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Abstract

Widefield microscopy of optically thick specimens typically features reduced contrast due to 

“spatial crosstalk”, in which the signal at each point in the field of view is the result of a 

superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin 

Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning 

confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, 

but comes at the price of photobleaching, chemical, and photo-toxicity. Here, we present artificial 
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confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity, and chemical 

specificity, on unlabeled specimens, nondestructively. We equipped a commercial laser scanning 

confocal instrument with a quantitative phase imaging module, which provides optical path-length 

maps of the specimen in the same field of view as the fluorescence channel. Using pairs of 

phase and fluorescence images, we trained a convolution neural network to translate the former 

into the latter. The training to infer a new tag is very practical as the input and ground truth 

data are intrinsically registered, and the data acquisition is automated. The ACM images present 

significantly stronger depth sectioning than the input (phase) images, enabling us to recover 

confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and 3D liver 

cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual 

nuclei within dense spheroids for both cell counting and volume measurements. In summary, 

ACM can provide quantitative, dynamic data, nondestructively from thick samples, while chemical 

specificity is recovered computationally.

Introduction

Three-dimensional (3D) cellular systems have been increasingly adopted over 2D cell 

monolayers to study disease mechanisms1 and discover drug therapeutics2, as they more 

accurately recapitulate the in vivo cellular function and development of extracellular 

matrices3. 3D cellular structures, including cellular clusters such as organoids and spheroids, 

have found use in a wide range of applications such as tissue engineering4, high-throughput 

toxicology5, and personalized medicine6. A particularly exciting direction of research 

is engineering multicellular living systems7–9. These fields of current scientific interest 

bring along the urgent need for new methods of investigation to inform about cellular 

viability and cell cluster proliferation. Ideally, such techniques would provide quantitative 

data with subcellular resolution at arbitrary depths in the cellular system and dynamic 

information rendered over broad time scales. Importantly, these assays would be completely 

nondestructive, i.e., would report on the cell cluster without interfering with its viability and 

function.

Due to the visible light wavelengths being comparable with the subcellular structures, 

optical methods of investigation are well suited for meeting these requirements. However, 

significant challenges exist for the existing optical microscopy techniques when applied to 

increasingly thick samples. Typical spheroids, ranging in size from hundreds of microns to 

millimeters, are significantly larger than the scattering mean free path associated with the 

light wave propagation, generate strong multiple scattering, and, thus, form optically turbid 

aggregates that are difficult to analyze at a cellular level10,11. As a result, high-throughput 

investigations often are limited to extracting coarse parameters, such as spheroid diameters, 

at low-magnification12.

In 1955, in his pursuit to image 3D biological neuronal networks and mimic their behavior 

computationally, Minsky was faced with the challenge of suppressing multiple scattering, 

which was particularly severe for the widefield instruments available at the time13. In 

Minsky’s own words, “One day it occurred to me that the way to avoid all that scattered 

light was to never allow any unnecessary light to enter in the first place. An ideal 
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microscope would examine each point of the specimen and measure the amount of light 

scattered or absorbed by that point.”13 This first implementation of the confocal scanning 

microscope was established in a transmission geometry, requiring sample translation. Of 

course, today’s modern confocal instruments take advantage of bright laser sources, use 

beam scanning, and are most often used in a reflection geometry, paired with fluorescence 

contrast14. In time, many other advanced laser scanning techniques have been developed 

for fluorescence microscopy15. Nevertheless, fluorescence imaging is subject to several 

limitations. Absorption of the excitation light may cause the fluorophore to photobleach, 

which limits the time interval over which continuous imaging can be performed16. The 

excitation light is typically toxic to cells, a phenomenon referred to as phototoxicity, 

while the exogenous fluorophores themselves can induce chemical toxicity17. While the 

advancement of the green fluorescent protein technology significantly improves the viability 

of the specimen under investigation, concerns regarding phototoxicity, photobleaching, 

and functional integrity of the cells upon genetic engineering still remain18. Overcoming 

these limitations becomes extremely challenging when imaging thick objects over an 

extended period of time and, for that reason, confocal microscopy is often used on fixed 

specimens19,20.

Multiphoton techniques, including harmonic generation and two-photon (intrinsic) 

fluorescence microscopy, have been established as valuable label-free for deep-tissue 

imaging with cellular resolution. Multiphoton microscopy (MPM) uses excitation light 

with a longer wavelength that penetrates deeper into tissues, while the nonlinear process 

requires a multiphoton interaction that renders three-dimensional localized excitation21. 

However, MPM requires expensive instrumentations such as femtosecond lasers that are 

less accessible to the broader community, and the higher-order nonlinear excitation is more 

susceptible to focus aberrations and phototoxicity. Light sheet fluorescence microscopy can 

acquire 3D tomography of biological specimens in seconds with high optical sectioning and 

axial resolution due to the sheet-like illumination, minimizing the background fluorescence 

and photobleaching22. However, tomographic reconstruction often requires sample rotation 

and sophisticated sample mounting. On the other hand, optical coherence tomography 

(OCT), an interferometric label-free method, was reported to detect and count aqueous cells 

in the anterior chamber of a rodent model of eye inflammation23 and volumetrically quantify 

tumor spheroids24. Several phase-sensitive methods developed in a confocal modality 

have been recently developed, but their application to thick structures has been mostly 

unexplored25–28.

Quantitative phase imaging (QPI)29 has emerged recently as a potentially valuable label-free 

approach, which, due to its high resolution and sensitivity, has found a broad range of new 

applications30. While most of QPI’s applications involve thin specimens (cell monolayers, 

thin tissue slices)31–33, several efforts have been made for thick multiple-scattering samples. 

