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SUMMARY

Oncogene-induced senescence is a phenomenon in which aberrant oncogene expression causes 

non-transformed cells to enter a non-proliferative state. Cells undergoing oncogenic induction 

display phenotypic heterogeneity, with some cells senescing and others remaining proliferative. 

The causes of heterogeneity remain unclear. We studied the sources of heterogeneity in the 
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responses of human epithelial cells to oncogenic BRAFV600E expression. We found that a 

narrow expression range of BRAFV600E generated a wide range of activities of its downstream 

effector ERK. In population-level and single-cell assays, ERK activity displayed a non-monotonic 

relationship to proliferation, with intermediate ERK activities leading to maximal proliferation. 

We profiled gene expression across a range of ERK activities over time and characterized four 

distinct ERK response classes, which we propose act in concert to generate the ERK-proliferation 

response. Altogether, our studies map the input-output relationships between ERK activity and 

proliferation, elucidating how heterogeneity can be generated during oncogene induction.

In brief

Chen et al. show that oncogenic BRAFV600E heterogeneously activates ERK and inhibits 

proliferation. ERK activity displays a non-monotonic relationship to proliferation, with 

intermediate levels leading to maximal proliferation. Transcriptional profiling reveals four classes 

of genes responding to different ranges of ERK levels, leading to a bell-shaped proliferation 

response.

Graphical Abstract

INTRODUCTION

Activation or aberrant regulation of oncogenes promotes cellular transformation and 

tumorigenesis, enabling cancer cells to grow and avoid programmed cell death.1 Activating 

Chen et al. Page 2

Cell Rep. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RAS or RAF oncogenic mutations in cancers promotes growth by inducing constitutive 

MAPK signaling.2,3 However, ectopic expression of oncogenes in non-transformed cells 

can cause them to undergo stable cell-cycle arrest, a phenomenon known as oncogene-

induced senescence (OIS).4,5 OIS, initially reported in primary fibroblasts with HRasG12V 

expression,5 was later found to be caused by various oncogenes and reported both in vitro 
and in vivo.4,6 In cultured melanocytes, BRAFV600E expression initially stimulated moderate 

proliferation (over 3–7 days), which was followed by a progressive decrease in growth rate 

and eventual cell-cycle arrest.7 Cell-cycle arrest typically involves the p53/p21WAF1 and 

p16INK4A/RB tumor suppressor genes and their interacting networks, although the roles of 

these proteins appear to be cell-type and context dependent.8,9 OIS is considered a bona fide 
tumor-suppressor mechanism, acting alongside cell death programs.

Cell-to-cell heterogeneity is often observed during oncogene induction, with some cells 

in a culture arresting and others continuing to proliferate. In vivo, malignant and 

benign tumors harboring the same driver oncogene mutation can co-exist.10,11 However, 

senescence-associated markers are found only in benign or premalignant lesions and 

are progressively lost as the lesions become malignant. At a population level, the time 

between oncogene expression and senescence varies from a few days to several weeks 

and proceeds asynchronously.5,7 It remains unclear why a subset of cells in a population 

is better able to tolerate the negative effects of oncogene activation. Contributing factors 

likely include the type, strength, and duration of the senescence-inducing signal; non-

cell-autonomous influences from oncogene expression; and the cell’s susceptibility to 

(epi)genetic reprogramming.8,12

In this study, we focused on cell-cycle changes induced by BRAFV600E, an oncogenic 

variant of a MAPK serine/threonine kinase that is commonly found in cutaneous melanomas 

and is the primary target of current treatments.3,13 Activation of the MAPK cascade is 

critical, but not sufficient, for initiating melanocytic neoplasia, most likely due to the 

induction of senescence (Figure 1A). Indeed, BRAFV600E occurs in both benign and 

malignant skin lesions13,14 and can induce senescence in cell lines.7,15,16 We investigated 

the relationship between BRAFV600E levels, the activity of its downstream effector kinase 

ERK,17 and cell proliferation in non-transformed human hTERT-immortalized retinal 

pigment epithelial (RPE) cells. We showed that a narrow expression range of BRAFV600E 

protein generated a wide range of ERK activities. We found a non-monotonic relationship 

between ERK activity level and the proliferation response, which we examined through 

global transcriptional profiling. This analysis revealed four dynamic categories of cellular 

responses across different ranges of ERK activities. Our study highlights the various 

networks of genes that are induced in response to different strengths of ERK signaling 

and provides important clues as to how individual or combinatorial classes of genes can 

generate a non-monotonic proliferation response.

RESULTS

The relationship between ERK activity and proliferation is non-monotonic

To establish a model of OIS, we expressed the oncogenic BRAFV600E variant carrying 

a C-terminal hemagglutinin (HA) tag in RPE cells under a doxycycline (DOX)-inducible 
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promoter (Figure 1B). Activation of the MAPK cascade by BRAFV600E was assessed by 

measuring phospho-ERK (pERK) levels using western blotting. At a saturating dose of DOX 

(250 ng/mL), BRAFV600E levels increased for the first 24 h and then plateaued, while pERK 

levels plateaued around 2 h. MCM6, a marker of S phase, was largely diminished by 48 

h (Figure 1C). In addition, both pRB and total RB also decreased at DOX doses above 15 

ng/mL; this reduction was achieved by 48 h at 250 ng/mL DOX. These results align with 

reports that total RB levels dropped greatly during cell-cycle arrest, likely due to oncogene-

mediated protein degradation.18 To determine if BRAFV600E expression induced senescence, 

cells were stained for β-galactosidase. Cells exposed to γ-irradiation, a well-established 

inducer of senescence, were used as a positive control. BRAFV600E induction for 7 days 

resulted in ~55% of cells being positive for β-galactosidase expression, comparable to the 

level in irradiated cells (Figure 1D). These results suggest that in non-transformed RPE 

cells, BRAFV600E expression causes cell-cycle exit and promotes senescence. Deactivation 

of BRAFV600E by washing out DOX (at day 8 post DOX treatment) allowed cells to resume 

proliferation (Figure S1A), implying that, at least for some cells, exit from the cell cycle 

requires continuous BRAFV600E expression.

We next investigated the relationships between BRAFV600E expression, ERK activity, 

and proliferation outcomes. To induce variable BRAFV600E-HA expression levels, RPE/

tet-BRAFV600E cells were treated with various doses of DOX for 72 h and then stained 

for HA, pERK, and incorporation of 5-ethynyl-2′-deoxyuridine (EdU) (a marker for DNA 

synthesis) (Figures S1B–S1D). Consistent with Figure 1B, proliferation was inhibited by 

BRAFV600E expression in a DOX-dose-dependent manner, with maximum proliferation 

occurring in the uninduced condition (Figure S1D). The data were pooled for subsequent 

analysis of ERK activity, in which we binned BRAFV600E expression levels measured in 

single cells (irrespective of the DOX dose) and quantified the ERK activity in each bin. 

This analysis revealed that pERK levels increased with BRAFV600E expression at lower 

levels but plateaued at higher levels, suggesting that ERK activity saturated at intermediate 

levels of BRAFV600E expression (Figure 1E). pERK levels varied at any given level of 

BRAFV600E, demonstrating substantial cell-to-cell variability in the activation of the MAPK 

cascade (Figure 1E). To determine the relationship between pERK levels and cell-cycle 

progression, DOX was added to the RPE/tet-BRAFV600E cells at various doses for 24, 48, 

or 72 h, and the fraction of S-phase cells was quantified by EdU incorporation (Figure 

1F). Binning the data on pERK levels (regardless of DOX dose) revealed that the fraction 

of cycling cells was highest at intermediate pERK levels and decreased at higher and 

lower pERK levels. This result suggested that a moderate induction of pERK enhanced 

proliferation; however, beyond a certain level, proliferation was inhibited (Figure 1F). In the 

absence of BRAFV600E expression, ERK activity levels fell in the lower range (6–9 log2 

intensity), and the percentage of proliferating cells associated with these levels ranged from 

15% to 25% (Figures S1C and S1E). After BRAFV600E induction, ERK activity levels fell 

into a higher range (8.5–11.5 log2 intensity), and the associated proliferation frequencies 

ranged from 25% at the lower end of ERK activity to 1% at the higher end (Figure S1E). 

Because proliferation was highly sensitive to ERK activity in the range experienced by cells 

expressing BRAFV600E, it is likely that the heterogeneity in ERK activity during oncogene 

induction (Figure S1C) led to heterogeneity in proliferation and cell-cycle arrest. To further 
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confirm the non-monotonic relationship between ERK activity and cell proliferation, we 

overexpressed BRAFV600E at a level sufficient to arrest most cells and treated them with a 

dose series of ERK inhibitor (ERKi) (SCH772984) to titrate down ERK activity. Consistent 

with Figure 1F, the fraction of cycling cells (indicated by the Ki67+ fraction) was highest 

at an intermediate ERKi dose (Figure 1G). By contrast, the fraction of proliferating cells 

was reduced when cells were treated with higher or lower ERKi doses, suggesting a non-

monotonic relationship between proliferation and ERK activity.

