype control has two main distinguishing features. Its objectives are related to dynamical attractors
of highly nonlinear systems, and it focuses on open-loop interventions. These types of interventions are
instances where the protocol is not adjusted based on the state of the system, inducing the control only at
the front end. This is contrasted with optimal control, where the goal is to find a control policy that specifies
the ideal control action for each state [38–42]. Thus, phenotype control theory is primarily concerned with
identifying key markers of the system that aid in understanding the various functions of cells and their
molecular mechanisms.

The format of this review will be as follows: Section 2 will provide an initial overview of the methods
with discussion of overlapping features and application to a known cancer model (Section 2.1), Section 3
will lay out the different techniques used to find target controls, Section 4 will discuss methods to make
the target discovery problem more efficient, Section 5 will address limitations and open problems, Section
6 will have some concluding thoughts and discussion. Finally, readers can find helpful information in the
Appendix including: toy models for basic examples of each method (Section 7.1), foundational principles
for finite dynamical systems (Section 7.2), simulation techniques of suggested targets (Section 7.3), software
with tutorials and how-to documentation (Section 7.4), and lastly Section 7.5 has supplementary tables.

2 Overview of Control Methods

Depending on the specific aims and information available, Table 1 provides a set of complementary
approaches for phenotype control and their key features. For instance, if you only have access to the wiring
diagram, then feedback vertex set (FVS) is an option for global stabilization. If you have the Boolean rules,
and if the objective is to drive the system into one of the existing attractors, then stable motifs (SM) are an
option. If you have the Boolean rules, and if the objective is to create a new attractor or to block existing
attractors, then algebraic methods (AM) (also called computational algebra -CA) are an option.

Despite the shared goals of these methods, each seeks distinct control objectives . They are each based on
specific mathematical structures and lack a common theoretical framework that allows their complementary
and synergistic application. Yet, we clearly see overlapping outcomes between methods. For example, it has
been shown that the FVS establishes the upperbound for the magnitude of targets required to control the
system [29]. Indeed, we observe that, among methods using pre-existing attractors, the control sets for CA
and SM are subsets of the larger FVS results. On the other hand, CA and CK appear to produce minimal
sets. Further, the CA and SM methods can produce the same results, or CA can be a subset of SM. See
Tables 2 and 3.
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Method Control Objective(s) Control Action(s) Requirements Refs

Algebraic
Methods

Transform transient state into a
steady state; Transform steady
state into a transient state; Elimi-
nate transition between two states

Assign node to specified
value; Activate or inhibit
specific edge

Regulatory network
structure; Boolean
functions written as
polynomials

[26,
43]

Control
Kernel

Force the system to have one stable
attractor

Assign node to specified
value

Boolean functions
written as polyno-
mials

[28,
29]

Feedback
Vertex Set

Force the system to have one stable
attractor

Assign node to its value
in the target attractor

Regulatory network
structure; Node ac-
tivities in target at-
tractor

[30,
44]

Stable Mo-
tifs

Force any initial state toward a
pre-existing attractor; Transform a
steady-state into a transient state

Assign node to its stable
motif value; Inhibit inter-
action to disrupt stable
motif of a steady-state

Regulatory network
structure; Boolean
rules written in DNF

[32]

Table 1: Phenotype methods and their features. This table contains a summary of the target identification
techniques discussed, as well as their key features. Namely, we summarize their objectives, induced control
actions, and the necessary components to use each method. Software for these methods can be found in the
Appendix.

However, a key unique feature of CA is the creation of new attractors, while other methods discussed
rely on pre-existing attractors. This then leads to the potential for new target discovery as the long-term
objectives change. Further, CA sets out to solve a system of polynomial equations, whereas FVS and SM
rely on strongly connected components to find their targets. To explicitly see these connections, consider
the following example.

2.1 Case Study: T-Cell Large Granular Lymphocyte (T-LGL) Leukemia

T-cell large granular lymphocyte (T-LGL) leukemia is a blood cancer in which there is an anomalous
surge in white blood cells, called T-cells. Cytotoxic T-cells are part of the immune system that fight against
antigens, even by killing cancer cells. These T-cells release specific cytokines that alter how the immune
system responds to external agents by way of recruiting particular immune cells to fight infection, promoting
antibody production, or inhibiting the activation and proliferation of other cells [32]. Once their job is
complete they undergo controlled cell-death, however, T-LGL leukemia occurs when these T-cells evade
apoptosis and maintain proliferation [2]. There are currently no standards of treatment established, however
options include immunosuppressive therapy (such as methotrexate), oral cyclophosphamide (an alkylating
agent), or cyclosporine (an immunomodulatory drug) [45]. Since there continues to be a search for standard
therapies for this disease, the identification of potential therapeutic targets is essential.

In [46], a Boolean dynamic model was constructed consisting of a network of sixty nodes indicating the
cellular location, molecular components, and conceptual nodes. For the sake of our analysis, we use the
Boolean rules in Table 8 (see Appendix). The main inputs to the network are “Stimuli”, which represent
virus or antigen stimulation, and the main output node is “Apoptosis”. Model analysis revealed that the
system contains three attractors, two of which are diseased and the other is healthy (determined by apoptosis
activation). Table 2 lists the control targets discovered by each of the respective methods for the large T-
LGL model, with the objective of activating apoptosis. Individual control methods are found in Tables (2a)
- (2d), and control sets are separated by double horizontal bars. Note that the CK method did not produce
results for the large model because of its size [2].
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Likewise, an analysis of a smaller (reduced) model of T-LGL can also be useful [11, 46]. Model analysis
indicated that the reduced model in Figure 1 contains two fixed points, one healthy and one diseased.
Regulatory functions for the small T-LGL model can be found in Appendix Table 7. Tables (3a) - (3e)
list the control targets discovered by each of the respective methods for the small T-LGL model, with the
objective of activating apoptosis. The control sets are separated by double horizontal bars as before [2].

For both large and reduced models, we see that FVS provides an upper bound for the amount of targets
needed to achieve network control, whereas CA and CK can provide minimal sets.