A multi-layer Born model using a first Born approximation at each of many layers has been 

proposed to provide phase reconstruction for thick samples34. Nevertheless, the maximum 

thickness presented in this model was around 30 μm, and the performance for 3D organoids 

with thickness usually on the order of 100 μm remains unclear. A multiscale reconstruction 

and stitching algorithm for optical diffraction tomography was developed recently to render 

refractive index distributions of 100-μm-thick colon tissues with subcellular resolution35. 
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Epi-mode tomographic QPI method shows phase reconstruction of cerebral organoids 

and whole mouse brain with thickness up to 60 μm via deconvolution36. Gradient light 

interference microscopy (GLIM)37,38 has been developed to suppress multiple scattering 

via white light, phase-shifting interferometry, which allowed for imaging and analyzing 

quantitatively opaque structures, such as spheroids and embryos with thicknesses around 

300 μm. However, as a widefield technique, GLIM has limited axial resolution and suffers 

from spatial crosstalk, which mixes diffraction contributions by neighboring points from 

within the specimen. As a result, the accurate discrimination of cellular boundaries deep 

within a spheroid remains challenging.

Recent developments in artificial intelligence (AI) and machine learning have brought new 

opportunities to these challenges. Deep learning enables super-resolution in fluorescence 

microscopy by training a generative adversarial network to transform confocal microscopy 

images to stimulated emission depletion images, as well as to transform total internal 

reflection fluorescence microscopy (TIRF) images to the TIRF-based structured illumination 

microscopy images39. A deep neural network can be trained to virtually refocus a 2D 

fluorescence image onto 3D volumetric imaging without any axial scanning, additional 

hardware, or a trade-off of imaging resolution and speed. This framework is also capable 

of 3D focusing of a single widefield fluorescence image to match confocal microscopy 

images at different focal planes40. An AI-based deep learning algorithm was developed 

for the automated quantification of the corneal sub-basal nerve plexus for the diagnosis 

of diabetic neuropathy using corneal confocal microscopy images41. AI-assisted adaptive 

optics methods aim to compensate systematic and tissue-induced aberrations for imaging 

deep into turbid specimens42. Label-free prediction of 3D confocal fluorescence images 

can be obtained from either transmitted-light microscopy images or electron micrograph 

inputs43. A label-free, volumetric, and automated assessment method has been developed 

for immunological synapse using optical diffraction tomography and deep learning-based 

segmentation44.

In this paper, we report artificial confocal microscopy (ACM), a laser scanning QPI system 

combined with deep learning algorithms, which renders “synthetic” fluorescence confocal 

images from unlabeled specimens. First, we developed a laser-scanning QPI system, 

which is implemented as an upgrade module onto an existing laser scanning confocal 

microscope (LSM 900, Airyscan 2, Zeiss). We validated the boost in sensitivity and axial 

resolution of the new system by using standard samples and rigorous comparison with 

the widefield counterpart. Second, we derived a theoretical model based on the first-order 

Born approximation, which yields an analytic solution for the spatial frequency coverage of 

the laser scanning QPI system. These results were validated using experiments to measure 

the transfer function of the instrument. Third, we trained an artificial neural network on 

pairs of laser-scanning QPI and fluorescence confocal images from the same field of view. 

Because the QPI module is attached to the same optical path, generating the training data is 

straightforward and automated, as the fields of view are intrinsically registered. Fourth, we 

applied the inference of the “computational” neural network to monolayers of “biological” 

neural networks and found that the resulting 3D images mimic very well those of the 

ground truth from the confocal fluorescence images. Using these ACM images, we created 

binary masks for the contour of the cell and applied them back to the QPI (input) data. 
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Our results show that the measurements of cell volume and dry mass of ACM vs. confocal 

agree very well. Fifth, we used the ACM images to perform nuclear segmentation and, 

thus, cell counting, within hepatocyte spheroids. We also showed that the training performed 

on spheroids suspended in PBS can transfer to specimens suspended in hydrogel, which 

promises broad applications in tissue engineering.

Results

The ACM imaging system consists of an existing confocal microscope augmented by a 

laser scanning GLIM system (LS-GLIM). Figure 1a illustrates the ACM setup, which 

has three main modules: the laser-scanning confocal microscope (LSM 900, Zeiss), the 

differential interference contrast (DIC) microscope, and the LS-GLIM module. The LS-

GLIM assembly shares the laser source from confocal microscopy (see Methods). The two 

sheared beams that form the DIC image have their relative phase shift controlled by the 

liquid crystal variable retarder (LCVR). The LCVR was carefully calibrated to produce 

accurate phase shifts, as described in SI Note 1. For each π/2 phase shift, the transmitted 

light photomultiplier tube (PMT) records the resulting interferogram, as shown in Fig. 

1b. The quantitative phase images are generated by the phase-retrieval reconstruction and 

Hilbert integration algorithms described in the GLIM operation38. By sharing the same 

illumination path, the imaging system registers QPI z-stack images and pairs them with 

confocal fluorescence frames from the same field of view, which serve, respectively, as input 

and ground truth data for the deep learning algorithm (Figs. 1b–c). Due to the laser-scanning 

illumination and PMT detection, the noise level is reduced by a factor of 5 compared to 

the full-field method (See SI Note 2), thus, the spatial sensitivity of the phase images is 

improved. The ground truth data, i.e., confocal fluorescence images, provide specificity with 

high axial resolution and signal-to-noise ratio (SNR). Our goal is to use deep learning to 

infer the fluorescence confocal images from the LS-GLIM input data and, thus, replicate the 

confocal advantages on unlabeled specimens.

