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Abstract

The DNAJBI-PRKACA fusion is the signature genetic event of fibrolamellar hepatocellular
carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young
adults. A deletion fuses the first exon of the HSP40 gene (DNAJB1), with exons 2—-10 of

protein kinase A (PRKACA), producing the chimeric kinase DNAJB1-PKA:, (J-PKA,). The
HSP40 portion’s scaffolding/chaperone function has been implicated in redirecting substrate
recognition to upregulate oncogenic pathways, but the direct substrates of this fusion are not fully
known. We integrated cell-based and /n vitro phosphoproteomics to identify substrates targeted
directly by PKA and J-PKA,, comparing phosphoproteome profiles from cells with in vitro
rephosphorylation of peptides and proteins from lysates using recombinant enzymes. We identified
a subset of phosphorylation sites in both cell-based and /n vitro experiments, as well as altered
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pathways and proteins consistent with observations from related studies. We also treated cells
with PKA inhibitors that function by two different mechanisms (rpcAMPs and PKI) and examined
phosphoproteome profiles, finding some substrates that persisted in the presence of inhibitors and
revealing differences between WT and chimera. Overall, these results provide potential insights
into J-PKA,’s oncogenic activity in a complex cellular system and may provide candidate targets
for therapeutic follow-up.
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INTRODUCTION

Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that occurs in
young people without a gender bias or underlying liver diseases. It accounts for less than
1% of all primary liver cancers but represents the majority of HCCs in patients younger than
30 years of age.l:2 Surgery is the mainstay of treatment in FL-HCC. No chemotherapeutic
agents have been shown to have significant efficacy in HCC.2 The gross anatomic feature

of FL-HCC is an expanding, heterogeneous tumor mass with areas of increased vascularity
and necrosis’ including areas of fibrosis similar to focal nodular hyperplasia, a benign
vascular-fibrotic lesion in the liver.

Due to the rarity of FL-HCC and a lack of representative experimental systems, the
molecular basis for carcinogenesis in these tumors has been elusive and difficult to study.
Recently, however, there has been a breakthrough in understanding the pathogenesis and
expression profile of the FL-HCC. Honeyman and colleagues discovered a novel, chimeric
transcript that is present in all studied samples of FL-HCC.® Detection of a single, consistent
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genetic deletion in one copy of chromosome 195 results in the formation of a chimeric
gene, DNAJB1 —PRKACA, which combines the first exon of DNAJBI, the heat shock
protein 40 (HSP40), with exons 2 through 10 of PRKACA, the catalytic subunit of protein
kinase A (PKAg). This gives rise to a chimeric construct in which the N-terminal helix
of PKA, is fused to the J-domain of DNAJB1 (J-PKA.,). This chimera has been found
to be the main driver of FL-HCC,” and while some of the changes downstream of its
expression have been characterized, the detailed molecular pathogenesis producing those
changes remains poorly understood.

PKA.; is one of the best understood human kinases, and there is ample evidence to support
the hypothesis that its kinase activity plays a role in FL-HCC.>6 Although protein kinases
represent a significant class of potential drug targets, with more than 60 FDA-approved
small-molecule kinase inhibitors and many more in development or in clinical trials8® PKA
itself seems to be a challenging target, likely due to its function in many normal cell

types leading to dose-limiting toxicities and thus it may suffer from a narrow therapeutic
window.10 Furthermore, previous work has suggested that the catalytic activity of the
chimeric fusion is not significantly different from that of the native PKA, enzyme,>’

yet the phenotypic differences observed in FL-HCC suggest that increased activity on
native PKA, substrates is not the only contributor to oncogenic transformation; additional
mechanisms may be activated by the chimera.” DNAJBI (otherwise known as HSP40)

is a chaperone protein with numerous protein—protein interaction partners, and a recent
study suggests that J-PKA, functions as a scaffold via its J (HSP40) component to
assemble signaling elements that are then aberrantly phosphorylated by the catalytic
portion of the chimera to contribute to the pathogenicity of FL-HCC.1! Other recent

work has characterized the allosteric effects of the J-domain on important aspects of

the PKA activation mechanism, observing changes to the dynamics of the holoenzyme
bound to regulatory subunits that impact important factors like CAMP binding, surfaces
accessible for interaction with binding partners, and potentially localization.12 Consequently,
understanding the downstream pathways activated by excess WT PKA, activity vsaberrant
J-PKA; chimera signaling may help to find new viable drug targets for FL-HCC. However,
both PKA and HSP40 are upstream of a very broad set of cellular pathways, and

their downstream effects are governed by particular regulatory interactions that determine
substrates under a given set of biological conditions. Therefore, identifying particular direct
substrates of both WT PKA, and the J-PKA, chimera in cells would be valuable for
follow-up on candidate pathways for therapeutic intervention.

Many high-throughput approaches for the identification of phosphopeptides with mass
spectrometry-based proteomics have been described (some reviewed in ref 13), but these
do not typically enable clear assignment of direct substrates relative to those that may have
been phosphorylated by other kinases downstream of the target kinase’s activation. We
seek to understand whether this chimeric fusion between HSP40 and PKA results in direct
phosphorylation of a different set of substrates that could lead to its activation of unique
pathways. Therefore, in the present study, we have employed an integrated strategy termed
kinase assay linked with phosphoproteomics (KALIP)14-17 (similar to other approaches
employing cell lysates as a substrate pool for in vitro kinase reactions8-19 ) for comparing
the specificity and identifying direct substrates of WT PKA; and the chimeric mutant
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J-PKA, (Figure 1). We identified phosphopeptides from cells overexpressing WT PKA, or
J-PKA, (Figure 1A), as well as from /n vitro kinase reactions with recombinant, purified
WT PKA, or J-PKA, using either digested peptides (Figure 1B) or whole proteins as
(Figure 1C) the substrate pool. These experiments identified some phosphosites associated
uniquely with the chimeric fusion enzyme and enabled system analyses that revealed
similarities and differences in the phosphosite motifs and pathways activated in the presence
of the WT PKA¢, vsJ-PKA,. We also examined the differential WT PKAg, and J-PKAg,
phosphoproteomes in response to two different PKA inhibitors in cells, identifying pathways
and substrates that seemed to persist despite the apparent inhibition of other substrates

and pathways. Overall, these findings of direct substrates, and substrates with differential
inhibitor responses, could assist in prioritizing candidates for next-generation treatment of
FL-HCC.

