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Abstract

The lasso and elastic net are popular regularized regression models for supervised learning. 

Friedman, Hastie, and Tibshirani (2010) introduced a computationally efficient algorithm for 

computing the elastic net regularization path for ordinary least squares regression, logistic 

regression and multinomial logistic regression, while Simon, Friedman, Hastie, and Tibshirani 

(2011) extended this work to Cox models for right-censored data. We further extend the reach 

of the elastic net-regularized regression to all generalized linear model families, Cox models 

with (start, stop] data and strata, and a simplified version of the relaxed lasso. We also discuss 

convenient utility functions for measuring the performance of these fitted models.
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1. Introduction

Consider the standard supervised learning framework. We have data of the form (x1, y1), 

… , (xn, yn), where yi ∈ ℝ is the target and xi = (xi, 1, …, xi, p)T ∈ ℝp is a vector of potential 

predictors. The ordinary least squares (OLS) model assumes that the response can be 

modeled as a linear combination of the covariates, i.e. yi = β0 + xi
Tβ for some coefficient 

vector β ∈ ℝp and intercept β0 ∈ ℝ. The parameters are estimated by minimizing the residual 

sum of squares (RSS):
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(β 0, β ) = argmin
(β0, β) ∈ ℝp + 1

1
2n ∑

i = 1

n
(yi − β0 − xi

Tβ)2 . (1)

There has been a lot of research on regularization methods in the last two decades. We 

focus on the elastic net (Zou and Hastie 2005) which minimizes the sum of the RSS and a 

regularization term which is a mixture of ℓ1 and ℓ2 penalties:

(β 0, β ) = argmin
(β0, β) ∈ ℝp + 1

1
2n ∑

i = 1

n
(yi − β0 − xi

Tβ)2 + λ 1 − α
2 ‖β‖2

2 + α‖β‖1 . (2)

In the above, λ ≥ 0 is a tuning parameter and α [0, 1] is a higher level hyperparameter1.

We always fit a path of models in λ, but set a value of α depending on the type of prediction 

model we want. For example, if we want ridge regression (Hoerl and Kennard 1970) we set 

α = 0 and if we want the lasso (Tibshirani 1996) we set α = 1. If we want a sparse model 

but are worried about correlations between features, we might set α close to but not equal 

to 1. The final value of λ is usually chosen via cross-validation: we select the coefficients 

corresponding to the λ value giving smallest cross-validated error as the final model.

The elastic net can be extended easily to generalized linear models (GLMs) (Nelder and 

Wedderburn 1972) and Cox proportional hazards models (Cox 1972). Instead of solving the 

minimization problem (2), the RSS term in the objective function is replaced with a negative 

log-likelihood term or a negative log partial likelihood term respectively.

The glmnet R package (Friedman et al. 2010) contains efficient functions for computing 

the elastic net solution for an entire path of values λ1 > ⋯ > λm. The minimization 

problems are solved via cyclic coordinate descent (van der Kooij 2007), with the core 

routines programmed in FORTRAN for computational efficiency. Earlier versions of the 

package contained specialized FORTRAN subroutines for a handful of popular GLMs and the 

Cox model for right-censored survival data. The package includes functions for performing 

K-fold cross-validation (CV), plotting coefficient paths and CV errors, and predicting on 

future data. The package can also accept the predictor matrix in sparse matrix format: this is 

especially useful in certain applications where the predictor matrix is both large and sparse. 

In particular, this means that we can fit unpenalized GLMs with sparse predictor matrices, 

something the glm function in the stats package cannot do.

From version 4.1 and later, glmnet is able to compute the elastic net regularization path 

for all GLMs, Cox models with (start, stop] data and strata, and a simplified version of the 

relaxed lasso. (Hastie, Tibshirani, and Tibshirani 2020).