Multichannel EfficientNet-based U-Nets (E-U-Nets) were trained to translate the 3D phase 

image stack to the corresponding 3D fluorescent image stack. An E-U-Net comprises 

a standard U-Net where the encoder is replaced with an EfficientNet45 (Fig. 2a). The 

multichannel inputs of an E-U-Net are 3 neighboring quantitative phase images along the 

z-axis, and the output is the corresponding central fluorescent image slice (see Methods). We 

chose this three-frame set as input to account for the fact that the axial spread in LS-GLIM 

data is significantly more pronounced than in the confocal fluorescence data, primarily 

because the input image is obtained in a transmission geometry without a pinhole, while the 

output is in reflection with a pinhole or Airyscan detector array. Thus, the neural network 

“learns” the spread mechanism from the three adjacent images and reverses it to produce a 

sharp ACM frame.

In SI Note 3, we present a full description of the 3D image formation in LS-GLIM for 

weak-scattering samples, which starts with the inhomogeneous wave equation and considers 

scattering under the Born approximation46. The expression for the signal collected at the 

detector has a particularly simple and physical intuitive form,
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s ρ ∝ χ ρ ⓥ Ud ρ Ui
* ρ , (1)

where χ is the scattering potential of the specimen, Ud and Ui are the detection and 

illumination functions, defined as the Fourier transforms of their respective pupil functions, 

* stands for complex conjugation, and ⓥ denotes the 3D convolution in the spatial domain, 

ρ. Thus, the point spread function is given by the product Ud ρ Ui
* ρ , i.e., it improves with 

both a tighter illumination focus and a broader detection pupil. Note that equation (1) is 

restricted to weakly scattering specimens, such as the phase edge used to estimate the 

LS-GLIM coherent transfer function (see Supplementary Fig. S5, S6). These theoretical 

predictions are comparable with the experimental measurements for various detection NAs. 

As LS-GLIM uses elastic scattering and operates in transmission mode, the frequencies in 

the missing cone region of the coherent transfer function cause inferior axial resolution and 

sectioning compared to confocal fluorescence microscopy. Hence, we rely on the neural 

network with confocal fluorescence images as reference.

Figure 2b compares images of a 2 μm microbead under widefield GLIM, LS-GLIM, 

confocal fluorescence microscopy, and the network inference, i.e., the ACM image. 

Interestingly, the resulting ACM image is characterized by significantly less axial blur than 

the LS-GLIM input. As described in the SI Note 2, the sensitivity of LS-GLIM is superior 

to its widefield counterpart, due to the absence of spatial crosstalk and higher sensitivity 

photon multiplier detector. However, due to the transmission geometry, they are both inferior 

to the reflection confocal images in terms of axial sectioning. In contrast, the corresponding 

network inferences, i.e., the ACM images show significantly improved axial resolution and 

sectioning. The average Pearson correlation coefficient (PCC) of the microbead is 98% and 

the Peak signal-to-noise ratio (PSNR) is 46.3. The three adjacent LS-GLIM frames used as 

network input (see methods for details) contain information about the field Laplacian along 

z, which governs the inhomogeneous wave equation (Supplemental Note 3) and may explain 

why this network architecture can produce adequate results in terms of 3D reconstructions.

Next, we applied ACM to imaging neural cultures. We used two common stains to tag 

the Tau and MAP2 proteins47 (see Methods) the ratios of which are a popular model for 

differentiating the long axon from smaller dendrites. The confocal fluorescence images from 

the two channels represent the ground truth and, as before, the corresponding LS-GLIM 

images were the input data. The training data contained 20 z-stacks of neurons at 10 days 

in vitro (DIV 10). The results are summarized in Figs. 3a–l. Our results indicate that the 

overall 3D renderings of the ground truth and their inferences match very well. The PPC and 

PSNR of channel Tau are 80% and 26.9 respectively for Fig. 3 (a–l). The PPC and PSNR 

of channel MAP2 are 91% and 29.1 respectively for Fig. 3 (a–l). Occasionally, we found 

some discrepancies in the dendrites, which translates into lower correlation values. In Figs. 

3f, l, the white arrow points to the axon of the neuron. Interestingly, ACM images reduced 

the pixel-level noise and confocal stripe artifacts present in the training data. In extended 

data Fig. 3, we compared the power spectra of the neurons from Fig. 3. (a–l) using GT and 

ACM images. The 3D frequency coverage of the GT and ACM spectra agree, and both reach 

the theoretical confocal fluorescence resolution limits. The ACM data allows us to delineate 

individual cells accurately and measure their volumes. Supplemental Video 1 illustrates this 
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performance on live neurons that have never been labeled. Visually, it is evident that the 

ACM provides a much sharper decay of the out-of-focus light, i.e., greater depth sectioning, 

than the original LS-GLIM. Supplemental Video 2 illustrates the time-lapse performance 

of ACM on unlabeled, dynamic neurons. Of course, the ACM images do not suffer from 

bleaching or toxicity, while they maintain chemical specificity through computation. As 

a result, ACM is suitable for studying live cellular systems non-destructively, over large 

periods of time.

From the ACM images, we computed binary masks corresponding to the cell contours, 

which were applied back to the input QPI maps to retrieve individual cell dry mass values. 

From the cell volume and mass, we also extracted the dry mass density for each cell. Figures 

3 (m–o, Volume) are rendered using binarized ACM predicted MAP2, and Figs. 3 (p–r, 

Dry Mass Density) are calculated from ACM predicted MAP2 segmentation and LS-GLIM 

phase images. The PPC and PSNR of channel MAP2 are 90% and 32.8 respectively for 

Fig. 3 (m–r). Figures 3s–t compare the volume and dry mass associated with a single 

cell measured from confocal MAP2 and ACM MAP2 predictions. The average volume of 

a single cell is determined by the total volume per field of view (FOV) divided by the 

number of cell body within the FOV. Our results indicate that the volume and dry mass 

measurements are well-matched with the ground truth, i.e., there is no significant difference 

between the two distributions (p>>0.05).