MATERIALS AND METHODS

Recombinant Enzyme Expression and Purification

High-level expression of human PKA; and J-PKA, in Escherichia coli was achieved by
the construction of pET28a (+) vector that contained the protein gene subcloned prior to

a phage T7 RNA polymerase promoter. Each species was expressed in the £. coli cell

line BL21(DE3) by growing the bacteria in LB medium at 37 °C. Protein expression

was induced by the addition of 0.4 mM IPTG and carried out overnight at 24 °C before
harvesting the cells. Affinity purification was carried out using a Ni-NTA affinity resin
(Thermo Scientific HisPur Ni-NTA Resin, catalogue number: 88221). Protein molecular
weight was confirmed by SDS-PAGE (Figure S1). The activity of purified enzymes was
confirmed by the PepTag nonradioactive protein kinase assay (Promega, catalogue number:
V5340) (Figure S2).

Human Cell Culture and Transfection

Human embryonic kidney 293 cells (HEK293-T) were maintained in modified Dulbecco’s
medium (DMEM) supplemented with 10% fetal bovine serum, 100 sg/mL of streptomycin,
and 100 IU/mL of penicillin in 5% CO, at 37 °C. Cells were grown to 80—90%
confluency and then transiently transfected using the Lipofectamine 3000 transfection kit
(Thermo Fisher Scientific) with 10 g of plasmid containing either human PRKACA

gene (pcrDNA3.1-PRKACA, Addgene plasmid #100890), DNAJB1—PRKACA gene
(pcrDNA3.1-Chimera, Addgene plasmid #100891), or empty pcrDNAS3.1 vector. Both
plasmids were gifts from Sanford Simon.® Cells were incubated with plasmids for 36 h

at 37 °C and 5% carbon dioxide in transfection media (DMEM/10% FBS) and then either
harvested directly or treated with 0.1 mM sodium pervanadate for 15 min at 4 °C prior to
harvesting. The cells were then washed twice with PBS, and the pellets were frozen at —80
°C until further processing as described in the Sample Preparation from Cell Lysates section.
Sample aliquots were used to verify kinase expression via Western blotting, as described in
the Supporting Information.
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Inhibitor Treatment

Cells were maintained in modified Dulbecco’s medium (DMEM) supplemented with 10%
fetal bovine serum, 100 pg/mL of streptomycin, and 100 IU/mL of penicillin in 5% CO> at
37 °C and grown to ~80% confluency before transfection with plasmids as described above.
Small-molecule inhibitor rpcAMPs (cCAMPs-Rp triethylammonium salt, Tocris, Cat. #1337)
(370 M) was added with transfection (36 h of total treatment) or after 12 h of transfection
(24 h of total treatment); cell-permeable peptide inhibitor PKI (myristoylated PKl14_p>
amide, Tocris, Cat. #2546) (6.4 M) was added 12 h after transfection (24 h of total
treatment). The cells were harvested after a total of 36 h in transfection media (DMEM/10%
FBS). Cells were briefly pulsed with 0.1 mM sodium pervanadate for 15 min at 4 °C prior to
harvesting the cells to inhibit phosphatase activity and prevent peptide dephosphorylation to
“lock” phosphorylation sites in place for downstream analysis. The cells were then washed
twice with PBS, and pellets were frozen at —80 until further processing, as described in the
Sample Preparation from Cell Lysates section.

Sample Preparation from Cell Lysates

For all experiments except the native protein rephosphorylation, peptides were prepared

as previously described:20 cell pellets that had been snap-frozen at —80 °C were

solubilized in lysis buffer (20% acetonitrile, 7 M urea, 2 M thiourea, 0.4 M TEAB,

4 mM DTT, phosphatase inhibitor cocktail (Pierce Phosphatase Inhibitor Mini Tablets,
catalogue number: A32957), and Roche cOmplete, Mini EDTA-free Protease Inhibitor
Cocktail 04693159001) and probe-sonicated to shear DNA. The cell debris was cleared

by centrifugation at 16 000g for 30 min at 4 °C, and the supernatant containing the soluble
proteins was collected. Protein concentrations were measured using the Bradford assay, and
the lysate containing ~1 mg of total protein was reduced using TCEP (5 mM) and alkylated
with iodoacetamide (40 mM) for 1 h at room temperature in the dark. Proteins were

then digested with proteomics-grade trypsin (Pierce Trypsin Protease, MS grade-catalogue
number 90058) at a ratio of 1:50 by mass (trypsin/total protein in lysate) overnight at 37 °C.
On the next day, samples were acidified with 10% trifluoroacetic acid (TFA), desalted with
Waters Oasis HLB cartridges, and concentrated to dryness using a Speed-Vac.

For the native protein rephosphorylation experiments, cell lysates were prepared in lysis
buffer containing 50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Nonidet
P-40, and protease inhibitor cocktail for 20 min on ice. Cell debris was cleared using
centrifugation at 16 000g and 4 °C for 15 min. The supernatant containing soluble
proteins was collected and measured for protein concentration and used in native protein
rephosphorylation experiments as described below.

Phosphopeptide Enrichment

Sequential enrichment by metal oxide affinity chromatography (SMOAC) (Thermo Fisher
Scientific) was used to enrich phosphopeptides according to the manufacturer’s instructions.
This method uses a two-step consecutive enrichment of phosphopeptides using TiO, and
Fe-NTA spin columns.?! The recovered phosphopeptides from this step were concentrated to
dryness using a Speed-Vac.
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Kinase Reactions for Rephosphorylation

For Peptide Rephosphorylation.—Peptide digests were prepared as described above.
Samples were then resuspended in 100 L of lambda phosphatase reaction buffer (50 mM
Hepes, 100 mM NaCl, 2 mM DTT, 1 mM MnCls, pH 7.5). Lambda phosphatase (New
England Biolabs P0753S) was added to each sample (2800-3000 units) and incubated
overnight at 30 °C. The phosphatase was deactivated by heating at 75°C for 10 min. Samples
were incubated in a kinase assay reaction buffer (L00 mM Tris—=HCI pH 7.8, 10 mM MgCl,,
5 mM DTT, 2 mM ATP) containing the purified recombinant kinase (approximately 5000
units; estimated by /n vitro kinase reaction with the recombinant, purified enzyme and
relative quantification of bands via PepTag Nonradioactive protein kinase assays; Figure S2)
at 30 °C for 90 min. Reactions were quenched by the addition of 0.5% TFA to a pH below
3. The samples were then desalted using Waters HLB cartridges and concentrated to dryness
using a Speed-Vac.