Establishment of a cell-cycle reporter that differentiates G1, S, and G2 phases

Our data suggested that cells can make proliferation or arrest decisions in response to ERK 

activity. The data presented in Figure 1 show the average response of a population of cells. 

We hypothesized that at the single-cell level, internal cellular states, such as cell-cycle 

phase or the level or dynamics of oncogenic signaling, may influence the proliferation 

status. We monitored ERK activity and its relationship to cell-cycle progression using live 

single-cell imaging. Commonly used live-cell cell-cycle reporters, such as Geminin (1–110), 

monitor the G1-S transition,19 but growing evidence suggests that G2 plays a pivotal role in 

proliferation-quiescence decisions.20–22

To distinguish G1, S, and G2 cell-cycle phases, we developed a biosensor based on the 

PCNA-interacting-protein (PIP)-box motif, which is recognized by Cul4Cdt2 E3 ubiquitin 

ligase and degraded specifically at S phase (Figure 2A).23 Because ectopic expression 

of human PIP-box-containing proteins could interfere with normal cell-cycle progression, 

we developed a sensor based on the PIP-box motif of Drosophila E2F (dE2F).24 The 

sensor includes the N terminus of dE2F (amino acids 1–187) fused to the red fluorescent 

protein (FP) mCherry. The resulting mCherry-PIP protein contains PIP boxes functional 

in humans as well as a naturally occurring nuclear localization signal. RPE cells stably 

expressing mCherry-PIP, a turquoise FP-tagged nuclear histone marker (H2B-Turq), and a 

Venus FP-tagged Geminin (1–110) reporter were established. The Geminin (1–110) reporter 

accumulates in S phase and is degraded in G1 phase,19 while mCherry-PIP exhibited 

differential degradation/accumulation patterns in the nucleus throughout imaging (Figure 

2B and Video S1).

Comparing both cell-cycle reporter levels within the same cell, mCherry-PIP rapidly 

dropped in expression when Venus-Geminin (1–110) began to accumulate at the G1-S 

transition (Figures 2B and 2C). mCherry-PIP fluorescence rose subsequently, while Venus-

Geminin continued to accumulate. Thus, the patterns of Venus-Geminin (1–110) and 

mCherry-PIP protein accumulation and degradation were consistent with the anticipated 

properties of the reporter proteins.19,23 By labeling S-phase cells with EdU, we validated 

that mCherry-PIP levels were lowest in S phase and were detectable only when cells 

were not in S phase (Figure 2D). In both normally cycling cells (Figure S2A) and cells 

arrested in G1 or G2 (Figures S2B–S2E), the reporter signal in G1 or G2 scaled with the 

duration of the phase. Thus, in live-cell experiments, G2 can be identified by the presence of 

both Venus-Geminin (1–110) and mCherry-PIP (Figure 2C). Cell-cycle phases can also be 

computationally derived from live-cell data by quantifying only the levels of the mCherry-

PIP reporter as follows: G1 corresponds to the period between nuclear division and a rapid 
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drop in mCherry-PIP fluorescence to basal level; S corresponds to the period between this 

rapid drop and right before resynthesis of mCherry-PIP occurs; and G2 corresponds to 

the period of mCherry-PIP accumulation prior to the next cell division (Figure 2C; STAR 

Methods).

Live-imaging traces revealed a bell-shaped relationship between ERK activity and cell-
cycle entry in single cells

Given the cell-to-cell heterogeneity in ERK levels and OIS induction, we next established 

the relationship between ERK activity, cell-cycle phase transitions, and cell fate at a single-

cell level. We generated an RPE cell line stably expressing DOX-inducible BRAFV600E, 

mCherry-PIP, and EKAREN5, a reporter for ERK activity. This line (termed BRAFV600E 

Dual Reporter cells) allowed us to induce oncogenic BRAFV600E and simultaneously 

measure ERK activity and cell-cycle progression in the same cells through long-term live 

imaging. EKAREN525 represents the widely used EKAREV fluorescence resonance energy 

transfer (FRET)-based ERK activity reporter25,26 engineered to be insensitive to CDK1/

cyclin B activity at G2 and M phases. Control experiments confirmed that the EKAREN5 

sensor reflected ERK activity in our RPE line and that activation during G2/M phase was 

strongly reduced relative to EKAREV (Figure S3A).

We imaged asynchronous cultures of BRAFV600E Dual Reporter cells for 24 h to obtain 

cell-cycle phase information under unperturbed conditions, then added DOX to induce 

BRAFV600E expression, and imaged live cells for 3 days to monitor ERK activity and 

cell-cycle progression. We used a semiautomated tracking method to identify individual 

division events and computationally derived the cell-cycle phases and ERK activities (Figure 

3A; see STAR Methods). Note that the PIP signal increased sharply around division (±30 

min) due to sudden nuclear shape changes, followed by a brief drop due to partitioning 

of the reporter proteins to two daughter cells. When BRAFV600E Dual Reporter cells were 

treated with DOX, ERK activity rapidly increased within 1–4 h (Figure 3B, consistent with 

data in Figure 1C), while control cells showed basal ERK activity with occasional pulses 

throughout the imaging period.27 Most DOX-treated cells underwent one or two divisions 

prior to entering prolonged G1 arrest, whereas cells not treated with DOX continued to 

proliferate, serving as a control for the effects of long-duration imaging (Figure 3C). A 

detailed cell-cycle duration analysis revealed that, prior to the prolonged G1 arrest, the 

G1- and S-phase lengths of the preceding cell cycle remained unaltered, while G2 length 

(orange blocks in Figure 3B) increased (Figure S3B). The increase in G2 length was ERK 

dependent, as addition of ERKi shortened the G2 duration (Figure S3C).

To map the relationship between ERK activity and cell-cycle progression, cells were treated 

with ERKi at different doses simultaneous with BRAFV600E induction. While 77% of cells 

treated with DOX in the absence of ERKi underwent G1 cell-cycle arrest, the addition 

of 62.5 nM ERKi rescued the arrest (Figures 3C and S3D). However, at 500 nM ERKi, 

the fraction of cells undergoing G1 arrest increased, consistent with a non-monotonic 

relationship between ERK levels and proliferation (Figures 3C and S3D). To quantify 

this relationship in single cells, we pooled single-cell trajectories based on mean ERK 

activity and then computed the fraction of cells that entered S phase within the following 
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24 h window. Mean ERK activity was determined between 8 and 12 h post BRAFV600E 

induction, when ERK activity levels stabilized in cells (Figures 1C and S4A). When the 

probability of S-phase entry was plotted against mean ERK activity, we again observed a 

non-monotonic, bell-shaped response (Figure 3D). Cells that entered S phase in Figure 3D 

completed the cell cycle and divided (Figure S3E). The slight drop in division rate at higher 

ERK levels was likely due to cells having prolonged G2, such that the division event was 

not captured during the live-imaging experiment. The non-monotonic relationship between 

ERK activity and proliferation was also evident at time intervals between 12–16 and 16–24 

h after DOX addition (Figure S3F). The high sensitivity of cell-cycle arrest to increases in 

ERK activity above the optimum value likely explains cell-to-cell heterogeneity in response 

to BRAFV600E overexpression.

Previous OIS studies have suggested that activation of p16INK4A and p53 provides the 

two major mechanisms leading to cell-cycle arrest.8,9 To investigate this possibility in RPE/

tet-BRAFV600E cells, we used RNAi to acutely knock down p16, p21 (a downstream target 

of p53), or p27, alone or in various combinations. The CDK inhibitor p27 was included due 

to its well-documented role in integrating diverse signals that regulate cell-cycle exit.28 The 

CDK inhibitor knockdowns were verified at the mRNA and protein levels (Figures S3G and 

S3H) and showed comparable efficiency both individually and in combination. Control and 

knockdown cells were treated with DOX, and the fraction of cycling cells was measured 

(Figure 3E). Knockdown of CDK inhibitors individually and in combination had a modest 

but reproducible effect on BRAFV600E-mediated arrest, but in no case was proliferation 

fully restored to control levels, consistent with prior observations.29,30 These results imply 

that additional proteins, beyond those suggested by previous studies, are involved in OIS, 

prompting us to apply a more systematic approach.

Deep RNA sequencing identifies genes that respond to ERK activity levels

We hypothesized that factors mediating ERK activity-dependent cell-fate decisions must 

themselves undergo changes in expression or activity in response to varying levels of ERK 

activity. To systematically identify genes whose expression changes with ERK activity, we 

performed deep RNA sequencing of RPE/tet-BRAFV600E cells treated with a combination 

of DOX and ERKi at different concentrations for varying times (including 0—an untreated 

control—and 1, 2, 4, 8, 16, and 24 h) (Figure 4A). The ERKi concentrations were chosen to 

sample the full range of proliferation responses (Figure 1G). The time points were selected 

based on the observation that RPE cells showed a bell-shaped relationship between ERK 

activity and proliferation (Figure 1F) as early as 24 h after BRAFV600E induction. The early 

time points allow identification of genes that are more directly responsive to ERK activity 

changes, while the later time points reveal long-term effects. Of note, the live-imaging 

experiments using BRAFV600E Dual Reporter cells showed that ERK activity peaked 1–2 h 

following DOX and ERKi treatment and then slowly decayed, while remaining at distinct 

levels for different ERKi doses during the subsequent 24 h period of our experiments (Figure 

S4A). These results suggested fast and stable ERK responses. To evaluate the effects of 

ERK inhibition on normal cycling cells, cells were treated with different doses of ERKi 

for 24 h without BRAFV600E induction. The resulting gene expression dataset involved 43 

conditions assayed in duplicate. We detected ~13,000–14,000 coding transcripts in each 
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condition (available in GEO: GSE180210) with an average Pearson correlation coefficient of 

0.99 for replicates, demonstrating high reliability across the data (Figures 4B and S4B).