To demonstrate ACM’s ability to delineate cellular structures inside turbid spheroids, 

we imaged hepatocyte spheroids (HepG2) suspended in phosphate-buffered saline (PBS) 

and generated computational stains associated with the deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA) (Fig. 4a). The RNA is localized within the nucleus, with a high 

concentration in the nucleolus (Fig. 4b). The study of RNA is of high current interest, 

not only because it plays a crucial role in catalyzing cellular processes, but also because 

it can be used by various viruses to encode their genetic information48. The two ground 

truth stains, 7-aminoactinomycin D (7-ADD) and SYTO RNASelect Green (see Methods), 

and their associated inferences, enable us to generate semantic segmentations and annotate 

the spheroid into “nuclei” and “nucleoli”, respectively. The entire “spheroid” represents our 

third class and is obtained as the non-background regions in the LS-GLIM data. As shown in 

Fig. 4c and SI Note 4, the actual and imputed fluorescent maps show good agreement. The 

PPC and PSNR of channel DNA are 84% and 24.9, respectively. As detailed in Methods, 

we apply a threshold on the ACM and phase image to generate 3D semantic segmentation 

maps, which we use to measure the dimension of the spheroid. The intersection of the RNA 

and DNA labels provides the annotation for the nucleoli. Our results show that, across the 

20 spheroids studied in this work, the total nuclear mass is proportional to the spheroid 

mass. This dependence is shown in Fig. 4d, where the slope of the linear regression (0.42) 

indicates that about 42% of the spheroid mass is contributed by the nuclei. These results 

agree well with the same procedure applied to the ground truth confocal images.

Automatic instance segmentation of cells inside spheroids was performed by 3D marker-

controlled watershed on the estimated DNA signal. The markers were determined through a 

2D Hough voting on each slice in the z-stack basis (Fig. 5). The result of the Hough voting 

is a volume with a unique marker on the spheroid, which resembles a column tracking 
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the center of the nucleus through the focus (see Methods for details). The result of the 

watershed is a 3D volume with a unique label for each nucleus within the spheroid, which 

enables the calculation of parameters on individual cells. In order to compare the mass, 

volume, and mass density distributions, we computed the relative spread, σ/μ, with σ the 

standard deviation and μ the mean associated with the best Gaussian fit. Our data indicate 

that nuclear density (Fig. 5d, σ/μ = 0.2) has a significantly narrower distribution compared to 

the distributions of nuclear mass (Fig. 5b, σ/μ = 0.9) and volume (Fig. 5c, σ/μ = 0.8). These 

observations indicate that the dry mass density is a much more uniform parameter across 

different cells. Given the broad distribution of volumes and masses, this result shows that a 

change in volume is accompanied by an almost linear change in mass.

Discussion:

The principles of AI and confocal microscopy were both formulated in the mid-1950s. Since 

then, the two technologies have taken on independent trajectories, with confocal leading 

to an entirely new class of scanning imaging modalities and AI giving rise to a variety of 

applications, from digital assistants to autonomous vehicles. Furthermore, in the past several 

years, it has become apparent that AI algorithms are valuable tools for extracting knowledge 

from optical images. As such, the two fields are intersecting again, and this combination 

appears to hold exciting prospects for biomedicine.

We developed artificial confocal microscopy to combine the benefits of non-destructive 

imaging from QPI with the depth sectioning and chemical specificity associated with 

confocal fluorescence microscopy. Augmenting an existing laser scanning microscope with 

a QPI module (LS-GLIM) we can easily collect pairs of registered images from the 

phase (input data) and fluorescence (ground truth) channels, which allow us to generate 

colocalized ground truth – input pairs of images. As expected, the transmission quantitative 

phase image exhibits a much stronger elongation along the z-axis, as the scattering 

wavevector (or momentum transfer) has a much shorter z-component than in the reflection 

geometry. These pairs of images are used to train a neural network (Efficient U-Net) to 

perform image-to-image translation from the LS-GLIM to the confocal fluorescence signal. 

The final ACM image presents the characteristics of the confocal image, with good axial 

sectioning and chemical specificity (see Figs. 2–3). Applying ACM to unlabeled cells allows 

us to nondestructively translate the confocal microscopy features to dynamic imaging (see 

Supplemental Videos 1–2). The image formation for weak-scattering samples in LS-GLIM 

was described here for the first time, to our knowledge. The theoretical model agrees with 

the experimental data on the system’s transfer function by imaging a phase edge.

The confocal geometry, advances the QPI imaging capability in several ways, as follows. 

First, by illuminating one point at a time, the confocal eliminates the spatial crosstalk that 

affects widefield methods. With this illumination, the noise from the neighboring points is 

lowered. Second, the PMT array provides a much more sensitive detection, which, together 

with the first point above, yields the overall higher sensitivity, both spatially and temporally, 

that we capture in our data. Third, the backscattering geometry yields higher axial spatial 

frequency coverage, resulting in stronger sectioning. This quality is obvious in our data, both 

ground truth and inference.