For Native Protein Rephosphorylation.—Samples (2 mg of total protein in 300 s of
lysis buffer each) were treated with lambda phosphatase (2800-3000 units) in phosphatase
buffer (500 mM Tris—HCI, pH 7.5, 1 mM Nay, EDTA, 50 mM dithiothreitol) and 2 mM

Mn ion (MnCly) and incubated at 37 °C for 90 min. Since it was preferred to keep

the proteins in their native, folded state, heat inactivation was not desirable; therefore, to
stop the reaction, a cocktail of two tablets of phosphatase inhibitor (Pierce Phosphatase
Inhibitor Mini Tablets, catalogue number: A32957) and two tablets of protease inhibitor
(Roche cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail #04693159001) dissolved
in 5 ml of kinase reaction buffer was prepared and 150 g1 of this cocktail was added

to each sample, stirring gently with a small magnetic stirrer while holding in a water

bath for 10 min. A fraction of the reaction was kept as control for MS analysis, and

for rephosphorylation reaction, the purified recombinant kinases (~5000 units, estimated
as described above for peptide rephosphorylation) were added to each sample in kinase
buffer (20 mM potassium phosphate, 180 mM KCI, 20 mM MgCl,, 5 mM DTT, and 200
UM ATP) while gently stirring (as above) for 60 min at 30 °C. The kinase reaction was
quenched by heat inactivation (75 °C for 10 min) and dialyzed overnight against trypsin
digestion buffer (100 mM Tris—HCI, 10 mM CaCl,, 5 mM DTT, pH 7.8) in Pur-a-lyzer
midi dialysis tubes (Sigma-Aldrich PURD10005) for buffer exchange, resulting in a minimal
amount of protein precipitation. Samples were then resolubilized using up to 2 M urea,
alkylated with iodoacetamide, digested using trypsin, desalted and concentrated to dryness,
and phosphoenriched using the SMOAC strategy as described for other samples above.

Mass Spectrometry Data Acquisition and Data Analysis

The phosphopeptide samples were then analyzed by LC-MS/MS as previously20 using a
Thermo Scientific Easy NanoLC LC 1000 system coupled to a high-resolution Orbitrap
Fusion Tribrid Mass Spectrometer using a reverse phase C18 column with a 60 min linear
gradient of 2-30% B (solvent A: water +.01% formic acid; solvent B: acetonitrile+.01%
formic acid) at a flow rate of 200 nL/min. The mass spectrometer was operated in a
data-dependent mode with a resolution of 60 000 and a scan range of 300-1500 77/z. The
top 12 most abundant ions were selected with a dynamic exclusion time of 15 s for high
collision dissociation (HCD), and fragments were analyzed.
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Raw data files were processed for peptide, protein, and phosphosite identification using
PEAKS Studio XPro software (Bioinformatics Solutions Inc.) against the complete UniProt
human reference proteome (containing both reviewed and unreviewed entries). Details of
phosphorylation sites per protein were extracted from the exported PEAKS PTM search
result tables for further comparisons and analyses using a custom-built PHP script we named
PEAKS-ModExtractor (https://gitlab.com/jackbrennan07/peaks-modextractor). Instructions
for using Peaks-ModExtractor are available at the link provided.

Qualitative Data Analysis to Identify Shared and Unique Sites (Cell-Based
Phosphoproteomic Profiling, In Vitro Rephosphorylation, and Cell-Based
Inhibitor Experiments).—For all experiments, lists of phosphopeptides/phosphorylation
sites identified were analyzed qualitatively to extract a final list of sequences/sites that were
identified robustly and compared to each other to determine which were shared and which
were uniquely present in a given experiment: first, during the PEAKS Studio Xpro export
process, a false discovery rate (FDR) cutoff for peptide identification was applied and only
peptides with FDR < 1% were included. Next, results from PEAKS-ModExtractor outputs
were filtered to include only those with Ascore values <30. This value was selected as a
cutoff based on the previously published evaluation of the Ascore metric performance,22:23
which demonstrated that phosphopeptides with Ascores above this cutoff are reliably

high confidence for identifying and localizing the modification. Then, data sets from

each experiment were compared using BioVenn (http://www.biovenn.nl/index.php)24 and
additionally filtered to focus on more robust observations by only including phosphopeptides
observed in both replicates. The resulting lists were then qualitatively background-subtracted
(also using BioVenn) by removing any sites that were also identified in the experiment’s
respective negative control (the empty vector-only control for the cell-based experiments
and phosphatase-treated inputs for the /n vitro rephosphorylation experiments). As a further
approach to ensure interpretation of the identified peptides/proteins in context, we included
a reference table from the CRAPome,2® a repository of proteins commonly identified

across many affinity purification mass spectrometry (AP-MS) experiments compiled at

and downloaded from https://reprint-apms.org, and provided information about how often a
given protein has been observed (via average spectral counts across CRAPome experiments)
with our results listed in Supporting Table S1. It should be noted that this CRAPome
reference is not from phosphopeptide enrichment by SMOAC and therefore may not fully
represent the type of background contaminants relevant to this experiment —however, it
may still be a useful reference for considering the cellular context of different protein
abundances and the nature of different types of binding interactions relevant to our result
list.

