Table 1.
Category | Morphology | Synthesis | Antibacterial | Application | Ref |
---|---|---|---|---|---|
nano-Ag | 50 nm | – | S. mutans: inhibition zone: 30 d: 7.88 mm | orthodontic adhesive | [38] |
nano-Ag | – | from silver nitrate |
S. mutans biofilm: 99.76%; S. sanguis biofilm: 99.93%; L. acidophilus biofilm: 99.61% |
orthodontics fixed retainer | [39] |
nano–Bi2O3, nano-HA, nano–ZnO, nano–Ag∗ | – | n-HA: a wet chemical method | S. mutans, S. aureus: HA: stable at ∼6.5%; Zn > Ag | PU-based system | [40] |
DT-Ag-CS + nano-sonosensitizer | – | a photocatalytic method | in vivo: the lowest relative bacterial survival rate of only 19.3% | a multifunctional nanoplatform for treating periodontitis | [41] |
nano–Ag | silver quartz fiber post | – | S. mutans, S. salivarius, S. sanguis: a fair antibacterial effect | endodontic sealers | [43] |
Ag/ZnO | rod-like morphology length: 300–500 nm width: 10–20 nm |
ZnO: solvothermal method; Ag/ZnO: deposition-precipitation method |
S. mutans: inhibited 91% of bacteria growth | potentially effective dental antibacterial agents | [45] |
Ag/ZnO-SPEEK | Ag: about 50–70 nm; ZnO: 120–150 nm | layer-by-layer self-assembly strategy | S. aureus: around 99.3%; E. coli: more than a 99.2% decrease | implant | [46] |
nano-AgF@Silk fibroin nanofiber | - | Ag: reduction reaction; silk fibroin: electrospinning process | P. gingivalis: 3.1 folds | guided tissue regeneration | [48] |
nano-silver fluoride | spherical and monodisperse particles | – | S. mutans: MIC: 30 ppm adherence | a new nano-Ag fluoride-containing dentifrice | [81] |
nano-Sized Silver Ion Particles | disc shapes | – | S. mutans: effective | silver ions in porcelain | [82] |
Dox NPs nano-Zn | no agglomeration | a polymerization precipitation procedure | multispecies biofilm: Dox-NPs: 72 h: 80%, 7 d: reduced about five times; Zn-NPs: 7 d, 87% | doped PolymP-n active nanoparticles | [50] |
ZnO NRS | nanorods, nanospheres | a hydrothermal method | S. aureus, E. coli: effective antibacterial effect, in vivo: the least number of bacteria | implant | [51] |
nano-ZnO | sizes: 20, 40, 140 nm | – | S. mutans, L. fermentum, E. faecalis, C. albicans: 20 nm greatest | – | [52] |
nano-ZnO | ZnO-A: nanorod; ZnO–B: nanoplate | – | S. mutans, S. sobrinus: A > B | – | [53] |
nano-ZnO | oval-shaped | chemical precipitation method |
S. mutans: inhibited; P. gingivalis: lower than 20% |
poly-carboxylate cement | [54] |
nano-ZnO | spherical, hexagonal, long shape | a commercially available nanopowder of ZnO | saliva-derived multi species biofilm: 7.5 wt%: higher; total streptococci: no difference; S. mutans biofilm: 7.5 wt% best |
adhesive resin | [55] |
PMMA with TiO2 | homogeneous spherical particles | TiO2: a modified sol-gel procedure | C. scotti: completely blocked | PMMA | [57] |
nano_TiO2 | approximate spherical shape | solvothermalmethod | S. mutans biofilms: affect the viability | secondary caries in adhesive dentistry | [58] |
Ti–6Al–4V alloys | lots of spherical grains and cavities |
the fiber engraving laser technique | E. coli: viable bacteria: lower | implant | [59] |
Ti nanotubes | inductively coupled plasma | – | P. gingivalis: remarkably hamper the adhesion | implant | [60] |
ZIF-8: Ce NPs | – | the obtained geometrical shape | F. nucleatum, P. gingivalis: about 2 log | anti-inflammatory and antibacterial platforms for treating periodontitis | [64] |
CeO2–Ti | rod-CeO2 cube-CeO2 octa-CeO2 |
hydrothermal methods | S. sanguinis, P. gingivalis, F. nucleatum: decreased up to 2 orders of magnitude; octa > cube > rod; a strong limitation for gram-negativebacteria adhesion | implant | [65] |
PAI-Cu | 124 nm | photoinitiated inverse-phase microemulsion polymerization |
S. mutans: 7.8 log-reduction, E. faecalis: 3.8 log-reduction, L. acidophilus: 3.5 log-reduction, A. viscosus: 7.6 log-reduction, P. gingivalis: 8.0 log-reduction, F. nucleatum: 7.0 log-reduction, A. actinomycetemcomitans: 7.8 log-reduction, P. intermedia: 7.4 log-reduction |
nanohydrogel | [68] |
Cu-doped mesoporous bioactive glass nanospheres | rough surfaces | – | S. mutans, A. naeslundii: stronger than that of BG and Si composites | Cu-doped mesoporous bioactive glass nanospheres | [69] |
Cu-BGn | – | – | E. faecalis: relatively lower | incorporate to the zinc phosphate cement | [71] |
Cu-CDs | particle size with an average of 4.50 nm | a hydrothermal method | E. coli and S. mutans: kill almost 99%; S. aureus: no bacterial colonies: Cu-CDs: inhibit the biofilm rate: up to 97%; Cu-CDs + H2O2: antibiofilm activity: more than 90% | more convenient and economical daily strategy for oral healthcare | [70] |
N–CaSiO3 | spherical mesoporous silica particles | hydrolysis of TEOS |
S. pyrogenes: MIC: much smaller; S. aureus: significant bacteriostatic properties, E. coli: very negligible; S. pyrogenes biofilm: much better than S. aureus and E. coli strains |
endodontic and orthopaedic applications | [72] |
SBMP adhesive + 40% NACP and 5% DMAHDM | – | NACP: a spray-drying technique | multi-species biofilm (S. sanguinis + S. gordonii + S. mutans): much thinner biofilm | adhesive | [73] |
Fe3O4 magnetic nanoparticles | inverse cubic spinel | – | S. aureus: enhance the destruction | treat peri-implant osteomyelitis | [74] |
Dex-NZM | range from 30 to 60 nm | CAT-NPs: a solvothermal system | fold intensity of dead bacteria: 5 | a potent and biocompatible antibiofilm agent | [75] |
bismuth subsalicylate | polygonal shape particle morphology | laser ablation of solids | inhibition growth: A. actinomycetemcomitans: 21.7 μg/mL: 90%; C. gingivalis: 21.7 μg/mL 90.1%; P. gingivalis: 21.7 μg/mL 91%; |
a potential clinical use; antiseptic solutions or mouthwash | [79] |
GNCs-based mixed-MM-MON | around 1.8 nm | – | reduced the methicillin-resistant S. aureus implant colonization by about 2 logs in vivo | combating implant-associated infections | [80] |