As a first step in validating the approach, we quantified the levels of two genes, EGR1 
and DUSP4, whose expression is known to be responsive to ERK activation (Figure 

4C).31 EGR1, an immediate-early response gene, exhibited a rapid and dramatic (~50-fold) 

induction within 2 h of DOX treatment and then decreased rapidly, remaining ~8-fold above 

its preinduction levels for the duration of the experiment (Figure 4C, left). This time course 

was consistent with its role as an immediate-early response gene. In contrast, DUSP4 rose 

steadily by ~6-fold over 24 h, consistent with its role as an early-response gene mediating 

negative feedback in the MAPK cascade (Figure 4C, left). Both the sequencing analysis 

(Figure 4C, right) and the targeted qPCR (Figure S4C) showed that induction of EGR1 and 

DUSP4 decreased in an ERKi dose-dependent manner. These results confirmed that our 

transcript profiling studies had a large dynamic range and could readily detect different ERK 

activity-dependent gene expression programs.

While it is common to analyze RNA-sequencing (RNA-seq) data to identify changes in 

expression associated with a single experimental variable (e.g., time or drug dose as in 

Figure 4C), given the dynamics of ERK activity, we identified genes differentially expressed 

as a function of both time and ERKi dose. Comprehensive cross-correlations between 

different treatment conditions showed that samples collected at different times and/or 

different ERKi doses could have similar transcriptional programs (high correlation), whereas 

samples collected at similar times and/or ERKi doses could have low correlation in their 

transcriptional programs, exemplifying the complexity of our datasets (Figure S4B). Thus, 

inferring differential expression using traditional approaches posed a substantial challenge, 

since both dose-response and temporal dynamics need to be accounted for. To address 

the challenge, we normalized each gene’s expression to the untreated control and used 

regression with quadratic terms to identify the best-fitting time-dose response for every gene 

using QR factorization of the Vandermonde regressor matrix32 (Figure 4D). Computing the 

quadratic surface approximation minimized noise across the landscape of treatments and 

emphasized time- and dose-dependent trends in the data.

To identify differentially expressed genes, we compared the goodness of fit between the 

quadratic response surface for each gene and a flat surface. The p values were computed 

using the standard likelihood ratio test and subjected to multiple-testing correction using 

Bonferroni-Holm.33 Data for CDKN2B (the p15INK4B CDK inhibitor) are shown in Figure 

4D to illustrate the approach: CDNK2B expression was induced steadily over 24 h and 

exhibited a U-shaped response to ERKi concentration, with a minimum expression at 62.5 

nM (Figure 4D, top). Quadratic regression on the data yielded a smoothed surface (Figure 

4D, bottom) significantly different from a flat surface (p = 1.1e − 114, likelihood ratio test). 

Using this approach, we identified 1,958 genes that exhibited significant (p < 1e − 20, 

likelihood ratio test) differential expression over time and ERKi dose (Figure 4E). Gene 

ontology (GO) analysis showed that these genes fell into different functional categories, 

including extracellular matrix signaling, cancer pathways, DNA replication, and cell-cycle 

control (Figure S4D). We investigated the presence of known BRAFV600E, ERK, and 

senescence signatures in the 1,958 differentially induced genes using gene set enrichment 
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analysis (GSEA) (Figure S4E), which revealed significant enrichment of the senescence and 

MAPK signatures examined, validating the effectiveness of our analysis method.

To identify genes likely to have a role in shaping the non-monotonic proliferation response, 

we searched for cell-cycle regulators whose expression was non-monotonic with respect to 

ERK activity. This analysis identified p15 and p21 as candidates, both of which showed a 

U-shaped expression profile with respect to ERK activity. We confirmed their expression 

profiles by qPCR (Figure 4F) and showed that their mRNA levels increased over time 

following BRAFV600E induction (Figure S4F). Simultaneous knockdown of p15 and p21 

strongly diminished proliferation arrest at high ERK activity (low ERKi doses), without 

affecting the proliferation at low ERK activity (Figure 4G and validation of the knockdown 

on Figure S4G). These results show a role for p15 and p21 in mediating high-ERK induced 

cell-cycle arrest. The lack of proliferation rescue at the lower ERK range suggests that 

additional players are involved under these conditions.

Characterization and clustering of gene expression in relation to ERK signaling dosage

To identify overall trends in the data, we performed principal-component analysis (PCA) 

with the transcriptional data from all 43 conditions for the 1,958 differentially expressed 

genes. The first two principal components (PC1 and PC2) explained 81% of overall variance 

in the data, with PC1 and PC2 capturing 54.7% and 26.5% of the variance, respectively 

(Figure 5A). When the weights of PC1 and PC2 were plotted separately for every time point 

post treatment (Figure 5A), the variance of weights increased in a time-dependent manner, 

starting at 4 h (top right) and progressively forming a bell shape that reached its full extent 

at the 24 h time point (bottom right). The bell-shaped curve at 24 h closely resembled 

the correlation between ERK activity and proliferation response (Figures 1F, 1G, and 3D), 

suggesting that PC1 corresponded to differences in ERK activity and PC2 to differences in 

proliferative index.

To test this hypothesis, we measured the mean ERK activity and degree of proliferation 

at each condition assayed by RNA-seq. BRAFV600E Dual Reporter cells were treated with 

DOX and different doses of ERKi simultaneously (mirroring the experimental conditions 

in RNA-seq) and subjected to live-cell imaging to monitor mean ERK activity and the 

fraction of cells in S phase over time. PC1 values (Figure 5A, bottom right) were highly 

correlated (R = 0.87) with mean ERK activity measured under the same conditions using 

the EKAREN5 reporter (Figure 5B, left). The fraction of cells in S phase (measured using 

mCherry-PIP) was highly correlated with the value of PC2 (R = 0.8; Figure 5B, right). Thus, 

we conclude that the first principal component is a proxy for ERK activity, whereas the 

second principal component is a proxy for proliferation index. Moreover, we found that the 

value of PC2 was similar for conditions with similar average ERK activity, regardless of 

how that activity level was achieved. For example, a PC2 value of approximately −30 was 

achieved in cells not expressing BRAFV600E and treated with low-dose (250 nM) ERKi, 

as well as in cells with BRAFV600E induced and treated with high-dose ERKi (1,000 nM) 

(Figure 5A, 24 h plot, yellow and orange circles). These data also strongly suggest that 

the two primary drivers of gene expression, over a wide range of conditions, are the ERK 

activity level and the extent of proliferation.
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To investigate the possibility of non-specific ERKi targets among the 1,958 differentially 

expressed genes, we determined whether the effects of the inhibitor on these genes could 

be rescued by increasing ERK expression. Of the 1,958 genes, many were differentially 

expressed in the presence of 250 nM ERKi (compared with untreated cells). However, 

gene expression was restored to resemble that in the control when cells were treated 

with 250 nM ERKi plus DOX to induce BRAFV600E and ERK activity (Figure S5A). 

Furthermore, comparing two conditions with similar ERK activities (ERKi 250 nM − DOX 

versus ERKi 1,000 nM + DOX; Figure S5B, left) revealed a high correlation in gene 

expression (R2 = 0.97; Figure S5B, right), suggesting that the differentially expressed genes 

were primarily responding to ERK activity. These results together suggested that ERKi 

effects could be rescued by overexpressing BRAFV600E and that the potential off-target 

effects of ERKi were likely very minimal.

We expected the expression levels of genes to have a differential pattern of responses to 

varying levels of ERK signaling (PC1) and proliferation rates (PC2). To further subdivide 

gene expression programs, we used unsupervised k-medoids clustering based on PC1 and 

PC2 values at 24 h (Figure 5C). k-medoids is a variant of k-means clustering that is robust 

to outliers and also allows the use of arbitrary distance metrics. We computed pairwise 

Euclidean distances for the log2 fold changes (relative to an untreated control) in the set of 

1,958 genes and then performed k-medoids clustering. With k = 8 clusters, differences in 

relationship between changes in expression and PC1 or PC2 values were evident (Figure 

5C). For instance, in the “full ERK-positive” cluster, gene expression increased with 

increasing PC1 value, suggesting a strong positive correlation. However, in the same set 

of genes, a single PC2 value could have two different levels of gene expression (from 

treatments that have either high or low PC1 values), indicating a weak correlation between 

gene expression and PC2 value. Similar clustering results were obtained with data from all 

the time points.