Comparing Tryptic Peptides vs Sites in Their Protein Context.—Peptide
sequences pulled from the PEAKS result tables by PEAKS-ModExtractor were used

to compare results from the peptide rephosphorylation experiment; however, because
phosphorylation at the protein level (i.e., in cells and in the native protein rephosphorylation
experiment) occurred before protease digestion, the identified peptide lists were not
sufficient to analyze substrate motifs. Thus, phosphorylation site(s) per protein identifier
were used to retrieve the sequences surrounding the identified phosphosites (=7 to +7) by
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retrieving protein region sequence information from UniProt via the Retrieve/ID Mapping
function, downloading the results as noncompressed “source list”.fasta files. The resulting
consolidated lists of 15 AA sequences -7 to +7 from each phosphorylation site were used
for comparison analyses. Motif visualization was performed using PTM-Logo.28 Sequences
of <15 or >15 amino acids in length (arising from, e.g. isoform conflicts, redundant partial
sequences in unreviewed entries, etc.) were excluded from PTM-logo motif analysis due to
limitations of the motif tool. In cases where nonuniform sequences needed to be evaluated
(e.g. the peptide rephosphorylation experiment), the Weblogo resource was used.2’

Raw data, associated PEAKS result files, and PEAKS-ModExtractor outputs are
available for download at the MassIVE repository (https://massive.ucsd.edu, accession
#MSV000086707).

RESULTS

Cell-Based Phosphoproteomics Profiles and Signaling Pathway Comparison

To compare the signaling profiles of WT PKA, and its oncogenic mutant J-PKA,,
constructs containing each protein were transiently expressed in HEK293 cells in duplicate.
Cells transfected with empty vectors were used as a control. Expression levels were verified
by Western blot against the human cAMP-dependent protein kinase A catalytic subunit,
which recognizes both WT PKA, and J-PKA, (Figure S1). It should be noted that the
expression of both WT- and J-PKA_, were relatively high in the cell line model and may
have resulted in differences in ratios of catalytic to regulatory subunits that would affect

the physiological behavior of the kinase activation. Cells were treated briefly with the
phosphatase inhibitor pervanadate to enhance phosphorylation site stability for downstream
analysis and lysed in denaturing lysis buffer. Phosphopeptides were enriched using
sequential metal oxide affinity chromatography (SMOAC), as described in the Materials
and Methods section, and analyzed on an Orbitrap Fusion LC-MS/MS. Mass spectrometry
data were processed using PEAKS Studio XPro, and modified peptides were extracted from
the PTM search export using PEAKS-ModExtractor. The outputs were filtered to ignore
modifications other than phosphorylation of STY and Ascore values below 30. To control
for background phosphorylation, phosphosite identifications from the vector-only control
were filtered from the sites identified in WT PKA,- and J-PKA,-expressing cells. These
background-subtracted lists were used to make phosphosite comparisons between replicates
and conditions.

Overall, 3195 phosphosites were confidently identified in both replicates from WT PKA,-
expressing cells and 2616 from J-PKA;-expressing cells. After filtering out those that were
also observed in the vector control, 1244 were unique to WT PKA,, 809 to J-PKAg,,

and 770 were common between the two (Figure 2A). Pathway activation was evaluated
using ingenuity pathways analysis (IPA) in the phosphorylation analysis mode for each
phosphosite list from WT PKA,- and J-PKA;-expressing cells and also for phosphosites
identified as higher abundance in tumor vsadjacent normal tissues (>1 log,-fold change

or only in tumors) from a recent phosphoproteomics study of FL-HCC patient samples.1
Full pathway analysis tables are available in the Supporting Information. Some of the
pathways observed as significantly enriched in the overexpression cell lines were likely cell-
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type-specific, as they were not observed as activated from the patient sample data. However,
a number of substrates and key pathways enriched in the FL-HCC patient sample data were
also observed in WT PKA;- and J-PKA4-expressing cells (Figure 2B,D), in particular,

the ERK/MAPK signaling pathway that was identified as important in the patient sample
study by Turnham et al. These results support that despite the caveat related to the ratio of
catalytic to regulatory subunit expression levels, it seems reasonable to use HEK293 cells
overexpressing the kinase constructs as model systems for examining direct substrates of
these kinases in this context. However, they also suggest that most of the pathway activation
may arise broadly from overactive PKA and not necessarily from substrate interactions
unique to the DNAJB1/HSP40 chaperone interactions, given that pathways activated in WT
PKAa-expressing cells were overall the same as in J-PKA,-expressing cells. The only
pathways with stronger enrichment in J-PKAg-expressing cells vs WT PKA, included
EIF2 signaling, protein ubiquitination, and aldosterone signaling in epithelial cells (Figure
2D), none of which were very highly enriched in the patient sample data. With respect

to specific phosphorylation sites, direct comparisons of the HEK293 cell overexpression
models with the patient FL-HCC data are subject to the caveat that the phosphoenrichment
technique, instrumentation, peptide identification software, and human proteome databases
were not the same; however, there were nevertheless still some sites observed in common
(Figure 2B).

The sequences surrounding the overlapping sites (Table 1) were further examined. The
amino acid motif around most of the 39 phosphorylation sites observed in common

among the FL-HCC tumor>normal, J-PKA,, and WT PKA, data sets showed similar
characteristics to that seen for direct phosphorylation of proteins by recombinant WT PKA¢,
in experiments reported by Sugiyama et al.28 (Figure 2C), suggesting that many of these
sites are likely to be direct substrates in FL-HCC that arise from abnormal levels of PKA
activity. Intriguingly, the 21 sites that were observed in common only in FL-HCC tumor

> normal/J-PK A, exhibited the expected enrichment of hydrophobic amino acids at +1,
whereas the 28 sites shared only in FL-HCC tumor>normal/WT PKA, did not. This
suggests that the 21 FL-HCC tumor > normal/J-PKA, sites may also represent unique
direct substrates of the J-PKA;; mutant, while those observed as unique in the WT PKA,
data may be more likely to be downstream and not direct. This was also supported by direct
phosphorylation experiments (as described below and in Table 2).