CA Nodes
Name State
S1P OFF

KRAS OFF

SPHK1 OFF

PDGFR OFF

DISC ON

Ceramide ON

GAP ON

(a)

CA Edges
Tail Head State
S1P PDGFR OFF

KRAS MEK OFF

JAK STAT3 OFF

SPHK1 S1P OFF

PDGFR SPHK1 OFF

DISC Caspase ON

DISC MCL1 ON

Ceramide S1P ON

GAP KRAS ON

(b)

FVS
Name State
TCR Osc.
ZAP70 OFF
GAP OFF
NFKB ON
IL2RB ON
IL2RA OFF
JAK ON
TBET ON
P2 ON
DISC ON
BID ON
S1P OFF
PDGF OFF
IL15 ON
Stimuli ON
Stimuli2 OFF
CD45 OFF
TAX OFF

(c)

SM
Name State
PDGFR OFF

S1P OFF

SPHK1 OFF

TBET ON
ERK ON
Ceramide ON

TBET ON
GRB2 ON
Ceramide ON

TBET ON
IL2RB ON
Ceramide ON

TBET ON
IL2RBT ON
Ceramide ON

TBET ON
KRAS ON
Ceramide ON

TBET ON
PI3K ON
MEK ON
Ceramide ON

(d)

Table 2: Large T-LGL target tables. Here we list the control targets for the larger T-LGL model, where
control sets are separated by double horizontal bars such that Table 2a contains seven singleton controls,
Table 2b contains nine singleton controls, Table 2c contains one set of 18 controls (some of which are
unnecessary), and Table 2d contains three singleton controls, five triple control sets, and one quadruple
control set [2].
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Fas

S1P Ceramide DISC

Apoptosis Flip

Figure 1: Reduced T-LGL network. The figure shown here indicates the smaller (reduced) T-LGL model,
where black barbed arrows indicate signal expression and while red bar arrows indicate suppression [2].

CA Edges
Tail Head State
Ceramide DISC ON

Ceramide S1P ON

(a)

CA Nodes
Name State
S1P OFF

DISC ON

Ceramide ON

(b)

CK
Name State
S1P OFF

(c)

FVS
Name State
Ceramide ON
DISC ON

Ceramide ON
FLIP OFF

S1P OFF
DISC ON

S1P OFF
FLIP OFF

(d)

SM
Name State
S1P OFF

Ceramide ON

(e)

Table 3: Reduced T-LGL target tables. As before, we list the control targets for the small T-LGL model,
where control sets are separated by double horizontal bars such that Table 3a contains two singleton controls,
Table 3b contains three singleton controls, Table 3c contains one singleton, Table 3d contains four sets of
dual controls, and Table 3e contains two singleton controls [2].
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(a) (b)

Figure 2: Reduced T-LGL network target overlaps. We highlight the overlapping control targets from Table
3 by overlaying them with the reduced T-LGL wiring diagram from Figure 1, shown in two diagrams to
avoid excessive noise. (a) We show instances of CA edge (blue), CA node (green), and SM (grey). (b) We
show instances of CK (black) and FVS (purple). Note that FVS has combinatorial controls with connecting
arches, where others are strictly singleton.

3 Description of Control Methods

3.1 Algebraic Methods (CA)

The method based on computational algebra described in [26, 43] seeks two types of controls: nodes
and edges. These can be achieved biologically by blocking effects of the products of genes associated with
nodes, or by targeting specific gene communications (see Figure 3). The identification of control targets is
achieved by encoding the nodes (or edges) of interest as control variables within the functions. Then, the
control objective is expressed as a system of polynomial equations that is solved by computational algebra
techniques. Though node and edge control are similar, they provide a range of biological options. One
reason is that node control requires an entire node to be knocked out (or knocked-in), but edge control
simply requires an edge communication to be blocked (or continually expressed) [2].

x1

x2 x3

(a) Using CA for an edge target.

x1

x2 x3

(b) Using CA for a node target.

Figure 3: CA diagram. Here, we show a toy model that emphasizes the difference between node and edge
control. The key difference with edge control (b), is that all other communcations are maintained. Whereas,
node control removes every signal associated with the given target.
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Let the function F : Fn2 ×U → Fn2 denote a Boolean network with control, where U is a set of all possible
controls. Then, for u ∈ U , the new system dynamics are given by x(t + 1) = F(x(t), u). That is, each
coordinate ui,j ∈ u encodes the control of edges as follows: consider the edge xi → xj in a given wiring
diagram. Then, we can encode this edge as a control edge by the following function:

Fj(x, ui,j) := fj
(
x1, . . . , (ui,j + 1)xi, . . . , xn

)
which gives

• Inactive control:
ui,j = 0,Fj(x, 0) = fj

(
x1, . . . , xi, . . . , xn

)
• Active control (edge deletion):

ui,j = 1,F2(x, 1) = fj
(
x1, . . . , xi = 0, . . . , xn

)
.

The definition of edge control can therefore be applied to many edges, obtaining F : Fn2 × Fe2 → Fn2 where e
is the number of edges in the diagram. Next, we consider control of node xi from a given diagram. We can
encode the control of node xi by the following function:

Fj(x, u−i , u
+
i ) :=

(
u−i + u+i + 1

)
fj(x) + u+i

which yields

• Inactive control:
u−i = 0, u+i = 0,Fj(x, 0, 0) = fj(x)

• Node xi deletion:
u−i = 1, u+i = 0,Fj(x, 1, 0) = 0

• Node xi expression:
u−i = 0, u+i = 1,Fj(x, 0, 1) = 1

• Negated function value (irrelevant for control):

u−i = 1, u+i = 1,Fj(x, 1, 1) = fj(xt1 , . . . , xtn) + 1.

Using these definitions, we can achieve three types of objectives. Let F = (f1, ..., fn) : Fn → Fn where
F = {0, 1} and µ = {µ1, . . . , µn} is a set of controls. Then we may:

• Generate new attractors. If y is a desirable state (i.e. apoptosis), but it is not currently an attractor,
we find a set µ so that we can solve

Fj(y, µ)− yj = 0, j = 1, . . . n (1)

• Block transitions or remove attractors. If y is an undesirable attractor (i.e. proliferation), we want to
find a set µ so that F(y, µ) 6= y. In general, we can use this framework to avoid transitions between
states (say y → z) so that F(y, µ) 6= z. So we can solve

Fj(y, µ)− zj + 1 = 0, j = 1, . . . n (2)
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• Block regions. If a particular value of a variable, say xk = a, triggers an undesirable pathway, then we
need all attractors to satisfy xk 6= a. So we find a set µ so that the following system has no solution

Fj(x, µ)− xj = 0 j = 1, . . . n

xk − a = 0.
(3)

A subtle change in notation requires attention, because we have now used x to indicate variables rather
than specific values.

Notably, the Boolean functions F must be written as polynomials. To complete the control search we
then compute the Gröbner basis of the ideal associated with the given objective. For example, if we generate
new attractors, we find the Gröbner basis for the ideal

I = 〈F1(y, µ)− y1, . . . ,Fn(y, µ)− yn〉 . (4)

Therefore, we can determine all controls that solve the system of equations and detect combinatorial actions
for the given model [2].

3.2 Control Kernel (CK)

A control kernel (CK) is defined as a set of nodes of minimal order whose pinning reshapes the dynamics
such that the basin of attraction of attractor A becomes the entire configuration space. There are three
main contributors to the CK: input nodes (nodes with identity function as the updating rule), distinguishing
nodes (subset of nodes where a pinning exists that is both compatible with attractor A and incompatible
with the other initial attractors of the network), and additional nodes (minimal distinguishing node sets that
are needed to remove additional attractors). Note that input and distinguishing nodes provide only a lower
bound to CK size because the pinning procedure can create new attractors [2, 29].