The results of k-medoids clustering yielded clusters that could be grouped by visual 

inspection into four qualitatively different classes of responses to ERK activity, each having 

two clusters with opposite trends (Figure 6). Class I included genes whose expression 

was correlated either positively (n = 283, 14.5 %) or negatively (n = 296, 15.1 %) with ERK 

activity across its full range, resulting in a linear relationship (“full-range ERK responder”; 

Figure 6A, red lines). Canonical negative feedback regulators of the MAPK pathway, 

such as DUSP4/6 and SPRY2, belonged in this group.31 Class II genes were those in 

which differential gene expression fell with ERK activity in a non-linear, “convex” manner 

(blue lines). At low ERK activity levels, 248 (12.7%) were significantly upregulated and 

404 (20.6%) were downregulated. Class II included genes involved in DNA replication, 

DNA damage repair, and the G1/S cell-cycle transition (e.g., G1 cyclins) (Figure S6A). 

Class III was similar to class II with the response window shifted to higher ERK 

activity ranges (green lines). This class included 281 upregulated genes (14.4%) and 

231 (11.8%) downregulated genes. Class III included genes involved in differentiation, 

migration/motility, cytokine response, and growth factor activity. Class IV (orange lines) 

comprised genes with a bell-shaped (n = 71, 3.6 %) or U-shaped (n = 144, 7.4 %) response 

curve, having the greatest differential gene expression at the lowest and highest ERK levels. 
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This class included the CDK inhibitor CDKN2B (p15INK4B). Expression of class IV genes 

was highly dependent on PC2, as seen by a monophasic response where similar expression 

levels were obtained for a given PC2, regardless of PC1 value (Figure 5C, bottom). The 

expression profiles of the 20 most differentially expressed genes in each category are shown 

in Figure S6B. The classifications of gene expression in Figure 6A exemplify different 

strategies cells utilize in response to varying levels of ERK activity.

We next investigated the timing of gene expression changes. To obtain a simple measure 

of the timing of gene induction or repression, we considered the time at which each 

gene first reached half of its maximal differential gene expression value in a weighted 

average that aggregated data across different ERKi doses (see STAR Methods). Genes 

were grouped according to the time of this absolute half-maximum change in expression 

(the “mid-induction time”). This analysis revealed genes responding on rapid (1–2 h), 

intermediate (4–8 h), and slow (16–24 h) time scales (Figure S6C). For instance, the 

previously mentioned EGR1 and DUSP4 exhibited rapid and intermediate time scales of 

induction, respectively.31 In general, genes in any ERK response category from Figure 

6 were found in any temporal response category. However, we found that genes in the 

full-range ERK responder group (class I; red lines in Figure 6A) tended to respond at 

earlier times in BRAFV600E induction than genes in other groups. Genes in the low-ERK 

responder group (class II) responded most slowly to BRAFV600E induction (Figure 6C). 

These results suggest only modest correlations between time- and ERK activity-dependent 

gene regulation.

We envision that combinations of different temporal and ERK dose-response classes 

contribute to the overall bell-shaped proliferation response. For instance, low G1 cyclin 

expression (low ERK downregulated group) combined with high CDK inhibitor expression 

(U-shaped group) at low ERK activity could trigger cell-cycle arrest. This likely explains the 

lack of proliferation rescue at low ERK range with co-knockdown of p15 and p21, as G1 

cyclin expression was low (Figure 4G). Similarly, upregulation of CDK inhibitors at high 

ERK activity (U-shaped group) could also trigger cell-cycle arrest (Figure 4G). Even though 

the proliferation response was stable over time (Figure 1F), the underlying mechanisms 

could vary over time, as we detected a large variation in the kinetics of ERK-responsive 

genes. Thus, a combination of ERK activity-responsive genes could function collaboratively 

to achieve heterogeneous proliferation responses within a population of cells, across time or 

ERK activity levels.

DISCUSSION

While OIS is an efficient way to halt tumor development, it is not uncommon to see 

genetically homogeneous cells respond to oncogenes in an asynchronous and heterogeneous 

manner. In this paper, we showed that cell-to-cell variability in oncogene induction can 

be traced to differences in ERK activity at a single-cell level. A narrow range of ectopic 

BRAFV600E expression generated cells with a wide range of ERK activities. Such “noise” 

is common in intracellular signaling networks,34 commonly arising from transcriptional 

bursting or unequal partitioning of cytoplasm at cell division,35,36 and generates a log-

normal distribution of protein concentrations in a population of cells that can cause dramatic 
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differences in their downstream protein activity and cell fate.37 Using a recently developed 

single-cell PIP reporter and live-cell imaging, we found that initiation of cell-cycle arrest 

is preceded by a prolonged G2 phase, but not by a burst of proliferation as previously 

described.38,39 Single-cell imaging revealed a non-monotonic, bell-shaped relationship 

between ERK activity and cell proliferation. Our data showed that proliferation is highly 

sensitive across the entire range of ERK activity. Thus, a population of cells expressing 

BRAFV600E will continuously exhibit differences in ERK activity and heterogeneous 

outcomes, with some cells continuing to proliferate and others undergoing OIS. We 

speculate that cells that can proliferate in the presence of elevated BRAFV600E are likely 

to give rise to tumors. It is also possible that cells that arrest in the presence of high ERK 

activity could once again become proliferative in the presence of the BRAF and MEK 

inhibitors used therapeutically (also see Figure S1A).

Our data support a Goldilocks principle (“just the right amount”) for ERK activity, such 

that an intermediate amount promotes proliferation, whereas much higher or lower levels 

prevent it. Accordingly, hyperactivating mutations in ERK are much less common than 

those in its upstream regulators RAS and RAF,40,41 as ERK mutations are likely to 

lead to OIS. Oncogenic RAS and RAF mutations may promote complex gene expression 

programs that either limit ERK activity or bypass the arrest caused by high ERK levels. 

In line with the Goldilocks principle, hyperactivation of MAPK signaling is deleterious to 

BRAFV600E melanoma cells.42 Moreover, melanomas with acquired resistance to RAF and 

MEK inhibitors become drug dependent for their continued proliferation due to elevation 

of their MAPK signaling.43 In contrast, in normal cells, reducing ERK activity rescued 

cells from senescence and facilitated cell transformation by oncogenic RAS.18 These results 

all pointed to a tumor-suppressive role of ERK signaling and support our bell-shaped 

ERK-proliferation model.

Our study suggests that the intensity of ERK signaling plays a pivotal role in determining the 

final proliferation outcome. Yet, how the strength of ERK signaling connects to the outputs 

of this pathway is largely unclear. Induction of BRAFV600E for different amounts of time 

with different doses of ERKi made it possible to generate cells with a wide range of ERK 

activities. RNA-seq revealed four distinct classes of ERK-regulated genes, which differed 

with respect to their relationships between ERK activity and the level of gene expression. 

These categories responded over the full range (class I) or portions of ranges (classes II–IV) 

of ERK activity sampled in this study. Previous studies that focused on gene expression at 

only high or low ERK levels would not have resolved these four classes of ERK dependency. 

For example, genes that increase with ERK activity in all four classes would have been 

categorized in a single group when assayed at high ERK activity. The methods used here 

enable further refinement of specific ERK-dependent signatures by identifying whether the 

genes are full-range linear ERK responders, low- or high-range ERK responders, or U-shape 

ERK responders. This analysis suggests that suppression of proliferation at low and high 

ERK levels likely proceeds via distinct transcriptional programs. Our ERK activity- and 

time-dependent classifications pave the way for dissecting the relevant pathways at different 

levels of ERK activity.
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Our classification of genes also suggests that a single class of genes or a combination of 

multiple classes of genes could achieve the bell-shaped proliferation response. For instance, 

positive cell-cycle regulators in a bell-shaped class, or negative cell-cycle regulators 

in a U-shaped class could, on their own or in combination, generate a bell-shaped 

proliferation response. In support of a combinatorial mechanism suppressing proliferation 

at low ERK activity, we found that G1 cyclins were downregulated and CDK inhibitors 

were upregulated. It is thus likely that cells take a network approach rather than a 

single-gene strategy to regulate proliferation across a range of ERK activity levels. It is 

also important to note that our gene classes are not exhaustive and that additional types 

of regulation (e.g., protein levels or post-translational modifications) must co-exist for a 

robust bell-shaped proliferation response. For instance, high ERK activity can prevent cell-

cycle progression by inducing degradation of key regulators,18 by modulating senescence-

associated secretomes,44 or by engaging homeostasis at tissue levels.12 We envision a 

broader set of genes, and diverse regulatory mechanisms are needed for cells to engage 

a robust and coherent bell-shaped proliferation response.

In summary, our studies provide a detailed and comprehensive map of the input-output 

relationship between ERK activity, proliferation response, and gene expression programs in 

non-transformed cells. The data provide an explanation for cell-to-cell heterogeneity in OIS 

induction in a nominally uniform population of proliferating cells. Our data help to explain 

the bell-shaped relationship between MAPK signaling and proliferation while also revealing 

substantial complexity in time- and activity-dependent changes in gene expression. Such 

insights should improve our ability to study OIS in vivo and ultimately develop treatment 

regimens and therapeutics that exploit OIS to block cancer growth.