1If the square were removed from the ℓ2-norm penalty, it would be more natural to have 1 − α instead of (1 − α)/2 as its mixing 
parameter. The factor of 1/2 compensates for the fact that a squared ℓ2-norm penalty is used, in the sense that the gradient of the 
penalty with respect to β can be seen as a convex combination of the ℓ1 and ℓ2 penalty terms. We note also that there is a one-to-one 
correspondence between these two parameterizations for the penalty.
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Friedman et al. (2010) gives details on how the glmnet package computes the elastic net 

solution for ordinary least squares regression, logistic regression and multinomial logistic 

regression, while Simon et al. (2011) explains how the package fits regularized Cox models 

for right-censored data. This paper builds on these two earlier works. In Section 2, we 

explain how the elastic net penalty can be applied to all GLMs and how we implement it 

in software. In Section 3, we detail extensions to Cox models with (start, stop] data and 

strata. In Section 4, we describe an implementation of the relaxed lasso implemented in 

the package, and in Section 5 we describe the package’s functionality for assessing fitted 

models. We conclude with a summary and discussion.

2. Regularized generalized linear models

2.1. Overview of generalized linear models

Generalized linear models (GLMs) (Nelder and Wedderburn 1972) are a simple but powerful 

extension of OLS. A GLM consists of 3 parts:

• A linear predictor: ηi = xi
Tβ,

• A link function: ηi = g(μi), and

• A variance function as a function of the mean: V = V(μi).

The user gets to specify the link function g and the variance function V. For one-

dimensional exponential families, the family determines the variance function, which, along 

with the link, are sufficient to specify a GLM. More generally, modeling can proceed 

once the link and variance functions are specified via a quasi-likelihood approach (see 

McCullagh and Nelder (1983) for details); this is the approach taken by the quasi-binomial 

and quasi-Poisson models. The OLS model is a special case, with link g(x) = x and constant 

variance function V(μ) = σ2 for some constant σ2. More examples of GLMs are listed in 

Table 1.

The GLM parameter β is determined by maximum likelihood estimation. Unlike OLS, 

there is no closed form solution for β . Rather, it is typically computed via an iteratively 

reweighted least squares (IRLS) algorithm known as Fisher scoring. In each iteration of 

the algorithm we make a quadratic approximation to the negative log-likelihood (NLL), 

reducing the minimization problem to a weighted least squares (WLS) problem. For GLMs 

with canonical link functions, the negative log-likelihood is convex in β, Fisher scoring 

is equivalent to the Newton-Raphson method and is guaranteed to converge to a global 

minimum. For GLMs with non-canonical links, the negative log-likelihood is not guaranteed 

to be convex2. Also, Fisher scoring is no longer equivalent to the Newton-Raphson method 

and is only guaranteed to converge to a local minimum.

It is easy to fit GLMs in R using the glm function from the stats package; the user can 

specify the GLM to be fit using family objects. These objects capture details of the GLM 

2It is not true that the negative log-likelihood is always non-convex for non-canonical links. For example, it can be shown via direct 
computation that the negative log-likelihood for probit regression is convex in β.
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such as the link function and the variance function. For example, the code below shows the 

family object associated with probit regression model:

R> class(binomial(link = "probit"))

[1] "family"

R> str(binomial(link = "probit"))

List of 12

 $ family : chr "binomial"

 $ link : chr "probit"

 $ linkfun : function (mu)

 $ linkinv : function (eta)

 $ variance : function (mu)

 $ dev.resids: function (y, mu, wt)

 $ aic : function (y, n, mu, wt, dev)

 $ mu.eta : function (eta)

 $ initialize: language … # code to set up objects needed for the family

 $ validmu : function (mu)

 $ valideta : function (eta)

 $ simulate : function (object, nsim)

 – attr(*, "class")= chr "family"

The linkfun, linkinv, variance and mu.eta functions are used in fitting the GLM, 

and the dev.resids function is used in computing the deviance of the resulting model. 

By passing a class "family" object to the family argument of a glm call, glm has all 

the information it needs to fit the model. Here is an example of how one can fit a probit 

regression model in R:

R> library(glmnet)

R> data(BinomialExample)

R> glm(y ~ x, family = binomial(link = "probit"))

2.2. Extending the elastic net to all GLM families

To extend the elastic net to GLMs, we replace the RSS term in (2) with a negative log-

likelihood term:

(β 0, β ) = argmin
(β0, β) ∈ ℝp + 1

− 1
n ∑

i = 1

n
ℓ yi, β0 + xi

Tβ + λ 1 − α
2 ‖β‖2

2 + α‖β‖1 , (3)
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where ℓ yi, β0 + xj
Tβ  is the log-likelihood term associated with observation i. We can apply 

the same strategy as for GLMs to minimize this objective function. The key difference is that 

instead of solving a WLS problem in each iteration, we solve a penalized WLS problem.