To compute CKs, first start with pinning input nodes. Then a brute-force method is used to loop over sets
of distinguishing nodes of increasing size for each attractor. A CK has been found when no other attractors
exist after pinning. Uncontrollable complex attractors are identified by pinning all constant nodes. If more
than one attractor remains, then the cycle does not have a CK [29]. CK discovery works well for small
networks, however, larger networks prove more difficult due to the brute-force nature of the algorithm. In
fact, the scaling of the set cardinality is logarithmic based on the number of attractors in the network [2,29].

3.3 Feedback Vertex Set (FVS)

FVS control uses only the topological structure of a network and knowledge of target phenotype biomark-
ers to induce a phenotype change [30,44] . In FVS control, by manipulating the internal state of the feedback
vertex set (i.e. the nodes that intersect every cycle in the network), we disrupt all feedbacks, making the
resulting network admit a single steady state, which can be aligned with one of the original system’s dynamic
attractors. Thus, a FVS of a graph is a minimal set of nodes whose removal leaves the graph without cycles.
FVS control has been successfully applied to a variety of networks and has been shown to provide an upper
bound on the cardinality of the single set of control nodes needed to reach all attractors [29, 31]. The FVS
method’s advantages include: (i) control simply requires fixing the internal state of the FVS to match that
of the desired attractor, and (ii) making robust predictions that depend only on the network structure and
not on dynamical details. For a transcription factor network underlying a phenotypic switch, the FVS is a
set of transcription factors that, when controlled to match the expression of a desired phenotype, will shift
the cell towards that phenotype [2].

We formally define a feedback vertex set of a directed graph W as a possibly empty subset I of vertices
such that the di-graph W \ I is acyclic, where W \ I denotes the resulting di-graph when all vertices of I
are removed from W , along with all edges from or towards those vertices. An alternative way to view FVS
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is as trees and forests. Recall that a tree is an undirected graph in which any two vertices are connected
by exactly one path, that is, a connected acyclic undirected graph. A forest is defined as an undirected
graph in which any two vertices are connected by at most one path, that is, an acyclic undirected graph, or
a disjoint union of trees [47]. Define a graph G = (V,E) that consists of a finite set of vertices V (G) and a
set of edges E(G). Then a FVS of G is a subset of vertices V ′ ⊆ V (G) such that the removal of V ′ from G,
along with all edges incident to V ′, results in a forest [48]. As such, a FVS must contain all source nodes
and a node in every cycle. In other words, a FVS is a set of “determining nodes” such that if the dynamics
of the determining nodes are given for large times, then the dynamics of the whole system are determined
uniquely for large times [2, 30,49].

3.4 Stable Motifs (SM)

Stable motif (SM) control is based on the identification of self-sustaining generalized positive feedback
loops in the dynamic model. Each of these stable motifs determines a region of the state space from which
dynamical trajectories cannot escape, called a trap space. Further, a stable motif (or a succession of multiple
stable motifs) determines a dynamical attractor (i.e. phenotype). There is a SM control set associated with
each attractor of the system, and the impact of numerous regulators on a single node can be addressed
and analyzed with the method [32]. By definition, a stable motif is a strongly connected subgraph of the
expanded graph that [2]:

(1) contains either a node or its complement but not both

(2) contains all inputs of its composite nodes (if any exist)

First, implement the expanded network that is used to add information about the combinatorial interac-
tion and signs of nodes. Composite nodes represent the AND interaction and complementary nodes represent
the NOT interaction. Each original node i is denoted by xi in the expanded graph, and a complementary
node (∼ xi) is added if the original node represented suppression. Then, all NOT functions are replaced by
its appropriate complementary node in the function. Next, edges are included where each edge is a positive
regulation, contrary to the original wiring diagram [2,50].

The second step is to make distinctions between OR rules and AND rules by using composite nodes for
functions ivolving ANDs. To do this, the functions must be in disjunctive normal form in order to uniquely
determine edges. A special node is included for AND rules, and edges are drawn from the non-composite
nodes of the network that form the actual composite rule. It is noted that the benefit of such an action is
that the reader is able to see all regulatory functions simply from the topology of the expanded network.
Now that the expanded graph is complete, using the definition above we can search for SMs within the
network. The group of nodes included in the SM represent partial fixed points, from which the remaining
nodes can be calculated using the original Boolean functions [2, 50].

4 Efficiency management

In the age of “Big Data”, models are increasingly large and ever more complex. Currently the human
genome is estimated to have approximately 25,000 genes, and single genes can encode multiple proteins.
What’s more, post-translational modifications add even more complexity to the proteome, with an estimated
list of greater than one million proteins [51]. Even networks of merely 100 nodes present a state space much
larger than the total estimated cells in the human body [2]. Therefore, the question of control efficiency is
an open problem to address. Below, we present possible options for addressing network sizes that are too
large for target discovery to be performed in a timely fashion.
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4.1 Reduction techniques

The magnitude of the BN state space for n genes is 2n. Thus, an increase of GRN size will exponentially
increase the computational burden for its analysis, which means brute-force methods for small systems are
not sufficient. Many reduction techniques allows to reduce the size of the network while preserving dynamical
features (e.g., fixed points and periodic attractors), see [36,37]. Reduction techniques were implemented in a
pancreatic cancer model that effectively decreased the total network size from sixty-nine nodes to twenty-two
nodes, a 68% reduction [33]. Critically, when a node was deleted, its function values were substituted directly
into its downstream signal recipient(s) to maintain key network communications. Further, nodes containing
self-loops cannot be removed, this includes input (source) nodes and self-modulating nodes.

First, nodes with one input and one output were removed, but maintain nodes with self-loops and
phenotypes as biomarkers (see Figure 4) [35]. Next, remove nodes with either one input and multiple
outputs, or vice versa (see Figure 5). Lastly, remove nodes with low connectivity relative to the remaining
nodes (see Figure 6). These techniques have been shown to preserve fixed points but not complex attractors,
yet, there are results indicating a conservation of attractors [33,36,37]. For an example of one input and one
output, consider FGFR from the pancreatic cancer model [33]. The original model’s neighborhood about
FGFR is shown in Figure 4a with equations (5) - (6).

(a) FGFR neighborhood (b) Neighborhood around removed FGFR

Figure 4: Single-in-single-out removal. Here, we show how to remove FGFR from the network and still
maintain downstream signaling. See equations 5 - 8 for functional maintenance.

FGFR = bFGF (5)

RAS = (EGFR)|(FGFR) (6)

After reduction, we obtain the neighborhood seen in Figure 4b with equations (7) - (8).

FGFR = bFGF (7)

RAS = (EGFR)|(bFGF) (8)

For an example of either one input and multiple outputs, or vice versa, consider MEK from [33]. The original
model’s neighborhood about MEK is shown in Figure 5a with equations (9) - (11).

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.537158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.537158
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) MEK neighborhood (b) Neighborhood around removed MEK

Figure 5: Single-in-multi-out removal. Here, we show how to remove MEK from the network and still
maintain downstream signaling. See equations 9 - 14 for functional maintenance.