Chen et al. Page 8

Nat Photonics. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By overcoming the spatial crosstalk limitations associated with widefield methods, ACM 

has the potential to provide new data for studying turbid cellular systems. Measuring 

quantitatively functional parameters from organoids and spheroids can be useful in a variety 

of applications of biological and clinical relevance. Using the artificial fluorescence images 

generated by the neural network, we segmented individual nuclei within the 3D structures, 

which can be used not just for cell counting but also for computing individual nuclear 

volumes. Furthermore, by creating annotations from the ACM images and applying them 

back to the input phase images, we extracted dry mass information from individual nuclei, 

independently from the nuclear volume. Our results indicate that, on average, 42% of the 

spheroid mass is contained in the nuclei. We also found that the nuclear dry mass density 

distribution is significantly narrower than the volume and mass counterparts. Nevertheless, 

ACM images can differ from confocal fluorescence images. The potential source of error 

could come from the training corpus including the confocal fluorescence images and 

LS-GLIM phase images. Specifically, LS-GLIM phase images lack sensitivity to spatial 

frequencies within the missing cone region, while the confocal fluorescence images are 

affected by variations in the staining level. Moreover, the contrast in LS-GLIM images 

comes from the intrinsic inhomogeneity of refractive index distributions in tissues, resulting 

in much more details compared to the confocal fluorescence counterparts.

Finally, we demonstrated that the network training can be transferred between spheroids 

suspended in different media with no additional training, which provides versatility to our 

technique. However, the accuracy of prediction is lower than those of spheroids in PBS, 

which is expected since the shape of the spheroids in PBS and hydrogel is quite different, 

and the network is never trained on those data. We anticipate that ACM can be potentially 

adopted at a broad scale because the LS-GLIM module can be readily added to any existing 

laser confocal system, while the data for training can be acquired with ease. ACM provides 

complementary information to that from other laser-scanning techniques, as the acquisition 

is not limited by photobleaching and toxicity, while the axial resolution is maintained at 

confocal levels.

Methods

ACM system

The experimental set-up for ACM is a multichannel imaging system, which consists 

of confocal microscopy (LSM 900, Zeiss) and laser-scanning gradient light interference 

microscopy (LS-GLIM). The LS-GLIM module upgrades a laser scanning confocal 

microscope outfitted with DIC optics by providing phase-shifting assembly capability (Fig. 

1(a)). The laser-scanning interference microscope shares the same two-laser lines (488nm, 

561nm) of the confocal microscope. The laser source from the confocal microscopy goes 

up through the matched DIC prism and objective (63×, 40×) and then is scattered by the 

sample. After the sample, the light is collected by the condenser of the DIC microscope. 

Next, the light travels through the phase-shifting assembly, which consists of a liquid crystal 

variable retarder (LCVR, Thorlabs) followed by a linear polarizer. In order to allow the 

liquid crystal to modulate the phase shift between the two orthogonal polarizations, we 

removed the analyzer that normally sits inside the condenser. The stabilization time of the 
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LCVR is approximately 70 ms. Four intensity frames are recorded by the photomultiplier 

tube (PMT, Zeiss) corresponding to each π/2 phase shift, as shown in Fig. 1(b). The 

acquisition time of each frame is approximately the same as for a confocal fluorescence 

image, which depends on the dwell time and pixel numbers set for the image acquisition. 

The dwell time for all the images was chosen to be 1.2 μs, such that for an image 

with 1744×1744 pixels, the acquisition time is ~ 3.7s. The quantitative phase images 

are generated in real-time by the phase-retrieval reconstruction algorithm and Hilbert 

transform algorithm38. The system registers pairs of z-stack images from both the confocal 

fluorescence and quantitative phase, which serve, respectively, as ground truth and input 

images for machine learning (Fig. 1(b)). The z-sampling was chosen to be 0.2 μm, 0.2 μm, 

and 1 μm for microbeads, neurons, and spheroids, respectively. The x-y sampling was 0.09 

μm for all the data presented in this paper.

Network training: Multichannel EfficientNet-based U-Nets (E-U-Nets) were trained 

with paired phase and fluorescent images. The input channels of an E-U-Net are three 

neighboring phase slices, and the output is the corresponding central fluorescent slice. 

This network design allows an E-U-Net to use information from phase images acquired at 

multiple neighboring imaging planes to better predict the fluorescent image.

The network architecture of a multichannel E-U-Net is shown in Fig. 2a and Fig. S7. 

It represents a modification of a standard U-Net where the encoder is replaced with an 

EfficientNet45. The EfficientNet generally has a powerful capacity for feature extraction but 

is relatively small in network size. Training an E-U-Net from scratch can be challenging 

when the number of paired phase and fluorescent images is limited. To mitigate this 

challenge, a transfer learning strategy was used in the E-U-Net training. Specifically, 

the weights of the EfficientNet encoder were initialized with weights pre-trained on an 

ImageNet dataset49 for an image classification task. The ImageNet is a benchmark image set 

that contains millions of labeled nature images.

In this study, a neuron dataset, a spheroid cell dataset, and a bead dataset were used 

for training, validating, and testing the E-U-Nets. The neuron dataset contained 22 image 

stacks that each contained 300 neuron phase images of size 1744×1744 pixels and their 

related two-channel fluorescent images, which correspond to fluorescent signals from Tau 

and MAP2 proteins, respectively. The spheroid cell dataset contained 21 stacks that each 

contained 100 spheroid cell phase images of size 1744×1744 pixels and the related two-

channel fluorescent images, which correspond to fluorescent signals from DNA and RNA, 

respectively. The bead dataset contained 18 image stacks that each contained 250 bead 

phase images of size 128×128 pixels and the associated fluorescent images. To facilitate 

network training, the pixel values in each fluorescent image stack were scaled to a range 

of [0, 255.0]. This was accomplished as: xo = 255.0 × xi − x0.01% 
x99.99% − x0.01%

, where x0.01% and x99.99% 

represent the 0.01%-th and 99.99%-th values among all the pixel values in the image 

stack after they were sorted in non-decreasing order; xi and xo represent the original value 

and the scaled value of a pixel, respectively. The estimated fluorescent image stack was 

subsequently rescaled to its original range using xi =   x0
255.0 x99.99% − x0.01% +  x0.01%. For those 
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image stacks without ground truth values, the x0.01 %  and x0.99 %  can be estimated as the average 

of x0.01% and x99.99% related to the ground truth values in the training set.