Identification of Direct In Vitro Substrates of PKAc; and J-PKA.5; Using HEK293 Cell Line

Models

We were interested in determining which of the phosphorylation sites observed in our
experiments were most likely direct substrates of either J-PKA, and/or WT PKAg,. PKA
is known to phosphorylate a number of motifs that have variations on the basic R/K-R/K-
X-S/T motif, including R-X-R-R-X-S-® (where @ is a hydrophobic residue), R-R-X-S-®,
and R-R-X-S/T;29 however, these motifs are very simplistic and generic, with insufficient
information about the full range of amino acids,especially C-terminal to the phosphosite, to
adequately facilitate identification of direct substrates from cell-based phosphosite profiles.
To explore this, we chose the Kinase Assay LInked with Phosphoproteomics (KALIP)
approach,14:16.20 jn which cell lysates from the HEK293 kinase construct overexpression
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models were used as substrate pools for rephosphorylation by purified kinase /in vitro

(as illustrated in Figure 1). This provided a more relevant comparison to the phosphosite
profiles we observed from cell-based phosphoproteomics described in the previous section.
Previously, in the work by Sugiyama et al., PKA was one of >360 kinases profiled

for phosphorylation of whole-protein substrates /n vitro, using HeLa cell lysate as the
substrate pool.28 In that work, cell lysates prepared in a nondenaturing buffer were treated
with phosphatase to remove pre-existing phosphate groups and then heated to 75 °C to
inactivate the phosphatase, which also could have denatured many of the proteins.30 We
were most interested in maintaining the native structural states of the proteins and avoiding
heat treatment, so we used whole-protein lysate from the cells overexpressing J-PKA,

or WT PKA,, as the substrate pool after inactivating the phosphatase using phosphatase
inhibitors. However, heat treatment would have also denatured endogenous kinases that may
produce background phosphorylation; since we did not heat-treat, those kinases may have
still been active. This led to the caveat that some observations may not result from direct
phosphorylation. Accordingly, we also performed KALIP rephosphorylation on the trypsin
digest of the lysate from cells overexpressing J-PKA.; or WT PKA,, which was subject to
its own caveat that trypsin digest would disrupt the N-terminal R/K motifs typically present
in PKA substrates. However, by combining the information from these two experiments, we
were able to balance the caveats of each to learn more about the C-terminal substrate motifs
independent of the optimal N-terminal motif, confirm the amino acid patterns seen for +1
to +4 in the work from Sugiyama et al., compare substrate profiles for J-PKA; and WT

PKA,, and cross-reference for sites also observed in FL-HCC tumor tissues by Turnham et
al.l1

Peptide Rephosphorylation.—Considering only the peptides robustly identified in both
kinase reaction replicates, 188 phosphopeptides were observed for the J-PKA;, vs 96 for
the WT PKA, in the peptide rephosphorylation experiments and 120 phosphorylation

sites on 96 proteins for J-PKA¢; Vs 116 sites on 99 proteins for WT PKA, in the

protein rephosphorylation experiments. In general, the phosphorylation motifs observed

in the peptide experiment matched the known hydrophobic motif-S-®-®-C-terminal to the
phosphorylation site, which several studies (including an expressed oriented peptide library
consisting of S-centered sequences from human proteins reported by the Rinehart and
Turk, as well as the protein rephosphorylation study by Sugiyama et al.) have previously
reported.19-28 The vast majority of the sequences surrounding the sites were truncated in the
tryptic digest that was used for peptide rephosphorylation, with very little missed cleavage;
thus, the peptides themselves in the kinase reaction did NOT have the common N-terminal
-(R/K)-(R/K)-X-S-motif. However, interestingly, when mapped back to the context of their
full proteins, the sites phosphorylated still largely contained the N-terminal positively
charged residues (R/K) at —2 and —3 (Figure 3B). We speculate that perhaps this reflects
the evolution of direct PKA substrates as containing both N- and C-terminal components
of the motif and that the motif on the C-terminal side of the phosphosite is to some

degree sufficient to direct PKA phosphorylation as seen in our peptide rephosphorylation
experiment. Further, a much larger number of unique phosphopeptides were seen for the
J-PKA, peptide reaction, and the sequence motif for those was slightly different from that
for the shared and WT PKA,-unique sequences, showing less enrichment of hydrophobic
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amino acids at +2 and more acidic amino acids at +3. These differences suggest some
intrinsic distinctions in substrate recognition of J-PKA., vs WT PKA,— for example, this
may indicate that J-PKA, substrate recognition is less reliant on the N-terminal basic amino
acid motif, with the C-terminal motif being sufficient for phosphorylation by the mutant. It
could also mean that the J-domain alters catalytic dynamics in a way that depends more on
the C-terminal motif and leads to increased turnover for more substrates, which may not be
reflected in the K, or Vinax Values previously characterized using a limited set of substrates
that all contained the N-terminal basic motif.31.32

Protein Rephosphorylation.—For the protein rephosphorylation experiments, the
background phosphorylation by nondenatured kinases in the cell lysate is evident from the
sequence motifs observed (Figure 3C); however, several were also identified by Sugiyama
et al.28 (see Supporting Table S2) and/or as higher in FL-HCC tumor than in normal tissue
by Turnham et al.11 (Supporting Table S1), which did exhibit the expected PKA N- and/or
C-terminal motifs. These observations suggest that those sites also identified in Turnham et
al.11 are likely to be bona fide direct substrates of J-PKA¢, and/or WT PKA, in FL-HCC
tumor tissues (summary of these proteins is shown in Table 2).

Both Peptide and Protein Rephosphorylation.—Twenty-two phosphosites were
identified in common in both the peptide and protein experiments (17 sites for J-PKA,
and 12 sites for WT PKA,). Of those, 10 were unique to J-PKA,, 5 t0 WT PKA.,, and
7 were common between both (Figure 3A). Three of the sites in common sites were also
seen as higher in tumor than normal in FL-HCC tissues!! (Table 2): the DNA repair protein
XRCC6/Ku70 (Ku70 S520), 60S ribosomal protein L3 (RPL3 S13), and triosephosphate
isomerase (TPIS S21). All three of these sites have been reported to be phosphorylated in
many prior studies (as curated in the PhosphoSitePlus database, https://phosphosite.org);
RPL3 S13 and TPIS S21 were also observed in the PKA protein rephosphorylation
experiment performed by Sugiyama et al.; however, they have not been studied in depth
as PKA substrates, and Ku70 S520 has not been previously associated with PKA.