MEK = RAF (9)

ERK = MEK (10)

JNK = MEK (11)

After reduction, we obtain the neighborhood seen in Figure 5b with equations (12) - (14).

MEK = RAF (12)

ERK = RAF (13)

JNK = RAF (14)

Lastly, for an example low connectivity removal, consider cJUN [33]. The original model’s neighborhood
about cJUN is shown in Figure 6a with equations (15) - (18).

(a) cJUN neighborhood (b) Neighborhood around removed cJUN

Figure 6: Low connectivity removal. Here, we show how to remove cJUN from the network and still maintain
downstream signaling. See equations 15 - 22 for functional maintenance.

cJUN = (ERK)|(JNK) (15)

EGF = cJUN (16)

mTOR = (∼ cJUN)&(AKT) (17)

Pro = (CyclinE)&((JNK)|(cJUN)) (18)
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After reduction, we obtain the neighborhood seen in Figure 6b with equations (19) - (22).

cJUN = (ERK)|(JNK) (19)

EGF = (ERK)|(JNK) (20)

mTOR = (∼ [(ERK)|(JNK)])&(AKT) (21)

Pro = (CyclinE)&((JNK)|(ERK)|(JNK)) (22)

4.2 Modularity techniques

Systems biology is capable of building complicated structures from simpler building blocks, even though
these simple blocks (i.e. modules) traditionally are not clearly defined. The concept of modularity detailed
in [34] is structural by nature, in that, a module of a BN is a subnetwork in which the restriction of the
network to the variables of a subgraph has a strongly connected wiring diagram. This framework introduces
both a structural and dynamic decomposition that encapsulates the dynamics of the whole system simply
from the dynamics of its modules. Consequently, the decomposition yields a hierarchy among modules
that can be used to specify controls. That is, by controlling key modules we are able to control the entire
network [2].

Within the modularity framework, the dynamics of the state-space for Boolean network F are denoted
as D(F ), which is a collection of all minimal subsets of attractors, A, satisfying F (A) = A. Further, if F is
decomposable (say into subnetworks H and G), then we can write F = H oG which is called the coupling
of H and G. In the case where the dynamics of G are dependent on H, we call G non-autonomous, denoted
as G. Then we adopt the following notation: let A = A1 ⊕ A2 be a set of attractors of F with A1 ∈ D(H)
and A2 ∈ D(GA1) [2].

For an example, consider the network in Figure 7a with

F (x1, x2, x3, x4, x5, x6) = (x3, x1, x2, x1x6, x4, x5).

From the given wiring diagram, we derive two SCCs where module one (red in 7b) flows into module two
(green in 7b). That is, F = F1 o F2 with

F1(x1, x2, x3) = (x3, x1, x2)

F2(x4, x5, x6) = (x6, x4, x5)

F2(x4, x5, x6) = (x1x6, x4, x5)

D(F1) = {000, 111, [001, 100, 010], [011, 101, 110]}.

Suppose we aim to stabilize the system into y = 000000. First we see that either x1 = 0, x2 = 0 or x3 = 0
stabilize module one (i.e. F1) to A1 = 000 by applying the FVS method from Section 3.3. Likewise, x4 = 0,
x5 = 0 or x6 = 0 stabilize module two (i.e. FA1

2 ) to A2 = 000. Thus, we conclude that u = (x1 = 0, x6 = 0)
achieves the desired result [2].
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x3

x4x5

x6

(a) Example modularity network.

x1

x2

x3

x4x5

x6

(b) Highlighted modules.

Figure 7: Modularity example [2].

5 Limitations

Even though phenotype control theory shows massive potential, the field overall has some limitations,
along with those of each technique we have described. From a biological and translational perspective, it
remains yet to be validated as a viable option for clinical application. Further, the human genome is highly
complex, with signaling mechanisms that are far from well understood. This leads modelers to rely on
speculative networks and hypothesized functional communication rules.

Regardless of method, each of the resulting outputs are merely theoretical controls and must be parsed
to find tangible targets (or combinations of targets). Efficacy of the resulting targets can be established
computationally, which is discussed in the Appendix 7.3. The parsing process can include brute-force testing
of all controls, knowledge of the regulatory network topology, knowledge of literature pertaining to particular
controls, or a mixture of various techniques [22,26]. Some controls may not be biologically achievable, others
may be insufficient if applied independently, while some simply do not perform as desired.

Since we do not apply optimal control, another constraint to address is how to select controls that
prioritize certain interventions over others. These criteria might include selection according to effectiveness
(e.g. shorter absorption time), total/side effects (e.g. number of changes in the original state space),
target “depth” within the network, and practical implementability. Many of the selection criteria will need
stochasticity (such as for time to absorption), which can be achieved via SDDS [10, 52] or asynchronous
simulations (see Appendix 7.2).

When it comes to network reduction, techniques can prove extremely tedious if networks are notably
large. Further, the reduction techniques can change the long-term outlooks of key analytical features such
as cyclical attractors. It has been shown that the methods in Section 4.1 will maintain fixed points, but
they do not necessarily maintain cyclical attractors [33, 36, 37]. Even though examples have been shown to
maintain all attractors [2,33], one can easily show counter examples that do not (see the small T-LGL model
in Section 2.1). Thus, a fully developed methodology for efficient reduction is yet to be seen, which could be
important for analyzing large models.

Additionally, computational complexity varies across methods. For instance, the CA method makes use
of computing Gröbner bases for a system of polynomials and, depending on the algorithm used, it has been
shown to have doubly exponential complexity [26]. However, GRNs with small sets of regulatory nodes can
compute Gröbner bases in a reasonable time [26,53].

For CK, the problem of finding the minimal set of controlling nodes was shown to be NP-hard [54], and
the problem of the existence of multiple possible minimal control sets is NP-complete. Thus, when computing
CKs, no algorithm is expected to run faster in the worst case than checking every possible subset of increasing
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size, since the rounds of pinning to find CK’s are representative of NP-hard problems. Moreover, the average
CK sizes scale logarithmically with the number of attractors [29].

The computational time to find a single FVS is reasonable, the issue arises when trying to find all
possible FVSs. The global stabilization of BNs have been shown to have computational complexity that is
exponential with respect to the number of state variables [55, 56]. However, while the problem of exactly
identifying the minimal FVS has complexity of NP-hard, a variety of fast algorithms exist to find close-to-
minimal solutions [31,57].

Lastly, the complexity of calculating SMs using the domain of influence (DOI), through the expanded
graph [50], is bounded by the order of the sum the number of nodes and edges in the expanded network,
O(Nex+Eex). Subsequent calculations for finding control sets from the DOI become more complex. So called
“well behaved degree distribution” networks give calculated order O(k2N2), where k are the regulators for
each node N . Those networks considered to have “skewed degree distribution” are bounded by O(N3) [50].