The algorithm for solving (3) for a path of λ values is described in Algorithm 1. Note that in 

Step 2(a), we initialize the solution for λ = λk at the solution obtained for λ = λk−1. This is 

known as a warm start: since we expect the solution at these two λ values to be similar, the 

algorithm will likely require fewer iterations than if we initialized the solution at zero.

2.3. Implementation details

There are two main approaches we can take in implementing Algorithm 1. In the 

original implementation of glmnet, the entire algorithm was implemented in FORTRAN for 

specific GLM families. In version 4.0 and later, we added a second implementation which 

implemented just the computational bottleneck, the penalized WLS problem in Step 2(b)iii, 

in FORTRAN, with the rest of the algorithm implemented in R. Here are the relative merits 

and disadvantages of the second approach compared to the first:

Algorithm 1 Fitting GLMs with elastic net penalty

1 . Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > … > λm .
2 . For k = 1, …, m:

(a) Initialize (β 0
(0)(λk), β (0)(λk)) = (β 0(λk − 1), β (λk − 1)) . For k = 1, initialize

(β 0
(0)(λk), β (0)(λk)) = (0, 0) . (Here, (β 0(λk), β (λk)) denotes the elastic net solu‐

tion at λ = λk . )
(b) For t = 0, 1, … until convergence:

i . For i = 1, …, n, compute ηi
(t) = β 0

(t)(λk) + β(t)(λk)Txi and μi
(t) = g−1 ηi

(t) .
ii . For i = 1, …, n, compute working responses and weights

zi
(t) = ηi

(t) + yi − μi
(t) ∕ dμi

(t)

dηi
(t) , wi

(t) = dμi
(t)

dηi
(t)

2
∕ V μi

(t) . (4)

iii. Solve the penalized WLS problem

(β 0
(t + 1)(λk), β (t + 1)(λk))

= argmin
(β0, β) ∈ ℝp + 1

1
2n ∑

i = 1

n
wi

(t) zi
(t) − β0 − xi

Tβ 2 + λk
1 − α

2 ‖β‖2
2 + α‖β‖1 .

(5)

• Because the formulas for the working weights and responses in (4) are specific 

to each GLM, the first approach requires a new FORTRAN subroutine for each 

GLM family. This is tedious to manage, and also means that users cannot fit 

regularized models for their bespoke GLM families. The second approach allows 

the user to pass a class "family" object to glmnet: the working weights and 

responses can then be computed in R before the FORTRAN subroutine solves the 

resulting penalized WLS problem.
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• As written, Algorithm 1 is a proximal Newton algorithm with a constant step 

size of 1, and hence it may not converge in certain cases. To ensure convergence, 

we can implement step-size halving after Step 2(b)iii: as long as the objective 

function (3) is not decreasing, set β (t + 1)(λk) β (t)(λk) + 1
2 β (t + 1)(λk) − β (t)(λk)

(with a similar formula for the intercept). Since the objective function involves a 

log-likelihood term, the formula for the objective function differs across GLMs, 

and the first approach has to maintain different subroutines for step-size halving. 

For the second approach, we can write a single function that takes in the 

class "family" object (along with other necessary parameters) and returns the 

objective function value.

• It is computationally less efficient than the first approach because (i) R is 

generally slower than FORTRAN, and (ii) there is overhead associated with 

constant switching between R and FORTRAN. Some timing comparisons for 

Gaussian and logistic regression with the default parameters are presented in 

Figure 1. The second approach is 10 to 15 times as slow than the first approach.

• Since each GLM family has its own set of FORTRAN subroutines in the first 

approach, it allows for special computational tricks to be employed in each 

situation. For example, with family = "gaussian", the predictors can be 

centered once upfront to have zero mean and Algorithm 1 can be run ignoring 

the intercept term.