Phosphoproteomics of Inhibitor-Treated Cells Expressing J-PKA.; or WT PKA,

We were also interested in how PKA inhibitors would affect the phosphorylation profile

in cells expressing chimeric J-PKA,; vsthe WT PKA,. We applied two PKA inhibitors
with different inhibition mechanisms, rpcAMPs and a truncated, myristoylated form of
protein kinase A inhibitor peptide (PKl14_59) (Figure 4). rpcAMPs competitively inhibit
the cAMP-induced activation of the kinase by binding to the regulatory subunit (best
characterized for Rla) and stabilizing the inactive conformation of the PKA, catalytic
subunit in the holoenzyme,33:34 while PKI is an endogenous peptide that competitively
inhibits substrate binding to the catalytic subunit.31:3% Cells overexpressing each version of
the kinase were treated with each inhibitor in culture across different points in the time line
between transfection and harvesting (Figure 4B); lysates were harvested in the presence of
phosphatase inhibitor, and phosphopeptides were enriched and identified by LC-MS/MS.
Two incubation time span experiments were performed for rpcAMPs (36 h coincubation
for the entire transfection time line and addition after 12 h from transfection for 24 h
inhibitor treatment). PKI1 was added after 12 h for a 24 h inhibitor treatment to minimize any
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potential effects of peptide biostability on the results; myristoylated PKl;4_5, has been used
in cell-based experiments as long as 24-96 h;36:37 therefore, 24 h should be well within its
biostability window. Both inhibitors resulted in a noticeable reduction of phosphopeptides
for PKA¢; and J-PKA, (Figure 4C); however, full 36 h cotreatment with rpcAMPS during
the course of J-PKA., overexpression was also associated with observation of a substantial
number of new phosphopeptides not seen in the -inh control. Further, a subset of certain
phosphopeptides seemed to persist in cells expressing each version of the kinase even in

the presence of each inhibitor (Figure 4C and Table 3), with additional subsets persisting in
PKI-treated cells or in rpcAMP-treated cells through both time points (see Supporting Table
S1 for full lists).

It is difficult to confidently evaluate the motifs for phosphosites that were not observed in
the presence of inhibitor vsthe control since the absence of evidence is not necessarily
evidence of absence (particularly for mass spectrometry of peptides). However, it is useful
to evaluate the sequence characteristics for the sites that were consistently observed across
conditions. We found some interesting differences in the motifs observed for phosphosites
that persisted in the presence of different inhibitors with each kinase construct (Figure 5).
Generally, the sites that persisted in the presence of both inhibitors that were either unique
for J-PKA, or shared for both kinase constructs exhibited motifs that were more similar
to the known substrate preference motif (K/R at —2 and/or —3 and hydrophobic residues

at +1 and/or +2) and were different from those persisting only in the WT PKA, inhibitor
experiments (Figure 5A). Also, a larger number of persistent sites were seen uniquely

for J-PKA, than for WT PKA,. This might indicate that J-PKA., is more resistant to
inhibition v/a either mode (substrate-competitive and regulatory subunit stabilization, as
illustrated in Figure 4A). Differences were seen for which sites persisted in the presence of
PKI vsrpcAMPs, as well. The number of sites that persisted through PKI treatment was
greater for the WT PKA,-expressing cells than for J-PKA,, although the motifs were not
very different (when generalized to polarity) and were not very similar to PKA substrate
preference motifs; also, very few sites persisted in the presence of rpcAMPs but not PKI for
WT PKA,. On the other hand, a much larger number of sites persisted through rpcAMP
treatment in J-PKA.z-overexpressing cells than for WT PKA,, and the sequences around
those sites closely resembled the PKA substrate motif. This may suggest that rpcAMP, in
particular, is less effective at J-PKA, inhibition, while PKI inhibition of the chimeric form
is not as impacted.

DISCUSSION

PKA signaling is involved in the control of a wide variety of cellular processes from
metabolism to ion channel activation, cell growth and differentiation, gene expression, and
apoptosis. The J-PKA., hallmark mutation in FL-HCC seems to affect these processes

in complex ways that go beyond straightforward amplification of normal PKA pathways,
including novel activation of Wnt/f-catenin, Ras-Raf-Erk pathways, and others,’11 and
also seems to evade the regulatory control of endogenous inhibitors like the PKI peptides,
despite the expression of those inhibitors in tumor cells and a lack of difference in
biochemical inhibition by various forms of PKI in vitro for J-PKA:, vs WT PKAg,.3!

So far, although pathways have been characterized and some upstream/downstream kinase
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activation has been predicted,!! the direct kinase—substrate relationships that lead to these
signaling outcomes have not been identified, and the molecular mechanisms by which
J-PKA, promotes oncogenesis in FL-HCC are still not fully understood. While the work
described here does not comprehensively map or prove these mechanisms, it provides
evidence for potential direct substrates that may be important to pursue in the future.

Disrupted Regulatory Interactions vs Unique Downstream Substrate/Pathway Activation

Turnham et al. proposed that the J-domain/HSP40 promotes aberrant interactions with novel
substrates through its chaperone functions.1 Other recent work has proposed that changes
to the allosteric connectivity in the kinase resulting from the J-domain fusion affect the
ability of the chimeric version of the kinase to interact with its regulatory domains, leading
to aberrant phosphorylation and activation of established PKA signaling pathways.12:32

Our data contain evidence that supports both of these proposals, and our experiments

are particularly helpful for comparing J-PKA,; with the WT kinase head-to-head. On the
one hand, we observed overall that the pathways induced by expression of the J-PKA,
mutant were not substantially different from those induced by WT PKA,, and most of the
phosphorylation sites we detected in J-PKA¢,-0verexpressing cells that were shared with
tumor vsnormal FL-HCC tissue (Turnham et al.11) were also detected in WT PKAz-over-
expressing cells. This suggests that for the most part, J-PKA., overexpression produces
very similar downstream outcomes as just overexpressing/overactivating PKA activity more
generally, supporting the idea that the key differences lie in the regulation of PKA kinase
activity and not necessarily in new substrates phosphorylated by the mutant. On the other
hand, some specific phosphorylation sites we detected in J-PKA;-expressing cells, but not
in WT, also support that there may be particular events related to the J-domain chimera,
e.g., phosphorylation of KSR1 at S888, which is homologous to a PKA-phosphorylated site
in murine KSR1 that has been linked to cAMP/PKA activation of the ERK1/2 cascade38