6 Conclusions

In this paper, we reviewed various techniques for implementing target discovery and control of gene
regulatory networks. Due to the growing nature of the field, there are always emerging, novel techniques to
implement and we acknowledge that the methods included here are not fully exhaustive [58–62]. Even so,
we have set out to provide a list of varying options, depending on the specific aims and information available
to users, that represent a broad range of applicable theory. We also hope to spark conversations and ideas
for solving open problems in the field, as well as inspire application of these concepts across a wide range of
disciplines, not strictly biology.

In addition to toy examples for each method (see Appendix), we also applied each approach to a well
known cancer model (T-LGL Leukemia) to explore overlaps and differences among the processes. In par-
ticular, we showed that FVS provides an upper bound for the amount of targets needed to achieve network
control, whereas CA and CK can provide minimal sets. Perhaps the most versatile method shown is CA,
where users have wide ranging options to personalize their search (i.e. nodes vs. edges, use existing attrac-
tors, generate new attractors, and block transitions or regions). These overlaps have also been shown in a
computational pancreatic cancer model [22,33].

Even though there is not a common theoretical framework to apply all methods, we do see that each
is capable of affirming discoveries across other methods while also suggesting possible novel targets of their
own. We believe the future is bright for synthetic modeling and control of cell signaling networks, and the
methods reviewed here in are just the beginning.
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7 Appendix

7.1 Elementary examples for control methods

7.1.1 Computational Algebra

x1

x2 x3

x4 x5

Figure 8: CA example [2].

Consider the network in Figure 8, with the following regu-
latory functions.

f1 = (∼ x3) ∧ (∼ x5)

f2 = (∼ x1) ∨ x4
f3 = (∼ x2) ∨ x5
f4 = x3

f5 =∼ x4

Using Table 5, we rewrite our functions as the following sim-
plified polynomials.

f1 = 1 + x3 + x5 + x3x5

f2 = 1 + x1 + x1x4

f3 = x2x5 + x2 + 1

f4 = x3

f5 = 1 + x4

We can then find the fixed points of the system by solving fi = xi for i = 1, . . . , 5. Another way to view
this step is as finding roots of gi = 0 where gi = fi − xi, then finding the Grobner basis of the ideal I =
〈g1, . . . , g5〉. In any case, the example in Figure 8 does not contain any fixed points. However, further state
space analysis does reveal two attractors: {01011, 01100} and {00101, 01010, 01110, 01111, 10001, 11000}.
Now, we encode our edge controls as

F1 = 1 + (u3,1 + 1)x3 + (u5,1 + 1)x5 + (u3,1 + 1)x3(u5,1 + 1)x5

F2 = 1 + (u1,2 + 1)x1 + (u1,2 + 1)x1(u4,2 + 1)x4

F3 = (u2,3 + 1)x2(u5,3 + 1)x5 + (u2,3 + 1)x2 + 1

F4 = (u3,4 + 1)x3

F5 = 1 + (u4,5 + 1)x4

(23)

and node controls as

F1 = (u−1 + u+1 + 1)(1 + x3 + x5 + x3x5) + u+1

F2 = (u−2 + u+2 + 1)(1 + x1 + x1x4) + u+2

F3 = (u−3 + u+3 + 1)(x2x5 + x2 + 1) + u+3

F4 = (u−4 + u+4 + 1)x3 + u+4

F5 = (u−5 + u+5 + 1)(1 + x4) + u+5 .

(24)

Let’s consider the objective of generating new attractors, and assume we want our steady state to be
y = 11110. In general, one can search the entire system for controls, but there may be special cases where
limiting decisions can be made amongst collaborators. For arguments sake, suppose we want to find edge
knockouts and limit our search to edges x3 → x1, x5 → x1, and x2 → x3. Then the updated edge equations
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(Eq. 23) become

F1 = 1 + (u3,1 + 1)x3 + (u5,1 + 1)x5 + (u3,1 + 1)x3(u5,1 + 1)x5

F2 = 1 + x1 + x1x4

F3 = (u2,3 + 1)x2x5 + (u2,3 + 1)x2 + 1

F4 = x3

F5 = 1 + x4.

(25)

Evaluating at y = 11110 yields

F1 = u3,1, F2 = 1, F3 = u2,3, F4 = 1, F5 = 0.

Therefore, the desired fixed point is achieved if and only if u3,1 = u2,3 = 1. That is, the controls for u3,1
and u2,3 are active, such that we must delete both corresponding edges. Similarly, we can determine node
control to achieve new fixed point y = 11110. Again, for simplicity, we limit ourselves to x1 knock-in, x3
knock-out and knock-in, and x4 knock-in. The updated node equations (Eq. 24) then become

F1 = (u+1 + 1)(1 + x3 + x5 + x3x5) + u+1
F2 = 1 + x1 + x1x4

F3 = (u−3 + u+3 + 1)(x2x5 + x2 + 1) + u+3

F4 = (u+4 + 1)x3 + u+4
F5 = 1 + x4.

(26)

Evaluating at y = 11110 yields

F1 = u+1 , F2 = 1, F3 = u+3 , F4 = 1, F5 = 0.

Thus, the desired fixed point is achieved if and only if u+1 = 1 and u+3 = 1. Importantly, this means that
the controls by themselves are insufficient but together they achieve the desired goal. One can easily see that
requiring numerous controls in much larger systems may not be biological feasible, which is why alternate
objectives can prove useful.

Suppose we determine that y = 01111 is in a diseased attractor which we want to destroy. We can then
aim to block the transition from y to F (y) = 01110. We limit ourselves to considering edges from x3 → x1,
x5 → x1, x3 → x4, and x4 → x5. The updated edge equations (Eq. 23) become

F1 = 1 + (u3,1 + 1)x3 + (u5,1 + 1)x5 + (u3,1 + 1)x3(u5,1 + 1)x5

F2 = 1 + x1 + x1x4

F3 = x2x5 + x2 + 1

F4 = (u3,4 + 1)x3

F5 = 1 + (u4,5 + 1)x4.

(27)

Evaluating at y = 01111 yields

F1 = u3,1u5,1, F2 = 1, F3 = 1, F4 = u3,4 + 1, F5 = u4,5.

This means that Eq. 2 becomes
(u3,1u5,1 + 1)(u3,4)(u4,5 + 1) = 0

giving three possible solutions: u3,1 = u5,1 = 1, u3,4 = 0, or u4,5 = 1. Notice that we again have a
combinatorial solution in u3,1, u5,1 since they are insufficient individually but successful together, u3,4 = 0
means that the control is inactive, and u4,5 is a singleton control.
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Lastly, consider the objective of region blocking. Suppose we want to avoid regions where x3 = 0, and we
will limit ourselves to nodes x2 knock-out, x3 knock-in, and x4 knock-in. Then the updated node equations
(Eq. 24) become

F1 = 1 + x3 + x5 + x3x5

F2 = (u−2 + 1)(1 + x1 + x1x4)

F3 = (u+3 + 1)(x2x5 + x2 + 1) + u+3

F4 = (u+4 + 1)x3 + u+4
F5 = 1 + x4.