Limitations of the study

Our studies began to uncover the sources of heterogeneity in oncogene-induced cell-cycle 

arrest and suggested that complex interactions of regulatory pathways likely govern the 

response. However, several unanswered questions remain. This work used a single widely 

studied human RPE cell line to understand the input-output relationship between ERK 

activity and proliferation. The cell line was chosen for its sensitive response to BRAFV600E 

induction and suitability for long-term live-cell imaging. Further studies will be needed to 

test the generality of our findings in other non-transformed cell types that can recapitulate 

the early stages of oncogene expression in otherwise healthy cells. Although we found 

a non-monotonic relationship between proliferation and ERK activity, the duration of G2 

phase seemed to scale with ERK activity (Figure S3C). These results could indicate that 

the duration of G2 phase is not directly proportional to the number of cells that arrest at 

any given ERK activity level and that the mechanisms regulating arrest duration are separate 

from those that influence whether a cell arrests in the first place. Our RNA-seq experiments 

revealed four categories of genes that respond differentially to ERK activity. These results 

are limited in distinguishing which genes are directly regulated by ERK signaling and which 

are regulated by the proliferation state of the cell. However, the early time points of sample 

collection (from 1 to 24 h) increase the likelihood of identifying genes that are direct ERK 

targets. Our study did not identify a minimal gene expression network responsible for the 

proliferation response and did not explore mechanisms beyond gene expression changes 
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(e.g., post-translational modifications) that may contribute to this phenomenon. Future work 

in these areas will be important in understanding responses to oncogene induction and the 

resulting heterogeneity in cellular outcomes.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Galit Lahav (galit@hms.harvard.edu).

Materials availability—Plasmids will be available upon request from the lead contact.

Data and code availability

• RNA seq data have been deposited at GEO and are publicly available as 

of the date of publication. Accession number is listed in the key resources 

table. Results of RNA seq analysis used to generate main and supplemental 

figures in this paper are available at Synapse database (https://www.synapse.org/

#!Synapse:syn21411369/files/).

• The original code for analysis of RNA seq data is publicly available at GitHub 

(https://github.com/clemenshug/erk_senescence).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—Human retinal pigment epithelial (RPE) cells immortalized with human 

telomerase expression (RPE-hTERT, a kind gift from S.J. Elledge, Harvard Medical School) 

were grown in DMEM/F12 supplemented with 10% fetal bovine serum (FBS), 2 mM 

L-Glutamine, Antibiotic-Antimycotic (100 U/ml penicillin, 100 μg/ ml streptomycin and 

250 ng/ ml Amphotericin B), and 50 μg/ml hygromycin B. RPE cells were treated with 250 

ng/ ml DOX to induce BRAFV600E unless otherwise noted.

Cell line construction—To establish RPE/tet-BRAFV600E-HA cell line, C-terminal HA-

tagged BRAFV600E construct was made by cloning the full-length BRAFV600E expression 

cassette (Addgene plasmid # 15269) into a lentiviral HA-containing backbone with tet-

inducible promoter (Addgene plasmid # 41394, pLIX402). RPE cells were then infected 

with lentivirus carrying pLIX402-BRAFV600E-HA and selected with puromycin (2 μg/ ml) 

to obtain mixed cell clones. Single cell clones were expanded through limited dilution 

and subsequently screened for HA expression in the presence of doxycycline. To establish 

dE2F PIP reporter lines, an expression cassette harboring Drosophila E2F1 PIP fragment 

(comprised of a.a. 1–187) fused to the C-terminus of Venus or mCherry fluorescent protein 

was cloned into the CSII-EF1 lentiviral vector. RPE cells transduced with lentiviruses 

carrying H2B-mTurquoise, mCherry-dE2F PIP and Venus-Geminin (1–110) or lentiviruses 

carrying H2B-mTurquoise and Venus-dE2F PIP were sorted on a BD FACSAria II high 

speed cell sorter to obtain pure populations expressing the desired fluorescent proteins. To 
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establish RPE/EKAREV-NLS reporter line, RPE cells were co-transfected with pPB-CAG-

EKAREV-NLS26 and pCMV-hyPBase transposase vector (A. Bradley, Sanger Institute) 

and FACS sorted to obtain pure populations. To establish RPE/tet-BRAFV600E-HA + 

EKAREN5 + mCherry-dE2F PIP dual reporter line, verified RPE/tet-BRAFV600E-HA single 

cell clone was transduced with EKAREN5 (ERK FRET reporter)25 and mCherry-dE2F PIP 

lentiviruses and single cell clones harboring both reporters were obtained through single-cell 

sorting and subsequent expansion.

METHOD DETAILS

Time-lapse microscopy—Cells were plated in poly-D-lysine-coated glass-bottom plates 

(MatTek Corporation) and switched to phenol-red free culture medium supplemented 

with 10% FBS prior to live imaging. Cells were imaged using a Nikon Eclipse TE2000 

microscope equipped with a chamber for controlled temperature (37%) and CO2 (5%) 

environment. All live-cell imaging was performed with a 10x Plan Apo objective (Nikon) 

and a Hamamatsu Orca ER camera using CFP, YFP, mCherry filter sets (Chroma). 

For EKAREV and EKAREN5 reporter imaging, the FRET signal was collected using 

customized ECFP/EYFP FRET filter sets with ET436/20x, ET535/30m, and T455lp 

mounting into the Nikon TE2000/Ti cube.

Cell count assay—RPE cells stably expressing tet-BRAFV600E and EKAREV (served as 

nuclear marker) were plated in 96-well plates and treated with DOX for 8 days. Cells were 

then washed 5 times with fresh media to remove DOX (or mock washed) followed by live 

imaging (45min/frame, 4x objective using GFP filter set) in an IncuCyte Zoom live imager 

for 8 days. Total cell number per well was derived using IncuCyte analysis software.

siRNA knockdown—Synthetic siRNAs used for this study were from Dharmacon 

siGenome SMART pool and were used at 13.3 nM with Lipofectamine 2000 reagents 

(Invitrogen) according to manufacturer’s protocol. The following siRNAs were used: control 

siRNA (non-targeting #2), siGenome pooled set of four siRNAs for p15, p16, p21 and p27. 

Cells were treated with DOX and ERKi after 24h of siRNA transfection. The knockdown 

effects were then measured 2 days post treatments (72h post siRNA transfection). Specific 

antibodies were used to verify the target knockdown.

Western blot and senescence associated β-galactosidase assay—Cells were 

harvested in NuPAGE™ LDS Sample Buffer (Invitrogen) for 10 min at 70°C and sonicated 

to shear genomic DNA. Protein samples were separated by electrophoresis using 4–12% 

Bis-Tris mini protein gels (Invitrogen) and transferred to Immun-Blot PVDF membranes 

(Bio-Rad #1620177). Blots were incubated with primary antibodies at 4°C and then with 

HRP conjugated secondary antibodies for 1 hour at room temperature. HRP was detected 

using ECL substrates (Thermo Scientific #34076) and Licor Odyssey Fc Imager.

Immunofluorescence—Immunostaining was performed in 96-well plates and all washes 

were done with the EL406™ Microplate Washer (BioTek). In brief, cells were fixed with 

4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100 for 15 min 

and blocked with Odyssey® blocking buffer (LI-COR) for 1h before applying different 

Chen et al. Page 15

Cell Rep. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antibodies. Primary antibodies were incubated overnight at 4°C. Appropriate Alexa Fluor® 

conjugated secondary antibodies were then used. For EdU staining, cells were pulsed with 

10 μM EdU for 30 min (or as indicated) prior to fixation and processed according to 

manufacturer’s instructions (Invitrogen #C10340). Cells were imaged with a 10x objective 

using an Operetta High Content Imaging System (Perkin Elmer, CT) or ImageXpress Micro 

Confocal High-Content Imaging System (Molecular Devices, CA). 9 sites were imaged in 

each well for 96-well plates.

Image analysis—Images for the immunostaining experiments were analyzed using 

MATLAB image analysis programs.46 Briefly, nuclear centroids were identified in images of 

Hoechst staining after applying a low-pass Gaussian filter and local background subtraction. 

A nucleus mask was generated for each cell by expansion from the centroid to reach 30% 

of maximum intensity. The nuclear pERK, BRAFV600E-HA, EdU and pRB mean intensity 

were measured after local background subtraction. The threshold level used to determine 

pRB and EdU positive cells was set using a k-means clustering algorithm on a day-to-day 

experiment basis.

Single-cell tracking and quantification following live-imaging—For population 

analysis of individual time frames, images were quantified and analyzed using MATLAB 

scripts.47 To track single-cells following long-term live imaging, cells were tracked semi-

automatically using a combined method of EllipTrack49 and p53Cinema Single Cell 

Tracking Software.48 In brief, EllipTrack segments cells by fitting nuclear contours with 

ellipses and tracks cells using a machine learning algorithm. The cell tracks were then 

manually curated using p53Cinema Single Cell Tracking Software that allows for real-time 

user correction of tracking and annotation of division events. Finally, verified tracks were 

kept for downstream analysis and signals from each color channel were extracted in the cell 

nuclei.