(a pathway that was suggested as key to the J-PKA;; mechanism by Turnham et al.),

and/or additional heat shock proteins by J-PKA, (Tables 1 and 2). However, most of the
J-PKA-“unique” sites from each given experiment were also seen across various versions
of the WT experiments, suggesting that they are not truly unique to the mutant. S423 of
actinin-4 (ACTN4 S23) was the one apparently direct site that was seen in all three J-PKA¢,
experiments, but only in WT PKA, peptide rephosphorylation and not the corresponding
WT protein rephosphorylation and cell experiments; this site was also higher in tumor
vsnormal in FL-HCC and may be worth additional study, given the ACTN4’s role in
malignancy and metastasis.3°

We also identified sites and pathways that were differentially affected by the PKA inhibitors
rpcAMPs and PKl 14 22), leading to a set of phosphorylation sites that persisted in the
presence of each inhibitor (Figures 4 and 5). While we cannot rule out the potential that
overexpression of the catalytic domain to levels higher than can be sufficiently modulated
by the regulatory subunit available in the cell, and many of the persistent substrates and
pathways were common to both forms of the enzyme (Table 3), intriguingly some were

not (Figure 5). The J-PKA,; chimera seemed to be particularly resistant to inhibition by
rpcAMPs, which is consistent with the mechanism proposed by Lu et al. from cryo-EM
structures of the holoenzyme,12 in which the J-domain seems to affect the dynamics and

J Proteome Res. Author manuscript; available in PMC 2023 May 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Karamafrooz et al.

Page 14

allostery of the regulatory subunit interactions, resulting in destabilization such that J-PKA,
is more easily activated by cAMP. It is plausible that destabilization of those regulatory
subunit interactions could also destabilize interaction of the mutant holoenzyme with
rpcAMPs and enable cCAMP to compete more effectively for J-PKA, binding, which would
allow the mutant to retain higher activity in the presence of rpcAMPs at the concentrations
used in our experiments. Also, the persistence of signaling pathways associated with
pyrimidine biosynthesis and DNA damage response in J-PKA,-expressing cells in the
presence of rpcAMPs (Figure 5D) further suggests that some unique mechanisms are present
downstream of the mutant. Overall, our data should be useful to others for the study of

the specific mechanisms that may govern aberrant activation resulting from amplification of
PKA activity due to the J-domain fusion’s disruption of regulatory complexes, as well as
potential unique downstream pathways.

Candidate Direct Substrates That May Govern Pathogenesis in FL-HCC

A key goal of this study was to identify direct substrates of J-PKA, that could be
contributing to pathogenesis in FL-HCC. The KALIP workflow enabled us to determine

a number of apparently direct substrates of both WT PKA, and J-PKA,, including some
that were also observed by others in FL-HCC tumor tissues!! and that connect to pathways
that are well supported by other studies. Two specific sites on two proteins were identified
across all experiments (for mutant and WT kinase): S520 of XRCC6 (the DNA damage
repair/nonhomologous end-joining-related protein Ku70) and S13 of RPL3 (a component

of the 60S ribosome), strongly suggesting that they are direct substrates of both forms

of the kinase. These sites were also persistent in the presence of inhibitors PKI and
rpcAMPs. A number of other sites that were present in FL-HCC tissues were also apparently
persistent in the presence of inhibitors in our experiments, and we saw evidence for direct
phosphorylation by J-PKA/WT PKA., for some of these (Table 3). One potentially notable
site observed as persistent to inhibitors for both J-PKA; and WT was S58 on the regulatory
subunit Rlla. This site is in a disordered region of the protein not visible in the published
structures, but it has previously been observed in other phosphoproteomics studies®®-43 and
is close to a CDK2 phosphorylation site (T54) that is important for regulation of PKA
localization to the centrosome during mitosis.** According to STRING analysis,** several of
the apparently direct sites are on proteins associated with either RPL3 or Ku70 in complexes
involved in translational regulation (RPL3) or nonhomologous end-joining (NHEJ) (Ku70)
(Figure 6A). This raises the interesting possibility that deregulated PKA signaling viathese
particular complexes may be important to FL-HCC pathogenesis but also difficult to target
via PKA directly, so other potential druggable targets in those networks (e.g., DNA-PK or
the ribosome) may be valuable for future FL-HCC therapeutic development.

Phosphorylation of the J-Domain at S16

In all of our experiments with J-PKA,, we observed that S16 of the J-domain was
phosphorylated, and we also observed this in the rephosphorylation experiments. However,
because we were introducing recombinant J-PKA., in the kinase reaction, we cannot
confirm that this is a direct autophosphorylation substrate of the mutant kinase, and this
site was not reported in studies by Turnham et al.1! Further, it was also detected in one run
of the WT control experiment (albeit in a single replicate and at a level close to the noise,

J Proteome Res. Author manuscript; available in PMC 2023 May 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Karamafrooz et al. Page 15

far lower than in any J-PKA:, experiment and likely an artifact of MS analysis), so we are
cautious about overinterpreting this phosphorylation site. Nevertheless, this site is located

on the hinge region of the J-domain (Figure 6B), and it was observed as persistent in all

of the J-PKA, inhibitor experiments; given the importance of J-domain dynamics on the
regulatory interactions described by other studies,12:32 it is possible that this phosphorylation
event is significant, and it may be worthwhile for future structural studies to take it into
account.