(28)

Next, we see that Eq. 3 yields

0 = 1 + x3 + x5 + x3x5 + x1

0 = (u−2 + 1)(1 + x1 + x1x4) + x2

0 = (u+3 + 1)(x2x5 + x2 + 1) + u+3 + x3

0 = (u+4 + 1)x3 + u+4 + x4

0 = 1 + x4 + x5

0 = x3

(29)

Using computation algebra tools to compute the Grobner basis of the ideal associated to the above equations,
we encode the system of equations to achieve the ideal:

I = 〈x1 + 1, u−2 , x2 + 1, u+3 , x3, u
+
4 + 1, x4 + 1, x5〉.

This means the original system has the same solutions as the following system.

x1 + 1 = 0 u−2 = 0 x2 + 1 = 0 u+3 = 0

x3 = 0 u+4 + 1 = 0 x4 + 1 = 0 x5 = 0

Recall that our goal is to block the region x3 = 0 by finding parameters that guarantee the above system
has no solutions. Utilizing equations that only contain control parameters we have u−2 = 0, u+3 = 0, and
u+4 + 1 = 0. Thus, if we allow either u−2 = 1, u+3 = 1, or u+4 = 0, then our system will have no solution, as
needed. Since x3 is limiting criteria and u+4 is an inactive control, that leaves u−2 = 1 as the desired target.
As one can see, the computational algebra method is quite versatile [2].

7.1.2 Control Kernel

x1

x2

x3 x4

x5x6

Figure 9: CK example [2].

Consider the network in Figure 9. Steady
state analysis reveals two fixed points: 000100
and 111011. Suppose our control objective is
x4 = 0, which is the second fixed point respec-
tively. We first notice that there are no input
nodes, which means we move on to distinguish-
ing nodes. Then the CK method (correctly) in-
dicates that x1 = 1 will direct the system into
the desired fixed point. Admittedly, while the
CK method is straight forward, the software
used to implement the search can be difficult
to navigate [2].
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7.1.3 Feedback Vertex Set

Figure 10 contains a simple example of identifying a FVS. The input node (x1) is always in the control
set, while the only other node required is one of those in the 3-cycle. As scene in the figure, 10a is the
example wiring diagram and 10b - 10d show the three possible FVS’s. One can easily see that the strategy
for FVS is quite simple, yet, it can produce larger control sets than necessary. Further, we may not obtain
all FVS’s if the system has many attractors [2].

x1

x2

x3 x4

(a) FVS example network

x1

x2

x3 x4

(b) FVS = {x1, x2}
x1

x2

x3 x4

(c) FVS = {x1, x3}

x1

x2

x3 x4

(d) FVS = {x1, x4}

Figure 10: FVS example [2].

7.1.4 Stable Motifs

Consider the example network in Figure 11a, with the following functions and negated functions.
f1 = x2|x3
f2 = x1&(∼ x3)

f3 = (∼ x1)|(∼ x2)

∼ f1 = (∼ x2)&(∼ x3)

∼ f2 = (∼ x1)|x3
∼ f3 = x1&x2

Using the aforementioned steps, the expanded graph obtained is Figure 11b. Notice there are two stable
motifs (circled in orange and green), which indicate a fixed point (110) and a partial fixed point (X01). To
find the rest of partial fixed point, substitute known values into the original functions. Therefore,

f1 = x2|x3 = 0|1 = 1

which gives 101 as the second fixed point. Since the control sets are subsets of the stable motifs, we have
{x2 = 1, x3 = 0} or {x1 = 1, x3 = 0} for fixed point 110, and {x2 = 0} or {x3 = 1} for fixed point 101 [2].
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x1

x2 x3

(a) SM example network (b) Example SM expanded graph

Figure 11: Stable motif example [2].

7.2 Finite Dynamical Systems

xi1

xi2

xim

xifi(xi1 , ..., xim)

Figure 12: FDS for gene regulation [2].

For the last few decades, a popular modeling ap-
proach for gene regulation has been to implement
dynamical systems over finite fields. Here, functions
can be interpreted as modeling information process-
ing within cells, which determines cellular behavior.
As depicted in Figure 12, {xi1 , . . . , xim} represent
the input genes or predictor genes, fi(xi1 , ..., xim) is
the internal update function or predictor rule, and
xi is the target gene.

First, let X = X1×X2 · · ·×Xn be the Cartesian
product of finite sets. A local model over a finite
set X is an n-tuple of coordinate functions F =
(f1, f2 . . . , fn), where fi : Xn → X. Each function
fi uniquely determines a function

Fi : (x1, . . . , xn) 7→ (x1, . . . , fi(x), . . . , xn)

and x = (x1, . . . , xn). Every local model defines a canonical finite dynamical system (FDS) map, where the
functions are updated as

f : Xn → Xn, f : (x1, . . . , xn) 7→ (f1(x), . . . , fn(x)).

Note that discrete does not necessarily imply finite. Take the natural numbers N = 1, 2, 3, 4, . . . , for
example. The set is clearly discrete, yet its cardinality is infinite. In general, we cannot always write a
function as a tuple if the space is simply “discrete”. In order to provide structure to each Xi, we embed Xi

into a finite field where, for some prime p,

Xi ↪→ F, |F| = pk.
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For example, if we desire states of Low, Medium, and High to represent levels of gene expression, then
Xi = {L,M,H} ↪→ F3 = {0, 1, 2}. We call these mixed-state models when states are non-binary. For
the case when states are binary (i.e. ON or OFF, HIGH or LOW, 1 or 0), we call these models Boolean
networks [2].

7.2.1 Boolean Networks

x1 x2

Figure 13: Simple Boolean network [2].

Boolean networks (BNs) are popular because we
can build effective models without the use of con-
stants or rates. This then eliminates the need for
tedious parameter discovery. Rather, BNs focus on
the mechanics and logic of the system. BN mod-
els were originally introduced in 1963 by Kauffman
and Thomas to provide a coarse grained description
of gene regulatory networks [23, 63]. Within a BN
there are three main components: structure (wiring diagram), functions (regulatory rules), and dynamics
(attractors). As we begin to define our terms, it may be helpful to keep Figure 13 in mind as a basic example.
Given n binary variables, define a Boolean Network as an n-tuple of coordinate functions

F = (f1, . . . fn) : {0, 1}n → {0, 1}n, fi : {0, 1}n 7→ {0, 1}.

The wiring diagram of F , call it W , is then defined as a directed graph with n nodes {x1, x2, . . . , xn} such
that there is an edge in W from xj to xi if fi depends on xj . That is,

xj → xi if fi = f(xi1 , . . . , xij , . . . , xik)

Within W we denote positive edges as xj → xi and negative edges as xj a xi (or sometimes xj ( xi).
Biologically, a positive edge is representative of activation while a negative edge represents inhibition. For
example, in Figure 13 we see the wiring diagram of F = (f1, f2) = (x2, x1).