Automatic identification of G1/S and S/G2 transitions—Single-cell traces of Venus 

(or mCherry)-PIP construct intensities were smoothed, normalized to 0–1 range, and 

partitioned by mitosis (annotated by EllipTrack and p53Cinema). Each trace fragment was 

then processed in four steps to detect the G1/S and S/G2 transitions. First, seed regions for 

S phase, defined as time periods whose trace values were smaller than 0.1, were proposed. 

Only regions longer than 20 frames were kept (10 min/ frame). If no region was proposed 

but the trace fragment was bounded by two mitoses at least 50 frames apart (indicating 

that a real cell cycle likely took place), the threshold for the trace values would be relaxed. 

On the contrary, if multiple regions were proposed (caused by mitosis skipping or human 

annotation error), each region would be analyzed independently. Second, the S/G2 transition 

was detected for each seed region. The slopes of the trace values were calculated from the 

center of the seed region to the end of the trace fragment, and the S/G2 transition was 

defined as the first time point whose slope was greater than 0.004/ frame (10 min/ frame). 

To reduce the impact of noise, a second requirement that 3 of 5 of its next five time points 

should also have slopes greater than 0.004/ frame was imposed. The threshold for the slopes 

would be gradually relaxed if no such time point was detected. Third, the G1/S transition 

was detected for each seed region. A reference time point was first proposed following the 
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procedure in the second step, except that 1) the slopes were calculated and examined from 

the center of the seed region to the beginning of the trace fragment, and 2) the threshold 

for the slopes was 0.01/ frame. The G1/S transition was then defined as the last time point 

before the reference whose trace value was a local maximum. Finally, the detection results 

were manually examined and adjusted to ensure correctness. After cell cycle phases and 

their transitions were identified, G1 or G2 arrested cells were defined as cells remaining 

longer than 30 h in G1 or G2 phase at the end of imaging, respectively.

ERK FRET reporter quantification—To quantify ERK activity, CFP, YFP and FRET 

images were acquired in RPE/ tet-BRAFV600E-HA + EKAREN5 + mCherry-dE2F PIP 

dual reporter cells. FRET images were taken by CFP excitation and YFP emission. Images 

were then subjected to flat field correction (to eliminate uneven illumination) and local 

background subtraction. The FRET signal was calculated on a pixel-by-pixel basis as 

follows. First, a FRET image was corrected for bleed-through from CFP and YFP channels.

FRET Corr = FRET Raw − α CFP − β YFP

α: bleed-through of CFP into FRET channel upon CFP excitation

β: bleed-through of YFP into FRET channel upon CFP excitation of YFP

The two microscope-specific bleed-through parameters, α (0.53) and β (0.23), were 

determined using cells transfected with CFP or YFP alone. Then, the corrected FRET image 

([FRET]corr) was normalized by the CFP image to obtain the FRET signal ([FRET]corr/

[CFP]). ERK activity was calculated from the median value from the nuclear compartment 

of the FRET signal of each cell.

Total RNA sample preparation and quality control—RPE/tet-BRAFV600E-HA cells 

were plated in 6-well plates (75,000 per well) and allowed to grow for 72 h till 50% 

confluency. Cells were then treated with the indicated concentrations of ERK inhibitor 

(SCH772984) alone for 24 h or in combination with DOX (250 ng/ ml) for variable length 

of time as indicated by the experimental design. Each condition was performed twice on 

two different days for a total of two biological replicates. For RNA sequencing experiments, 

cells were lysed with 600 μl Trizol per well and total RNA was prepared using Direct-zol-96 

RNA Kits according to the manufacturer’s protocol. For quantitative PCR experiments, cells 

were lysed and total RNA extracted using Qiagen RNAeasy Plus mini kits according to 

manufacturer’s protocol. Sample concentrations were determined by Nanodrop and RNA 

quality was assessed on a subset of samples by Bioanalyzer (Agilent); all samples scored 

RINs of > 9.0.

Quantitative PCR (qPCR)—2 μg of total RNA was used to generate complementary 

DNA (cDNA) using the high-capacity cDNA reverse transcription protocol (Applied 

Biosystems). q-PCRs were then performed using 1/200 of the total of cDNA (per reaction 

in a 384-well plate), 300 nM primer, and SYBR Green reagent following the manufacturer’s 
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protocol (Applied Biosystems). Reactions were normalized to HPRT as a loading control. 

qPCR primers used are listed in key resources table.45

RNA sequencing library preparation—RNA sequencing library preparation was 

performed with the High Throughput TruSeq Stranded mRNA Library Prep Kit (Illumina) 

following the manufacturer’s protocol at half reaction volume. Input for each sample 

consisted of 300–500 ng of RNA and 5 μl of 1:500 diluted ERCC spike-in mix 1 (Ambion). 

Libraries were amplified for 12 cycles during the final amplification step. Libraries were 

quantified using the Qubit dsDNA HS assay (Thermo Fisher Scientific). Library size 

and quality were spot checked for a subset of samples by Bioanalyzer (Agilent). The 

average size of cDNA fragments in the libraries was 370 base pairs. Libraries were 

pooled at equimolar concentrations then the pool was quantitated using the KAPA library 

quantification kit (KAPA Biosystems). Libraries were sequenced single end 114 base pairs 

using NovaSeq_SP full flow cell (Illumina) at the Bauer Core Facility (Harvard University).

RNA-seq data processing—Reads were processed to counts using the bcbio-Nextgen 

toolkit (https://github.com/chapmanb/bcbio-nextgen) as follows: (1) Reads were trimmed 

and clipped for quality control in cutadapt v2.3; (2) Read quality was checked for each 

sample using FastQC v0.11.8; (3) High-quality reads were then aligned to the human 

assembly and gene annotation GRCh38.97 using Hisat2 v2.1.050; (4) Gene-level transcript-

counts were calculated using HTseq-count v0.9.1. Only data from genes annotated as 

protein-coding according to annotation from GRCh38.97 were kept for further analysis. 

Gene expression data (RNA seq) were deposited in the GEO (Gene Expression Omnibus, 

https://www.ncbi.nlm.nih.gov/geo/, accession number: GEO: GSE180210).

Differential expression analysis—Differential expression of genes was analyzed using 

DESeq251 by fitting a linear mixed effect that expressed the number of reads for each 

gene K using a negative binomial distribution of the form K = NB μ, σ2  with mean μ and 

dispersion σ. The mean for each gene was modeled by a linear equation taking into account 

the sample treatments Tx and batch with the untreated sample at time zero as intercept.

μ = intercept + T1 + T2 + … + Tx + batcℎ

Log-fold changes were adjusted using procedures implemented in apeglm,52 which 

estimates posterior distributions of the coefficients in the linear models that were fitted 

by DESeq2.

Selecting differentially expressed genes—In this setting, inferring differential 

expression poses a great challenge, since both dose-response and temporal dynamics 

need to be accounted for. To account for dependency on both time and dose, we used 

multiple regression with quadratic terms to describe the time-dose response surface (Log-

fold changes) for every gene. As the same time points and doses were measured for 

all genes, we only computed a single QR-decomposition of the Vandermonde regressor 

matrix32 and then computed regression using matrix-matrix multiplication. This type of 
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factorization is an effective way to compute least-squares fits for a large number of genes, 

as computationally expensive factorization only needs to be performed once for a specific 

set of dose-time combinations. Gene-specific regression then only required computationally 

cheap matrix-matrix multiplication. To identify differential expression, we compared the 

goodness of fit between quadratic regression and constant approximation via the mean. 

p-values were computed using standard likelihood-ratio test and multiple-testing corrected 

using Bonferroni-Holm.33

Clustering ERK-dependent differences in gene expression—Principal component 

analysis was performed on the matrix of moderated log2-fold changes of all samples (mean 

of two replicates) compared to the baseline condition (untreated control). The first principal 

component was strongly correlated with ERK activity across all samples. In order to find 

genes that have similar relationships between gene expression and ERK dose, we applied 

k-medoids clustering53 — a variation of the k-means clustering method that is robust to 

outliers — on the log2-fold changes at 2 4h. We found that choosing k = 8 resulted in easily 

interpretable clusters with different dynamics of ERK signaling responses. The clusters 

we identified can be grouped into four different response types, each with two variants 

representing responses with opposite signs.

Time series analysis—In order to group genes into clusters depending on their time of 

induction or repression, we first normalized the time series log2-fold changes of each gene. 

First, we computed the range R of log2-fold changes f for each gene g and each ERKi 

concentration c across all time points t by subtracting the minimum log2-fold change from 

the maximum.