Considering the limited number of image stacks in the three datasets described above, a 

3-fold cross-validation (CV) approach was employed to train and validate the E-U-Nets after 

a few testing image stacks were held out for the E-U-Net testing. For a given dataset in 

which the testing stacks have been held out, the 3-fold CV approach involves randomly 

dividing all the stacks in the dataset into 3 folds of approximately equal size. The first 

two folds and the remaining one-fold were treated as a training set and a validation set 

to train and validate E-U-Nets, respectively. The procedure was repeated three times; each 

time, a different fold was treated as the validation set. The three procedures resulted in the 

validation of the E-U-Nets on each image stack. The trained E-U-Nets were finally tested on 

the held-out unseen testing samples. Details related to the cross-validation of E-U-Nets on 

the neuron, spheroids cell, and bead datasets are described below.

For the neuron dataset, two separate E-U-Nets were trained: one to translate phase 

images into each of the two-channel fluorescent images. The EfficientNet-B7 network was 

employed in the two E-U-Nets. The network architecture of the EfficientNet-B7 is shown 

in Fig. S7. Two neuron image stacks were held out as unseen testing data; the remaining 

20 stacks were employed in the 3-fold CV process described above. In the 3-fold CV 

process, the 20 image stacks were randomly divided into three folds that contained 6, 

7, and 7 image stacks, respectively. For each data split, the E-U-Nets were trained by 

minimizing a mean square error (MSE) loss function that measures the difference between 

the predicted fluorescent images and their corresponding ground truth values. The loss 

function was minimized by the use of an ADAM optimizer50 with a learning rate of 

5×10−4, which was empirically determined. In each training iteration, a batch of paired 3 

neighboring phase images and the corresponding central fluorescent image were sampled 

from the training image stacks, and then randomly cropped into patches of 512×512 pixels 

as training samples to train the networks. The batch size was set to 4. A decaying strategy 

was applied to the learning rate to mitigate the overfitting by multiplying the learning rate 

by 0.8 when the validation MSE loss did not decrease for consecutive 10 epochs. An epoch 

is a sequence of iterations that walk through all the image slices in the training set. The 

validation MSE loss was computed between the predicted fluorescent images and their 

ground truth values for validation images. In the network training, an early-stopping strategy 

was employed to determine the end of the network training. Specifically, at the end of 

each epoch, the being-trained E-U-Net model was evaluated by computing the average of 

Pearson correlation coefficients (PCCs) between the predicted fluorescent images and the 

related ground truth values. The network training stopped if the average validation PCC did 

not increase for 20 epochs as shown in Fig. S8. The two figures show the average training 

and validation stopping rule metric for training the two E-U-Nets respectively in one of the 

three training procedures of the 3-fold CV process. After the E-U-Nets were trained, the 

performances of the trained networks were evaluated on the validation set by computing the 

peak signal-to-noise ratio (PSNR) and PCC between the predicted fluorescent stacks and the 

related ground truth values. The 3-fold CV process resulted in validation results for each 

of the 20 stacks. These validation results were combined and are reported in SI Note 4. In 
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addition, the E-U-Nets trained in the CV process were tested in the two unseen stacks. The 

corresponding Pearson correlation coefficients (PCCs) and PSNR are presented in SI Note 4.

For the spheroids cell dataset, two separate E-U-Nets were trained for each fluorescent 

channel. The EfficientNet-B7 network was employed as the encoder in the two trained 

E-U-Nets. Two spheroid cell image stacks were held out for E-U-Net testing; the remaining 

19 stacks were randomly split into three folds that contain 6, 6, and 7 stacks, respectively, in 

the 3-fold CV process. The other training settings were the same as those described above 

for network training on the neuron dataset. The training and validation PCCs over epochs 

correspond to training the two E-U-Nets in one of the three training procedures of the 3-fold 

CV process are displayed in Fig. S9. The 3-fold CV results related to PSNR and PCC are 

reported in SI Note 4. The results tested on two unseen testing stacks are shown in SI Note 

4.

For the bead dataset, a single E-U-Net was built for the phase-to-fluorescent image 

translation. The EfficientNet-B0 was employed as the encoder in the E-U-Net. The 

architecture of the EfficientNet-B0 network is shown in Fig. S7. One of the bead image 

stacks was held out as an unseen testing stack for the E-U-Net testing; the remaining 17 

bead stacks were randomly divided into three folds that each contains 5, 6, and 6 image 

stacks, respectively, for the 3-fold CV process. Paired images of size 128×128 pixels were 

employed for the E-U-Net training. The batch size was 32. The other training settings were 

the same as those for the network training on neuron and spheroid cell datasets, as described 

above. The training and validation stopping rule metric over epochs for one of the three 

training procedures of the 3-fold CV process are displayed in Fig. S10. The 3-fold CV 

results related to PSNR and PCC performances are reported in SI Note 4. The results on the 

unseen bead stack are shown in SI Note 4.

The E-U-Nets were implemented by use of the Python programming language with libraries 

including Python 3.6 and TensorFlow 1.14. The model training, validation, and testing were 

performed on an NVIDIA Tesla V100-GPU with 32 GB VRAM. The E-U-Net training on 

the neuron dataset and spheroid dataset took approximately 24 hours. The E-U-Net training 

on the bead dataset took approximately 2 hours. The inference time for a fluorescent image 

slice of 1744×1744 pixels was approximately 400 ms.