00

01 11

10

Figure 14: Phase space of diagram 13 [2].

Now that we have structure and functions, the
dynamics of F are traditionally described as: (1)
trajectories for all 2n possible initial conditions, or
(2) a directed graph with nodes in Fn2 = {0, 1}n. In
the first case, a trajectory is a sequence (x(t))∞t=0

given by the difference equations x(t+ 1) = F (x(t))
for all t ≥ 0 [34]. For example, Figure 13 would
yield deterministic trajectories

T1 = (00, 00, 00, . . . )

T2 = (11, 11, 11, . . . )

T3 = (01, 10, 01, 10, . . . )

T4 = (10, 01, 10, 01, . . . ).

The phase space (also called state space) of F is
the directed graph with vertex set Sn and edge set
{(s, f(s))|s ∈ Sn}. Simply put, in a BN, S is the
set of all possible states, and their respective transitions according to the model F form the state space (see
Figure 14). A node s ∈ S is called transient if fk(s) 6= s for all k > 1, a node s ∈ S is called periodic (or
cyclic) if fk(s) = s for some k ≥ 1, and a node s ∈ S is called a fixed point if f(s) = s. We can also think of
the phase space as having strongly connected components (SCCs), where a SCC is said to be terminal if it
has no out-going edges. Thus, a transient state is not in a terminal SCC, a cyclic attractor is in a terminal
k-cycle (k = 1 is a fixed point), and any instance of an SCC otherwise is a complex attractor. In other words,
we define an attractor as a set of states from which there is no escape as the system evolves, and an attractor
with a single state is called a fixed point. Thus, given sufficient time, the dynamics of a BN always end up
in a fixed point or (complex) attractor.
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x1 x2

x3

x4 x5

x6 x7

Figure 15: Nonlinear Boolean network [2].

x1 x2 f1 = x2 f2 = x1

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

Table 4: Dynamic truth table for Figure 13.

For example, it was previously shown above that
F = (f1, f2) = (x2, x1). To find the dynamics of
the corresponding state space S = {00, 01, 10, 11},
one can construct truth Table 4 using lexicographic
ordering. It is important to point out that we denote
the states in order of the variable so that

s2 = {0, 1} = 01 = {x1 = 0, x2 = 1},

because maintaining order is highly important for correct interpretation of state values. The left columns
indicate the possible states of our nodes x1 and x2, whereas the right columns indicate their deterministic
updates according to the functions f1 and f2. Therefore, from the framework we see in Figure 14 that we
have two fixed points and one cycle.

Rule Symbol Polynomial

AND x ∧ y, x&y xy
OR x ∨ y, x|y xy + x+ y

NOT (∼ x), x̄, (¬x) x+ 1

Table 5: Standard Boolean logical rules.

Up to this point we have only discussed linear
BNs, but real-world models are almost always highly
nonlinear (see Figure 15). To accommodate these
nonlinear regulatory networks, we implement vari-
ous classes of functions based on three main Boolean
logical rules - AND, OR, NOT. Some use XOR (ex-
clusive OR), but for simplicity it is excluded here.
Assume the variables x and y are given in a BN.
Then Table 5 summarizes the functionality and no-
tation used for each of the three main rules.

A common criticism of using discrete models for regulatory networks such as BNs is that deterministic
dynamics are artificial. In reality biological systems do not contain a “central clock”, but instead the
concentration levels of gene products change and respond to stimuli on varying time-scales. Thus, the
update schedules chosen play a significant role in the accuracy of the model. Synchronous update schedules
produce deterministic dynamics, wherein nodes are all updated simultaneously so that

x(0)→ x(1) = F (x(0))→ x(2) = F (x(1))→ · · · .

On the other hand, asynchronous update schedules produce stochastic dynamics, wherein a randomly selected
node is updated at each time step so that

x(0)→ x(1) = (x1(0), . . . , fi(x(0)), . . . , xn(0))→ · · · .

Lastly, sequential update schedules are performed asynchronously according to a designated permutation
σ = (σ1, . . . , σn) of (1, . . . , n). Specifically, if we define Fi(x1, . . . , xn) = (x1, . . . , fi(x), . . . , xn), then the
update is given by

Fσ(x) = Fσn(Fσn−1(· · · (Fσ1(x)) · · · ))
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according to the order designated by σ. This is sometimes done when the ordering of gene updates are
known, as some may update faster than others. For example, using our simple example in Figure 13, Figure
16 shows the varying impacts of these three update schedules.

00

01 11

10

(a) Synchronous update.

00

01 11

10

(b) Asynchronous update.

00

01 11

10

(c) Sequential update with
σ = (2, 1)

Figure 16: State-space dynamical variants according to update schedules [2].

We can easily observe from Figure 16 that fixed points are maintained across all update schedules.
However, cycles are not necessarily preserved. This is where the framework of Stochastic Discrete Dynamical
Systems (SDDS) is beneficial [2,11,22,33]. Developed in [11], SDDS incorporates Markov chain tools to study
long-term dynamics of Boolean networks. SDDS uses parameters based on designated propensities to model
node (and pathway) signal activation and deactivation, also referred to as degradation. In essence, SDDS
merges the synchronous and asynchronous update schedules described above. One propensity is used when
the update positively impacts the node, in the sense that the node increases its value from OFF to ON.
Another propensity is used when the update negatively affects the node in the sense that the node decreases
its value from ON to OFF. More precisely, an SDDS of the variables (x1, x2, ..., xn) is a collection of n triples

F̂ = {fk, p↑k, p
↓
k}
n
k=1

where for k = 1, ..., n,

• fk : {0, 1}n → {0, 1} is the update function for xk

• p↑k ∈ [0, 1] is the activation propensity

• p↓k ∈ [0, 1] is the deactivation propensity

Here, the parameters p↑k and p↓k introduce stochasticity. For example, an activation of xk(t) at the next time

step (i.e. xk(t) = 0, fk(x1(t), ..., xn(t)) = 1, and xk(t + 1) = 1) occurs with probability p↑k. An SDDS can
be represented as a Markov Chain via its transition matrix, which can be viewed as transition probabilities
between various states of the network. Elements of the transition matrix A are determined as follows:
consider the set S = {0, 1}n consisting of all possible states of the network. Suppose x = (x1, ..., xn) ∈ S
and y = (y1, ..., yn) ∈ S. Then, the probability of transitioning from x to y is

ay,x =
n∏
i=1

P (xi → yi) (30)

where entries are stored column-wise and

P (xi → fi(x)) =

p
↑
k, if xi < fi(x)

p↓k, if xi > fi(x)
1, if xi = fi(x)

and P (xi → xi) =

1− p↑k, if xi < fi(x)

1− p↓k, if xi > fi(x)
1, if xi = fi(x)

.
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It follows that P (xi → yi) = 0 for any yi /∈ {xi, fi(x)}. Therefore, we achieve A = [ay,x]x,y∈S . Note that
when propensities are set to p = 1, we have a traditional BN. With this framework, we built a simulator that
takes random initial states as inputs and then tracks the trajectory of each node through time. Long-term
phenotype expression probabilities can then be estimated, as well as network dynamics with (and without)
controls [2].