R(g, c) = max
t

f (g, c, t) − min
t

f(g, c, t)

Next, we aggregated the time series data across all ERKi doses by computing 33% and 67% 

quantiles of log2-fold changes at each time point, weighted by the time series range R(g, c), 
using the algorithm Q described in the cited reference.54

E(g, t) = Q qmax, f(g, c, t), R(g, c)

with qmax = arg max
q ∈ (0.33, 0.67)

|Q(q, f(g, c, t), R(g, c))|

At each timepoint, the quantile with the highest absolute value was selected as the aggregate 

log2-fold change E, analogous to the procedure used for aggregating expression data across 

cell lines in the cited reference 55. Finally, genes were grouped into clusters based on 

when in the time series the absolute aggregated log2-fold change exceeded half of the 

maximum value across the entire time series. The significance of differences in the induction 

time between ERK-response clusters were tested using ANOVA followed by Tukey’s 

honest significant difference test. The distribution of the mean induction time for each 

ERK-response cluster was estimated using bootstrapping. The induction times of genes from 
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each cluster were resampled 1000 times with replacement and the mean of each sample was 

computed.

Gene set enrichment analysis—Two variants of gene set enrichment analysis were 

performed. First, the enrichment of GO-terms in the ERK-response cluster gene sets 

was assessed using the R Bioconductor package topGO (https://bioconductor.org/packages/

release/bioc/html/topGO.html). We considered all GO-terms in the Biological Process 

(“BP”) and Molecular Function (“MF”) categories. Enrichment was computed using the 

“weight01” algorithm and Fisher’s exact test. Second, gene set enrichment analysis was 

performed using gene sets from MSigDB.56 Specifically, gene sets from the Hallmark 

(H), curated pathways (C2:CP), and ontology (C5) categories, excluding Human Phenotype 

Ontology (HPO), were considered. We tested for significant enrichment using Fisher’s 

exact test on the overlap between the 1958 differentially expressed genes and the gene set 

of interest and p-values were adjusted for multiple testing using the Benjamini-Hochberg 

procedure (https://mathscinet.ams.org/mathscinet-getitem?mr=1325392). Additionally, we 

computed the enrichment of a collection of manually curated gene sets related to 

ERK signaling, containing all gene sets containing “ERK”, “MAPK”, “senescence”, or 

“melanoma” from MSigDB, as well as the set of differentially expressed genes from a 

BRAFV600E overexpression experiment57 from GEO (GSE46801).

Replicate similarity—In order to assess the quality of replicates, we computed the 

Pearson correlation coefficients between the normalized counts of our two replicates, 

considering the 1000 most differentially expressed genes across all conditions. The genes 

were ranked by the results of a likelihood-ratio test using DESeq2, comparing the full model 

described above against a reduced model of the form μ = intercept + batcℎ. The correlation 

matrix was plotted using the R package ComplexHeatmap.58

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars represent the standard deviation, standard error of the mean, or 95% bootstrap 

confidence interval as indicated in the legends. Statistical comparisons (p values) were 

obtained from two-sided t-tests or otherwise as noted. The Pearson’s correlation coefficients 

(r) were calculated as indicated. Comparison between model fits for the ERK response 

surfaces was done using standard likelihood-ratio test and multiple-testing corrected using 

Bonferroni-Holm. Overlap between gene sets and differentially expressed genes was 

tested using Fisher’s exact test and p-values were adjusted for multiple testing using the 

Benjamini-Hochberg procedure. Differences in the induction time between ERK-response 

clusters were tested using ANOVA followed by Tukey’s honest significant difference test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Oncogenic BRAFV600E triggers a heterogeneous ERK activation response

• The relationship between ERK activity and proliferation is non-monotonic

• Transcriptomics identifies thousands of genes responding to ERK activity 

over time

• ERK controls proliferation via genes that respond to various ranges of its 

activity
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Figure 1. BRAFV600E-ERK pathway activation results in a non-monotonic proliferation 
response
(A) Schematic of pathways activated by oncogenic BRAF (BRAF*). DDR, DNA-damage 

response; ROS, reactive oxygen species.

(B and C) Western blot analysis of levels of BRAF, active pERK, the proliferation marker 

pRB, total RB, and MCM6 (B) following BRAFV600E induction by increasing doses of 

doxycycline (DOX; 0–250 ng/mL, 2-fold dilution from the right) for 72 h or (C) at the 

indicated time points following BRAFV600E induction with 250 ng/mL DOX. Actin is 

shown as a loading control.

(D) Representative images of cells assayed for senescence-associated γ-galactosidase (SA-

β-gal) activity 7 days after DOX induction of BRAFV600E-HA (BRAF*) at 250 ng/mL or 

after 10 Gy γ-irradiation. Bottom right: quantification of images. Data represent mean ± 

SD of three to five replicate wells; n > 560 cells/well for control; n > 180 cells/well for 

BRAFV600E; n > 50 cells/well for γ-irradiation.

(E) RPE/tet-BRAFV600E cells were treated with DOX as in (B) and immunostained for 

BRAFV600E-HA and pERK. Data from all DOX doses were pooled together, and single-cell 
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pERK levels were extracted for equally spaced bins of BRAFV600E expression; n > 400 

cells/bin. Each dot represents a single cell

(F) RPE/tet-BRAFV600E cells were treated with serial doses of DOX as in (B) for 24, 48, 

or 72 h before immunostaining. The immunofluorescence data from all DOX doses were 

pooled, and the percentage of cells in S phase was calculated for equally spaced bins of ERK 

activity (mean ± 95% bootstrap confidence interval; n > 700 cells per bin).

(G) RPE/tet-BRAFV600E cells were treated with DOX (250 ng/mL) and the indicated doses 

of ERKi for 72 h and then stained for the proliferation marker Ki67. The percentage of 

Ki67+ cells at each dose of ERKi is shown (mean ± SD of three replicate wells; n > 5,900 

cells/well).
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Figure 2. Development and characterization of a live-cell sensor that identifies G1, S, and G2 
cell-cycle phases
(A) (Top) Schematic of S-phase-specific degradation of Drosophila E2F1 PIP-motif-based 

biosensor. (Bottom) Cell-cycle progression with nuclear mCherry-dE2F PIP fluorescence 

changes.

(B) Images of a cycling RPE cell expressing Venus-Geminin (1–110), mCherry-dE2F PIP, 

and H2B-Turq over 24 h. Image strips of these three markers are shown as three panels 

corresponding to G1-S (top), S-G2 (middle), and M-G1 (bottom) transitions.

(C) Quantification of mCherry-dE2F PIP (red) and Venus-Geminin (1–110) (green) from 

(B).

(D) Density scatterplots of mCherry-dE2F PIP intensity versus EdU fluorescence intensity. 

Each dot represents a single cell; n = 2,466 cells.
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Figure 3. Single-cell live-imaging traces revealed a bell-shaped correlation between ERK activity 
and proliferation
(A) Sample single-cell trace of Venus-dE2F PIP in RPE cells proceeding through the cell 

cycle. Crosses mark the start of each phase. Relative length of each cell-cycle phase is at the 

top.

(B) Heatmaps of ERK activity (EKAREN5) and cell-cycle distribution in BRAFV600E Dual 

Reporter cells treated with or without DOX at 24 h after the start of imaging (white vertical 

line). Each horizontal line represents a single cell.

(C) Frequency of G1 arrest in BRAFV600E Dual Reporter cells treated with or without DOX 

as in (B) together with DMSO or ERKi. The percentage of G1-arresting cells was calculated 

following time-lapse imaging (mean ± 95% confidence interval; n > 200 cells per condition).

(D) Fraction of S-phase entry in response to increasing ERK activity. The BRAFV600E Dual 

Reporter cells in (B) were treated with or without DOX and 0, 62.5, or 500 nM ERKi 24 

h after the start of live imaging. Cells were then imaged for another 72 h. Data from all 

treatments were pooled and the mean ERK activity between 8 and 12 h post-treatment was 

calculated. The probability of entering into S phase was quantified within 24 h after the time 

frame of ERK monitoring (mean ± 95% confidence interval; n > 100 for each ERK activity 

bin).
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(E) Percentage of Ki67-positive RPE/tet-BRAFV600E cells after siRNA-mediated depletion 

of the indicated CDK inhibitors 2 days after treatment with or without DOX (mean ± SD; 

n = 4 replicates).
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Figure 4. Deep RNA sequencing identifies genes with altered expression in response to different 
ERK activities
(A) RNA-seq experimental design. RPE/tet-BRAFV600E cells were treated with DOX and 

the indicated concentrations of ERKi for 1–24 h (43 conditions) in two independent 

replicates (n = 12 for no-treatment control).

(B) Boxplot showing correlation coefficients for RNA-seq replicates. Each dot represents a 

pair of replicates.

(C) RNA-seq measurements of EGR1 and DUSP4 transcripts as a function of treatment time 

(left) or ERKi dose (right) (mean ± SD; n = 2 independent replicates; baseline represents 

no-treatment control).
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(D) (Top) Log2 fold change of CDKN2B transcripts as a function of treatment time and 

ERKi dose. Values were normalized to untreated control. (Bottom) Smoothed quadratic 

surface fit for CDKN2B expression. The p value (likelihood ratio test) shows the goodness 

of fit between the quadratic surface and a flat surface.

(E) Histogram of p values of quadratic surface fits of all genes, as in (D). Genes with 

p < 1e − 20 were considered differentially expressed.