Neuron analysis: The volume of neurons was calculated from the ACM images using 

binary masks with background thresholding. The 3D dry mass distribution was generated 

with the multiplication of binary masks and the 3D dry mass distribution from the QPI 

images51. The 3D dry mass density is linearly related to the depth-resolved phase maps as

M(x, y, z) = λ
2πγδzϕ(x, y, z), [2]

where λ is the wavelength of the illumination and γ ≃ 0.2, the refractive increment, which 

lies within the range of 0.18–0.21 ml/g for most biological samples52. δz is the z sampling, 

which for our LS-GLIM is ~ 1 μm. ϕ(x, y, z) is the measured phase image at each z-plane.
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Spheroid analysis: Three-dimensional semantic segmentation maps were generated from 

the estimated fluorescent signals corresponding to the RNASelect and 7-ADD stains by 

applying fixed thresholds for the entire data. This map of RNA and DNA-stained regions 

was further refined by assigning a “nucleoli” label to the RNA inside the DNA regions. 

To generate a map labeling the “spheroid”, a threshold was applied to the quantitative 

phase signal after Hilbert demodulation51. Fields of view were acquired to contain a single 

spheroid, and phase values coincident with the assigned label (“nucleus”, “spheroid”) were 

totaled on a per-spheroid basis to report on the dry mass and volume.

Automated 3D cell counting: To segment our images into individual nuclei, we used 

a 3D variation of the marker-controlled watershed on the estimated DNA images53. We 

note that the ACM data lacked the unwanted pixel-level noise typically associated with 

photon-starved fluorescent images. This technique requires the image to be annotated into 

sample and background regions with a non-overlapping marker used to identify the cell. 

We performed 2D Hough voting which is used to identify the center of the nucleus in 

each z-slice, producing what resembles a curve through the z-dimension. To regularize 

our approach, we applied a 3×3 blur to correct for minor disconnects in our segmentation 

algorithm. The result of our watershed approach is a 3D volume with a unique label 

annotating each nucleus (Fig. 5a). To validate our method, we compared our results to 

a manual cell count performed in AMIRA. We obtained 142 cells counted automatically 

vs 136 cells counted manually (4 % error). The principal disagreement was due to 

undercounting touching cells. This procedure was implemented in MATLAB using the 

“imfindcirlces” and “watershed” commands.

Sample preparation:

Hippocampal neuron preparation:  All procedures involving animals were reviewed 

and approved by the Institutional Animal Care and Use Committee at the University of 

Illinois Urbana-Champaign and conducted per the guidelines of the U.S National Institute of 

Health (NIH). For our neuron imaging experiments, we used primary hippocampal neurons 

harvested from dissected hippocampi of Sprague-Dawley rat embryos at embryonic day 18. 

Dissociated hippocampal neurons were plated on multi-well plates (Cellvis, P06-20-1.5-N) 

that were pre-coated with poly-D-lysine (0.1 mg/ml; Sigma-Aldrich). Hippocampal neurons 

were incubated for three hours under the condition of 37°C and 5% CO2 in a plating 

medium containing 86.55% MEM Eagle’s with Earle’s BSS (Lonza), 10% Fetal Bovine 

Serum (re-filtered, heat-inactivated; ThermoFisher), 0.45% of 20% (wt./vol.) glucose, 1× 

100 mM sodium pyruvate (100x; Sigma-Aldrich), 1× 200 mM glutamine (100x; Sigma-

Aldrich), and 1x Penicillin/ Streptomycin (100x; Sigma-Aldrich) in order to help attachment 

of neurons (300 cells/mm2). The plating media was aspirated and replaced with maintenance 

media containing Neurobasal growth medium supplemented with B-27 (Invitrogen), 1% 200 

mM glutamine (Invitrogen), and 1% penicillin/streptomycin (Invitrogen) and incubated for 

10 days at 37 °C, in the presence of 5% CO2. Hippocampal neurons were maintained for 14 

days before performing immunostaining.

Immunostaining protocol:  Neurons were stained with antibodies for Tau (Abcam, 

ab80579) and MAP2 (Abcam ab32454) to localize axons and dendrites. Neurons were fixed 
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with freshly prepared 4% paraformaldehyde (PFA) for 15 minutes following 0.5% Triton-X 

for 10 minutes and 2% bovine serum albumin (BSA, ThermoFisher) for 2 hours incubation 

in 4°C. Hippocampal neurons were incubated for 8 hours at 4°C with anti-Tau antibodies 

that were diluted to 1:250 in 5% BSA. After washing with PBS, neurons were exposed for 8 

hours at 4°C to goat anti-mouse secondary antibody (Abcam, ab205719) which was diluted 

to 1:500 in 5% BSA. Hippocampal neurons were then incubated in anti-MAP2 antibody 

(1:500 dilution) in 5% BSA for 8 hours, followed by goat antirabbit secondary antibody 

(Abcam, ab205718, 1:1000 dilution) in 5% BSA for 8 hours at 4°C.

Liver cancer spheroid (HepG2 cells):  Human hepatocarcinoma cells (HepG2, ATCC) 

were cultured in T-75 flasks with DMEM (Thermo) + 10% fetal bovine serum + 1% 

penicillin-streptomycin (Gibco) for 7 days and formed spontaneous pre-formed spheroids. 

The flasks were incubated at 37C and 5% CO2. Media was replaced every 2–3 days. 

Spheroids were incubated with TrypLE Express (Thermo) for 10 minutes to detach pre-

formed spheroids of approximately 100~200 μm in diameter from the culture flask. The 

passage number used was between 2–6.

