Skip to main content
. 2023 Apr 15;20:100635. doi: 10.1016/j.mtbio.2023.100635

Table 1.

Summary of nano inorganic antibacterial agents in the dental field.

Category Morphology Synthesis Antibacterial Application Ref
nano-Ag 50 ​nm S. mutans: inhibition zone: 30 ​d: 7.88 ​mm orthodontic adhesive [38]
nano-Ag from silver nitrate S. mutans biofilm: 99.76%;
S. sanguis biofilm: 99.93%;
L. acidophilus biofilm: 99.61%
orthodontics fixed retainer [39]
nano–Bi2O3, nano-HA, nano–ZnO, nano–Ag∗ n-HA: a wet chemical method S. mutans, S. aureus: HA: stable at ∼6.5%; Zn ​> ​Ag PU-based system [40]
DT-Ag-CS ​+ ​nano-sonosensitizer a photocatalytic method in vivo: the lowest relative bacterial survival rate of only 19.3% a multifunctional nanoplatform for treating periodontitis [41]
nano–Ag silver quartz fiber post S. mutans, S. salivarius, S. sanguis: a fair antibacterial effect endodontic sealers [43]
Ag/ZnO rod-like morphology
length: 300–500 ​nm width: 10–20 ​nm
ZnO: solvothermal method;
Ag/ZnO: deposition-precipitation method
S. mutans: inhibited 91% of bacteria growth potentially effective dental antibacterial agents [45]
Ag/ZnO-SPEEK Ag: about 50–70 ​nm; ZnO: 120–150 ​nm layer-by-layer self-assembly strategy S. aureus: around 99.3%; E. coli: more than a 99.2% decrease implant [46]
nano-AgF@Silk fibroin nanofiber - Ag: reduction reaction; silk fibroin: electrospinning process P. gingivalis: 3.1 folds guided tissue regeneration [48]
nano-silver fluoride spherical and monodisperse particles S. mutans: MIC: 30 ​ppm adherence a new nano-Ag fluoride-containing dentifrice [81]
nano-Sized Silver Ion Particles disc shapes S. mutans: effective silver ions in porcelain [82]
Dox NPs nano-Zn no agglomeration a polymerization precipitation procedure multispecies biofilm: Dox-NPs: 72 ​h: 80%, 7 ​d: reduced about five times; Zn-NPs: 7 ​d, 87% doped PolymP-n active nanoparticles [50]
ZnO NRS nanorods, nanospheres a hydrothermal method S. aureus, E. coli: effective antibacterial effect, in vivo: the least number of bacteria implant [51]
nano-ZnO sizes: 20, 40, 140 ​nm S. mutans, L. fermentum, E. faecalis, C. albicans: 20 ​nm greatest [52]
nano-ZnO ZnO-A: nanorod; ZnO–B: nanoplate S. mutans, S. sobrinus: A ​> ​B [53]
nano-ZnO oval-shaped chemical precipitation method S. mutans: inhibited;
P. gingivalis: lower than 20%
poly-carboxylate cement [54]
nano-ZnO spherical, hexagonal, long shape a commercially available nanopowder of ZnO saliva-derived multi species biofilm: 7.5 ​wt%: higher;
total streptococci: no difference;
S. mutans biofilm: 7.5 ​wt% best
adhesive resin [55]
PMMA with TiO2 homogeneous spherical particles TiO2: a modified sol-gel procedure C. scotti: completely blocked PMMA [57]
nano_TiO2 approximate spherical shape solvothermalmethod S. mutans biofilms: affect the viability secondary caries in adhesive dentistry [58]
Ti–6Al–4V alloys lots of spherical
grains and cavities
the fiber engraving laser technique E. coli: viable bacteria: lower implant [59]
Ti nanotubes inductively coupled plasma P. gingivalis: remarkably hamper the adhesion implant [60]
ZIF-8: Ce NPs the obtained geometrical shape F. nucleatum, P. gingivalis: about 2 log anti-inflammatory and antibacterial platforms for treating periodontitis [64]
CeO2–Ti rod-CeO2
cube-CeO2
octa-CeO2
hydrothermal methods S. sanguinis, P. gingivalis, F. nucleatum: decreased up to 2 orders of magnitude; octa ​> ​cube ​> ​rod; a strong limitation for gram-negativebacteria adhesion implant [65]
PAI-Cu 124 ​nm photoinitiated inverse-phase microemulsion polymerization S. mutans: 7.8 log-reduction, E. faecalis: 3.8 log-reduction, L. acidophilus: 3.5 log-reduction, A. viscosus: 7.6 log-reduction, P. gingivalis: 8.0 log-reduction, F. nucleatum: 7.0 log-reduction,
A. actinomycetemcomitans: 7.8 log-reduction, P. intermedia: 7.4 log-reduction
nanohydrogel [68]
Cu-doped mesoporous bioactive glass nanospheres rough surfaces S. mutans, A. naeslundii: stronger than that of BG and Si composites Cu-doped mesoporous bioactive glass nanospheres [69]
Cu-BGn E. faecalis: relatively lower incorporate to the zinc phosphate cement [71]
Cu-CDs particle size with an average of 4.50 ​nm a hydrothermal method E. coli and S. mutans: kill almost 99%; S. aureus: no bacterial colonies: Cu-CDs: inhibit the biofilm rate: up to 97%; Cu-CDs ​+ ​H2O2: antibiofilm activity: more than 90% more convenient and economical daily strategy for oral healthcare [70]
N–CaSiO3 spherical mesoporous silica particles hydrolysis of TEOS S. pyrogenes: MIC: much smaller;
S. aureus: significant bacteriostatic properties,
E. coli: very negligible;
S. pyrogenes biofilm: much better than S. aureus and E. coli strains
endodontic and orthopaedic applications [72]
SBMP adhesive ​+ ​40% NACP and 5% DMAHDM NACP: a spray-drying technique multi-species biofilm (S. sanguinis ​+ ​S. gordonii ​+ ​S. mutans): much thinner biofilm adhesive [73]
Fe3O4 magnetic nanoparticles inverse cubic spinel S. aureus: enhance the destruction treat peri-implant osteomyelitis [74]
Dex-NZM range from 30 to 60 ​nm CAT-NPs: a solvothermal system fold intensity of dead bacteria: 5 a potent and biocompatible antibiofilm agent [75]
bismuth subsalicylate polygonal shape particle morphology laser ablation of solids inhibition growth: A. actinomycetemcomitans: 21.7 ​μg/mL: 90%;
C. gingivalis: 21.7 ​μg/mL 90.1%;
P. gingivalis: 21.7 ​μg/mL 91%;
a potential clinical use; antiseptic solutions or mouthwash [79]
GNCs-based mixed-MM-MON around 1.8 ​nm reduced the methicillin-resistant S. aureus implant colonization by about 2 logs in vivo combating implant-associated infections [80]