CONCLUSIONS

Overall, we identified a number of phosphorylation sites that are associated with deregulated
PKA activity in these overexpression model systems that also were rephosphorylated /n
vitro by recombinant enzyme, suggesting that they are direct substrates of either J-PKA,,
WT PKA.,, or both. Even though we used HEK293 cells as our model and FL-HCC is

a liver cancer, a substantial number of the sites we detected were consistent with sites
detected at higher levels in FL-HCC tissues vsnormal, lending confidence to the relevance
of these phosphorylation events to this cancer. While not comprehensive examinations of the
pathophysiology of this disease, the data presented here provide potential lead mechanisms
for further evaluation as targets. Of those we identified, some of the key players (DNA-PK
and the ribosome) are currently being pursued as drug targets in preclinical and clinical
studies, and candidate compounds may be available for testing sensitivity of this cancer
type. Since safely inhibiting PKA activity itself is a challenging prospect, the potential
targets presented here may represent more viable opportunities for therapeutic intervention
in FL-HCC.
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Figure 1.
Summary of workflow for protein-level (top) and peptide-level (bottom) KALIP

rephosphorylation experiments (image created with BioRender).
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Figure 2.
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Characteristics of phosphoprotein signaling and sites. (A) Venn diagram representing
phosphosites confidently observed from PKA,- , J-PKA,-, and vector-only expressing
cells (created using BioVenn https://www.biovenn.nl/). (B) Phosphosites observed (same
lists used as input for IPA) were compared between the HEK293 overexpression models
and FL-HCC tumor tissues (tumor > adj. normal, eLife, 201911). Venn diagrams for
comparisons of individual sites and for protein identifiers were created with BioVenn. (C)
Sequence motif analysis for the overlapping phosphosite observations was performed using
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PTM-Logo,23 also including motif analysis for the sites observed as phosphorylated by WT
PKA, in a previously reported study by Sugiyama et al. in 2019, performing whole-protein
in vitro phosphorylation.2® Only significantly over-represented amino acids and charge
characteristics at positions =7 to +7 are shown in sequence logos. Charge logo legend: ¥ =
basic residue, e.g., K/R; 8= acidic residue, e.g., D/E; ¢ = hydrophobic residue; P = proline;
A = other. (D) Heatmap generated with https://heatmapper.ca, illustrating selected pathway
activation enrichment scores from IPA (Supporting Table S3), comparing phosphorylation
sites observed as higher in tumor vsnormal FL-HCC tissue in the Turnham et al. study

vs HEK?293 cells overexpressing J-PKA., or WT PKA, (after filtering each to remove
sites observed in vector-only control). Multiple comparison-corrected Benjamini—-Hochberg
p-values were determined in IPA, with the significance cutoff set at p = 0.05, and only
pathways with significant B—H p-value enrichment scores from the Turnham data and the
J-PKA, data were included in the heatmap.
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Figure 3.

Peptide and protein rephosphorylation experiments. (A) Venn diagrams illustrating the
number of phosphopeptides robustly observed in both replicates of the peptide and/or
protein rephosphorylation experiment using recombinant J-PKA, or WT PKA,, showing
common and unique peptides for each. (B) Sequence motif analysis using PTM-logo?3
(sites mapped to their protein context) for peptide rephosphorylation experiment, overall
(top) and highlighting amino acid polarity characteristics for those also seen as higher in
FL-HCC tumors by Turnham et al.11 (in a box). Almost all observed phosphopeptides were
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truncated within 1-2 amino acid N-terminals of the phosphosite (illustrated by gray boxes

in sequence logos). Number of sequences used to generate motifs provided for context. (C)
Sequence motifs for sites observed by protein rephosphorylation, including all sites observed
(top; likely contains upstream/downstream sites as well as direct) and those also seen as
more abundant in FL-HCC tumor tissues!! (as for peptide rephosphorylation in a box).
Additional detailed information (UniProt identifiers, phosphosites, tc.) provided in Table 2
and Supporting Table S1. Charge logo legend: ¥ = basic residue, e.g., K/IR; 6= acidic
residue, e.g., D/E; ¢ = hydrophobic residue; P = proline; A = other.
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Figure 4.
Phosphoproteomics of inhibitor-treated cells. (A) Different mechanisms of inhibition for two

cAMP-PKA specific inhibitors PKI and rpcAMPs. rpcAMP binds to the PKA regulatory
subunit and prevents its dissociation from the catalytic subunit and is also resistant toward
cyclic nucleotide phosphodiesterases. PKI is a substrate-competitive inhibitor of the catalytic
subunit. (B) Experimental design: cells cultured in 12-well plates were transfected in
duplicate with J-PKA:,;, WT PKA,, or empty vector and incubated for 36 h. Inhibitor

was added at £= 0 h (rpcAMPSs) or ¢= 12 h (PKI or rpcAMPs) for 36 or 24 h
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treatment, followed by lysis, trypsin digest, and phosphoenrichment for LC-MS/MS (created
with BioRender.com). (C) Venn diagrams illustrating the outcomes from experiments

by kinase construct and inhibitor. Top: four-way Venn diagrams (created with http://
bioinformatics.psh.ugent.be/webtools/\enn/) showing numbers of phosphosites identified in
each sample but not the corresponding vector-only control. Bottom: subsetted, simplified
proportional Venn diagrams (created with http://biovenn.nl) showing only phosphosites
observed in the -Inh controls and the various inhibitor treatments.
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D. Ingenuity Pathways Analysis for persistent sites
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Motifs observed for persistent phosphosites. Venn diagrams for number of sites that
persisted in the presence of inhibitors for each kinase construct (number of those that also
had evidence that they may be direct substrates indicated in parentheses) and amino acid/
polarity motifs for the sets of sequences associated with each group. (A) Both inhibitors,
all time points. (B) Persisting through PKI but not rpcAMPs. (C) Persisting through both
time courses of rpcAMPs but not PKI (Venn diagrams created with http://biovenn.nl; motif

logos created with PTM-logo23). Charge logo legend: ¥ = basic residue, e.g.,

K/R; 6=

acidic residue, e.g., D/E; ¢ = hydrophobic residue; P = proline. (D) Heatmap generated
using https://neatmapper.ca illustrating ingenuity pathways analysis (Supporting Table S4)

showing the logyg Benjamini—-Hochberg p-values for enrichment of canonical

pathways

represented by the sites observed as persistent in the presence of both inhibitors or uniquely

for each inhibitor, per kinase construct. J = K-PKA;; WT = WT PKA,.
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A. Inhibitor-persistent, apparently B. Phosphorylation site in a hinge region of the
direct sites also seen in FL-HCC DNAJB1/J-domain portion of the mutant kinase at
S16
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Figure 6. Specific sites of interest.
(A) Potential functional relationships between the proteins with sites we observed in direct

phosphorylation experiments that were also seen in FL-HCC by Turnham et al.1% and

to persist across conditions in our inhibitor experiments (J-PKA, and WT PKAg,). (B)
Ilustration showing the location of the phosphosite observed for the J-domain (adapted from
PDB entry 4WB7).
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