Pre-formed spheroids were plated on poly-d-lysine coated glass-bottom dishes. The 

spheroids were incubated for 10 minutes to allow for attachment. Then, they were covered 

with a collagen hydrogel (bovine collagen type 1, Advanced Biomatrix). The cells were 

incubated for 3 days to allow for cellular reorganization into a regular spheroidal shape. 

The spheroids were first fixed in a 1:1 ratio of methanol: acetone at −4°C for 20 minutes. 

Cells fixed using this method do not need an additional permeabilization step due to the 

acetone. The cell nucleus was stained using 7-aminoactinomycin D (7-AAD red, 6163, 

ThermoFisher) by adding 1μL of the stock stain into 1mL of PBS. The cell RNA was stained 

using SYTO RNASelect Green (S32703, ThermoFisher) by first creating a 5μM working 

solution and then adding 100μL of the working solution to 900μL of PBS. The samples were 

stained at room temperature for 30 minutes before rinsing once. Two kinds of samples in 

PBS or hydrogel were imaged after staining.
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Extended Data

Extended Data Fig. 3. Comparison of GT to ACM power spectra from Fig. 3 a–l.
Comparison of GT to ACM power spectra from Fig. 3 a–l. Contours circumscribing 

theoretical resolution limits of confocal fluorescence system (GT) are shown in as red dotted 

circles. The theoretical lateral resolution of the system is 0.22 μm (NA=1.3, 1 Airy Unit 

(AU), excitation wavelength at 561 nm), corresponding to a maximum lateral frequency of 

14.3 rad/ μm. The theoretical axial resolution of the system is about 0.50 μm, corresponding 

to a maximum axial frequency of 6.3 rad/ μm. The 3D frequency coverage of the GT and 

ACM spectra agree, and both reach the theoretical resolution limits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a, The ACM system consists of a laser-scanning confocal assembly, differential interference 

contrast (DIC) microscope, and LS-GLIM module. The quantitative phase imaging was 

conducted with the green laser line (488 nm) of the confocal excitation. The interferogram 

was recorded at each point in the scan by the transmission-PMT (T-PMT). The fluorescence 

images were captured by the reflection-PMT of the confocal module. b, Four phase-shifting 

frames are recorded and used to reconstruct the quantitative phase image. The confocal 

fluorescence image (FL) serves as the ground truth, and the phase image (LS-GLIM) is the 

input for the network training.
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Figure 2. 
a, Network architecture for translating phase images into confocal fluorescence signals. It 

is a U-Net variant that uses an EfficientNet as the encoder. The input of the Efficient-Unet 

consists of 3 adjacent quantitative phase images along the z-axis, and its output is the 

corresponding middle fluorescent slice. b, Comparison of 2 μm bead (63x/1.3) tomograms 

in widefield GLIM, LS-GLIM, confocal, and ACM, as indicated. The elongation of the 

beads in widefield and LS-GLIM is due to the missing frequencies in the transmission 

geometry. On the other hand, the predicted ACM images replicate the confocal sectioning 

and resolution.
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Figure 3. 
2D comparison of ground truth from confocal fluorescence (a, Tau, b, MAP2) and predicted 

fluorescence (g, Tau, h, MAP2). 3D comparison of ground truth from confocal fluorescence 

(c, XY, d, XZ, e, YZ, f, 3D tomogram) and predicted fluorescence (i, XY, j, XZ, k, YZ, l, 
3D tomogram). Volume from binarized ACM predicted MAP2 (m, 3D rendering, n, XZ o, 

YZ). Dry mass density distribution (p, 3D dry mass density q, XZ r, YZ) based on ACM 

predicted MAP2 segmentation and LS-GLIM phase images. The box plots of volume (s) and 

dry mass calculation (t) for a single cell from confocal MAP2 (Ground Truth) and ACM 

predictions (Prediction) for 10 days in vitro (DIV) neurons. Each box plot shows the median 
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(red), 25th and 75th percentiles of the sample (the bottom and top of each box), and range 

(whisker). P-values are of the unpaired two-sided t-tests.
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Figure 4. 
Label-free intracellular segmentation in turbid spheroids. a & b, Cellular compartments 

were stained using RNA and DNA sensitives stains. DNA is used to identify the nucleus 

and dense concentrations of RNA inside the nucleus are associated with nucleoli. c, 3D 

comparison of GT and ACM predicted tomography of a spheroid (40x/1.3). For all 20 

spheroids, we calculated the nuclear dry mass and volumes generated from the imputed 

signal. d, e, Total nuclear dry-mass tracks closely with total spheroid mass, Person 

correlation coefficient ρ=+0.65 (the slope of the linear fit is 0.42). These results agree well 

with the same procedure applied to the ground truth confocal images (d).
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Figure 5. 
Automated segmentation of cells inside spheroids. a, Instance segmentation of spheroids 

was performed by 3D marker-controlled watershed on the ACM estimated DNA signal, with 

markers being determined through 2D Hough voting on a per-z-slice basis. The result of the 

Hough voting is a volume with a unique marker on the spheroid, which resembles a column 

tracking the center of the nucleus through the focus. The result of watershed is a 3D volume 

with a unique label for each nucleus within the spheroid, which enables the calculation of 

parameters on individual cells. b, Distribution of nuclear dry mass. c, Distribution of nuclear 

volume. d, Distribution of dry mass density. The standard deviation (σ), mean (μ), and their 

ratios are indicated for each plot. Note that the nuclear mass density (d) has a significantly 

narrower distribution compared to nuclear mass (b), and volume (c), as indicated by the σ/μ 
ratio.
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