(F) qPCR measurements of differential p15 and p21 mRNA expression in response to the 

indicated ERKi doses together with 250 ng/mL DOX for 24 h. Data represent mean ± 

SD (n = 4 replicates). Values were normalized to hypoxanthine phosphoribosyltransferase 1 

(HPRT) and reported relative to untreated control at time 0 h in the absence of DOX and 

ERKi (see also Figure S4F).

(G) RPE/tet-BRAFV600E cells were transfected with the indicated siRNA for 24 h, treated 

with DOX (250 ng/mL) together with different doses of ERKi for another 48 h, and then 

stained for the proliferation marker Ki67. The percentage of Ki67+ cells at each ERK dose is 

shown (mean ± SD of three replicates; n > 3,800 cells/well).
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Figure 5. Gene classification by clustering of gene expression reveals different response types to 
changing levels of ERK activity and proliferation
(A) Principal-component analysis (PCA) of log2 fold change in gene expression versus 

untreated control for each treatment (mean of two replicates) from RNA-seq.

(B) BRAFV600E Dual Reporter cells were treated with ERKi (0, 3.9, 15.6, 62.5, 250, 1,000 

nM) with or without DOX and imaged for 43.5 h. PC1 values obtained at 24 h in (A) 

were plotted against the ERK activity measured at 24 h with corresponding treatments from 

live-imaging experiments. Similarly, PC2 values at 24 h post-treatment were plotted against 

the percentage of cells in S phase measured at 43.5 h from live-imaging experiments. We 

chose 43.5 h to account for the time delay between gene expression and cell-cycle entry.

(C) k-medoids clustering of the 1,958 differentially expressed genes identified from RNA-

seq experiments. Log2 fold-change expression data of each differentially expressed gene at 
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24 h were clustered by k-medoids clustering (k = 8). Mean expression levels of each cluster 

are shown as multi-colored lines (blue-yellow represents low-high PC1 values).
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Figure 6. Patterns of ERK-dependent gene expression clustered by ERK activity and time of 
induction
(A) Four distinct classes of gene expression patterns as a function of ERK activity. Full-

range ERK responders include genes with expression proportional to ERK activity across 

the entire range of activity levels. Low- and high-range ERK responders show differential 

gene expression only at the low and high ranges of ERK activity, respectively, while 

showing minimal response at the opposite end of the range. Full-range bell-shape ERK 

responders include genes that have a bell- or a U-shaped response, with greatest differential 

expression at low and high ERK activities. Shaded areas indicate the ERK range in which 

the class is most responsive. Dashed line marks the ERK activity for untreated cells used for 

normalization. For illustration purposes, we substituted ERK activity for PC1, since the two 

are highly correlated.

(B) Temporal dynamics of each class of genes shown in (A) in response to DOX and ERKi 

treatment. Genes in each class were grouped according to the earliest time point at which 

they achieved 50% of the maximal change observed over the course of the experiment (see 

STAR Methods). The time point of mid-induction is shown on the x axis, and the number of 

genes falling into each category is shown on the y axis.

(C) Mean induction time of ERK responder classes. The violin plot shows bootstrapped 

estimates of the means for each cluster. Significant differences in the induction time between 

ERK-response clusters are highlighted with black bars. The p values are derived from 

ANOVA followed by Tukey’s honest significant difference test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) 
antibody

Cell Signaling Technology Cat# 4370, RRID: AB_2315112

Phospho-Rb (Ser807/811) (D20B12) antibody Cell Signaling Technology Cat# 8516, RRID: AB_11178658

Rb (4H1) antibody Cell Signaling Technology Cat# 9309, RRID: AB_ 823629

p16 (H-156) antibody Santa Cruz Biotechnology Cat# sc-759, RRID: AB_632105

p21 antibody BD Biosciences Cat# 556430, RRID: AB_396414

Ki-67 (8D5) antibody Cell Signaling Technology Cat# 9449, RRID: AB_2797703

p27 Kip1 (D69C12) XP Rabbit monoclonal antibody Cell Signaling Technology Cat# 3686, RRID: AB_2077850

Anti-MCM6 antibody [EPR17686] Abcam Cat# ab201683, RRID: AB_2924827

Anti-β-Actin monoclonal antibody Sigma-Aldrich Cat# 5316, RRID: AB_476743

Anti-Raf-B antibody (F-7) Santa Cruz Biotechnology Cat# sc-5284, RRID: AB_626760

Anti-HA High Affinity; Rat monoclonal antibody (clone 3F10) Roche Cat# 11867423001, RRID: 
AB_390918

Anti-mouse IgG, HRP-linked antibody Cell Signaling Technology Cat# 7076, RRID: AB_330924

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technology Cat# 7074, RRID: AB_2099233

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11034, RRID: AB_2576217

Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa 
Fluor 568

Thermo Fisher Scientific Cat# A-11077, RRID: AB_2534121

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, 
Alexa Fluor 647

Thermo Fisher Scientific Cat# A-21235, RRID: AB_2535804

Bacterial and virus strains

CSII-EF1-H2B-mTurquoise (lentiviral) Spencer et al.21 N/A

CSII-EF1-mVenus-hGeminin (1–110) (lentiviral) Sakaue-Sawano et al.19 N/A

CSII-EF1-mCherry-dE2F PIP (lentiviral) This work N/A

CSII-EF1-mVenus-dE2F PIP (lentiviral) This work N/A

LV-EKAREN5-NLS (lentiviral) Addgene Plasmid#167818

LIX402-BRAFV600E-HA-Puro (lentiviral) This work N/A

Chemicals, peptides, and recombinant proteins

Hoeschst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific Cat# H3570

SCH772984, ERK inhibitor MedChem Express Cat# HY-50846

Doxycycline hyclate Sigma-Aldrich Cat# D9891-5G

SMARTpool: siGENOME Non-targeting siRNA control pools Horizon Discovery Cat# D-001206-14-05

SMARTpool: siGENOME Human CDKN1A siRNA Horizon Discovery Cat# M-003471-00-0005

SMARTpool: siGENOME Human CDKN2A siRNA Horizon Discovery Cat# M-011007-03-0005

SMARTpool: ON-TARGETplus CDKN2B siRNA Horizon Discovery Cat# L-003245-00-0005

SMARTpool: siGENOME Human CDKN1B siRNA Horizon Discovery Cat# M-003472-00-0005

Critical commercial assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific Cat# 11668027

Senescence Associated β-Galactosidase staining kit Cell Signaling Technology Cat# 9860

Click-iT™ Cell Reaction Buffer Kit Thermo Fisher Scientific Cat# C10269

Click-iT™ EdU (5-ethynyl-2’-deoxyuridine) Thermo Fisher Scientific Cat# A10044

Click-iT™ Alexa Fluor® 647 Azide, Triethylammonium Salt Thermo Fisher Scientific Cat# A10277

Deposited data

Raw and processed RNA-seq data GEO (Gene Expression 
Omnibus)

GEO: GSE180210

Results of RNA-seq analysis used to generate main and supplemental 
figures in the manuscript

Synapse database https://www.synapse.org/#!
Synapse:syn21411369/files/

Experimental models: Cell lines

Human: RPE hTERT S.J. Elledge Lab (Harvard 
Medical School)

N/A

Human: RPE + tet-BRAFV600E-HA This work N/A

Human: RPE + H2B-mTurquoise + Venus-dE2F PIP This work N/A

Human: RPE + tet-BRAFV600E-HA + EKAREN5 + mCherry-dE2F 
PIP

This work N/A

Human: RPE + EKAREV-NLS This work N/A

Oligonucleotides

CDKN2B PrimeTime qPCR primers Integrated DNA 
Technologies

Hs.PT.58.25069372.g

CDKN1B PrimeTime qPCR primers Integrated DNA 
Technologies

Hs.PT.58.45564663

CDKN2A PrimeTime qPCR primers Integrated DNA 
Technologies

Hs.PT.58.40743463.g

EGR1 PrimeTime qPCR primers Integrated DNA 
Technologies

Hs.PT.58.40805543.g

DUSP4 PrimeTime qPCR primers Integrated DNA 
Technologies

Hs.PT.58.18820216

p21 forward qPCR primer: TGTCACTGTCTTGTACCCTTG Purvis et al.45 N/A

p21 reverse qPCR primer: GGCGTTTGGAGTGGTAGAA Purvis et al.45 N/A

HPRT forward qPCR primer: 
GTATTCATTATAGTCAAGGGCATATC

This paper N/A

HPRT reverse qPCR primer: AGATGGTCAAGGTCGCAAG This paper N/A

Recombinant DNA

pPB-CAG-EKAREV-NLS (piggyBac) Komatsu et al.26 N/A

pCMV-hyPBase Komatsu et al.26 N/A

Software and algorithms

Scripts for analysis of RNA sequencing data This work https://github.com/clemenshug/
erk_senescence
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software for automatic segmentation and quantification of 
immunofluorescence images

Salmeen et al.46 N/A

Software for automatic segmentation, and quantification of fluorescent 
reporter cells following live imaging

Cappell et al.47 https://github.com/scappell/
Cell_tracking

p53 Cinema Single Cell Tracking Reyes et al.48 https://github.com/balvahal/
p53CinemaManual

EllipTrack Tian et al.49 https://github.com/tianchengzhe/
elliptrack
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