7.3 Simulating Target Efficacy

x1

x2 x3

Figure 17: Simple 3-cycle [2].

To determine the efficacy of controls, we compare un-
controlled simulations with the appropriate target control
simulations. Thus, a good control will produce low disease
levels and high health levels [2]. We can do so by utilizing
a stochastic simulator based on SDDS [2,11,22,33], which
requires several inputs before it can begin. The number
of input variables in each Boolean function is given by the
vector nv. Next, we need the variables for each gene in
the form of an m× n matrix called varF where m is the
maximum number of inputs, n is the number of genes, and information is stored column-wise. The number
of variables will vary between functions. Since only the first nv(i) elements of the ith column are relevant,
all remaining entries are set as (−1). Now we construct the truth table F in compact form with size 2m×n.
Again, the length of each column i will vary but only the first 2nv(i) entries are relevant. So all remaining
entries are set as (−1). It is vitally important to maintain numerical ordering, which is why the columns of
F are in lexicographic binary arrays [25].

Figure 18: Phase-space of simple 3-cycle. Here
we show the state-space of the example from Fig-
ure 17, using SDDS with transition probabilities,
with nodes written in lexicographical ordering.

We must also establish propensities in the form of a
2 × n matrix c that contains values for p↑k and p↓k. The
values chosen for propensities may perturb results, as we
saw in Figure 16. But for all intents and purposes, we
typically use p↑k = p↓k = 0.9 (i.e. follow the function rules
90% of the time). Finally, we can run simulations using
inputs: F, varF, nv, number of states (usually Boolean),
c, n, number of steps, and number of random initializa-
tions. We have also implemented versions that allow for
mutation induction and specified initial states. As a re-
sult, we achieve time-course trajectories, and we can use
the Markov chain structure of SDDS to analyze features
such as time to absorption, stationary distributions, and
more.

As an example, consider the simple 3-cycle in Figure
17. This particular system has two fixed points ({000}
and {111}) as well as two attractors ({001, 100, 010} and
{011, 101, 110}). Simulations were conducted using the
variables in Table 6, with 1000 random initializations,
100 time steps (function updates), and injecting 1% noise.
The overall state-space is shown in Figure 18. In Figure
19a, the uncontrolled simulation shows the oscillatory na-
ture of attractors. However, Figures 19b and 19c show that inducing control on x1 is enough to drive the
system to one fixed point or the other. Therefore, the SDDS simulator has the ability to show long-term
trajectories and impact of controls over time.
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x1 x2 x3
1 1 1

(a) nv

x1 x2 x3
3 1 2

(b) varF

x1 x2 x3
0 0 0
1 1 1

(c) F

Table 6: Variable tables for simple 3-cycle simulations in Figure 17 [2].
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(a) Unregulated simulation.
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(b) Regulated simulation (x1 = ON).
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(c) Regulated simulation (x1 = OFF).

Figure 19: Simulation examples for a simple 3-cycle with 1% noise [2].

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.537158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.537158
http://creativecommons.org/licenses/by-nc-nd/4.0/


7.4 Software

• Cumulative files for all control techniques and examples, as well as “how-to” documentation [2]

– https://github.com/drplaugher/SMATA_pipeline

• CA: used to find fixed points, controls, and run simulations [22,33,64]

– use the example files above

– see also, https://github.com/drplaugher/PCC_Mutations

• CK: used to find control kernels [29]

– https://doi.org/10.5281/zenodo.5172898

• FVS: used to find FVSs [30,44]

– https://github.com/jgtz/FVS_python3

• Modularity: used to find strongly connected components (modules) [34]

– use the example files above

• SM: used to find stable motifs and dynamic attractors [32,65]

– https://github.com/jgtz/StableMotifs

– https://github.com/jcrozum/pystablemotifs
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7.5 Supplementary Tables

Table 7: Small T-LGL rules

Node Boolean Rule

S1P (not Ceramide)

FLIP (not DISC)

Fas (not S1P)

Ceramide Fas and (not S1P)

DISC Ceramide or (Fas and (not FLIP))

Apoptosis DISC

Table 8: Functions for large T-LGL model.

Node Rule
CTLA4 TCR
TCR Stimuli and not CTLA4
PDGFR S1P or PDGF
FYN TCR or IL2RB
Cytoskeleton signaling FYN
LCK CD45 or ((TCR or IL2RB) and not ZAP70)
ZAP70 LCK and not FYN
GRB2 IL2RB or ZAP70
PLCG1 GRB2 or PDGFR
KRAS (GRB2 or PLCG1) and not GAP
GAP (KRAS or (PDGFR and GAP)) and not (IL15 or IL2)
MEK KRAS
ERK MEK and PI3K
PI3K PDGFR or KRAS
NFKB (TPL2 or PI3K) or (FLIP and TRADD and IAP)
NFAT PI3K
RANTES NFKB
IL2 (NFKB or STAT3 or NFAT) and not TBET
IL2RBT ERK and TBET
IL2RB IL2RBT and (IL2 or IL15)
IL2RAT IL2 and (STAT3 or NFKB)
IL2RA (IL2 and IL2RAT) and not IL2RA
JAK (IL2RA or IL2RB or RANTES or IFNG) and not (SOCS or CD45)

SOCS JAK and not (IL2 or IL15)
STAT3 JAK
P27 STAT3
Proliferation STAT3 and not P27
TBET JAK or TBET
CREB ERK and IFNG
IFNGT TBET or STAT3 or NFAT
IFNG ((IL2 or IL15 or Stimuli) and IFNGT) and not (SMAD or P2)

P2 (IFNG or P2) and not Stimuli2
GZMB (CREB and IFNG) or TBET
TPL2 TAX or (PI3K and TNF)
TNF NFKB
TRADD TNF and not (IAP or A20)
FasL STAT3 or NFKB or NFAT or ERK
FasT NFKB
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Fas (FasT and FasL) and not sFas
sFas FasT and S1P
Ceramide Fas and not S1P
DISC FasT and ((Fas and IL2) or Ceramide or (Fas and not FLIP))
Caspase (((TRADD or GZMB) and BID) and not IAP) or DISC
FLIP (NFKB or (CREB and IFNG)) and not DISC
A20 NFKB
BID (Caspase or GZMB) and not (BclxL or MCL1)
IAP NFKB and not BID
BclxL (NFKB or STAT3) and not (BID or GZMB or DISC)
MCL1 (IL2RB and STAT3 and NFKB and PI3K) and not DISC
Apoptosis Caspase
GPCR S1P
SMAD GPCR
SPHK1 PDGFR
S1P SPHK1 and not Ceramide
PDGF 0
IL15 1
Stimuli 1
Stimuli2 0
CD45 0
TAX 0
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