We stress that both approaches have been implemented in glmnet. Users should use the first 

implementation for the most popular GLM families including OLS (Gaussian regression), 

logistic regression and Poisson regression (see glmnet’s documentation for the full list of 

such families), and use the second implementation for all other GLM families. For example, 

the code below shows two equivalent ways to fit a regularized Poisson regression model:

R> data(PoissonExample)

R> glmnet(x, y, family = "poisson")

R> glmnet(x, y, family = poisson())

The first call specifies the GLM family as a character string to the family argument, 

invoking the first implementation. The second call passes a class "family" object to the 

family argument instead of a character string, invoking the second implementation. One 

would never run the second call in practice though, as it returns the same result as the first 

call but takes longer to fit. The example below fits a regularized quasi-Poisson model that 

allows for overdispersion, a family that is only available via the second approach:

R> glmnet(x, y, family = quasipoisson())
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2.4. Details on the penalized WLS subroutine

Since the penalized WLS problem in Step 2(b)iii of Algorithm 1 is the computational 

bottleneck, we elected to implement it in FORTRAN. Concretely, the subroutine solves the 

problem

minimize
(β0, β) ∈ ℝp + 1

1
2n ∑

i = 1

n
wi zi − β0 − xi

Tβ 2 + λk ∑
j = 1

p
γj

1 − α
2 βj

2 + α ∣ βj ∣ (6)

subject to Lj ≤ βj ≤ Uj, j = 1, …, p . (7)

This is the same problem as (5) except for two things. First, the penalty placed on each 

coefficient βj has its own multiplicative factor γj. ((7) reduces to (5) if γj = 1 for all j, 
which is the default value for the glmnet function.) This allows the user to place different 

penalty weights on the coefficients. An instance where this is especially useful is when the 

user always wants to include feature j in the model: in that case the user could set γj = 0 so 

that βj is unpenalized. Second, the coefficient βj is constrained to lie in the interval [Lj, Uj]. 

(glmnet’s default is Lj = −∞ and Uj = ∞ for all j, i.e. no constraints on the coefficients.) 

One example where these constraints are useful is when we want a certain βj to always be 

non-negative or always non-positive.

The FORTRAN subroutine solves (7) by cyclic coordinate descent: see Friedman et al. (2010) 

for details. Here we describe one major computational trick that was not covered in that 

paper: the application of strong rules (Tibshirani, Bien, Friedman, Hastie, Simon, Taylor, 

and Tibshirani 2012).

In each iteration of cyclic coordinate descent, the solver has to loop through all p features 

to update the corresponding model coefficients. This can be time-consuming if p is large, 

and is potentially wasteful if the solution is sparse: most of the βj would remain at zero. 

If we know a priori which predictors will be “active” at the solution (i.e. have βj ≠ 0), 

we could perform cyclic coordinate descent on just those coefficients and leave the others 

untouched. The set of “active" predictors is known as the active set. Strong rules are a simple 

yet powerful heuristic for guessing what the active set is, and can be combined with the 

Karush-Kuhn-Tucker (KKT) conditions to ensure that we get the exact solution. (The set of 

predictors determined by the strong rules is known as the strong set.) We describe the use of 

strong rules in solving (7) fully in Algorithm 2.
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Algorithm 2 Solving penalized WLS (7) with strong rules

Assume that we are trying to solve for β(λk) for some k = 1, …, m, and that we have already
computed β(λk − 1) . (If k = 1, set β(λk − 1) = 0 . )

1 . Initialize the strong set Sλk = {j :β(λk − 1)j ≠ 0} .
2 . Check the strong rules: for j = 1, …, p, include j in Sλk if

xj
T y − Xβ(λk − 1) > α [λk − (λk − 1 − λk)] γj .

3 . Perform cyclic coordinate descent only for features in Sλk .
4 . Check that the KKT conditions hold for each j = 1, …, p . if the conditions hold for all

j, we have the exact solution . If the conditions do not hold for some features, include
them in the strong set Sλk and go back to Step 3 .

Finally, we note that in some applications, the design matrix X is sparse. In these settings, 

computational savings can be reaped by representing X in a sparse matrix format and 

performing matrix manipulations with this form. To leverage this property of the data, we 

have a separate FORTRAN subroutine that solves (7) when X is in sparse matrix format.

2.5. Other useful functionality

In this section, we mention other use functionality that the glmnet package provides for 

fitting elastic net models.

For fixed α, glmnet solves (3) for a path of λ values. While the user has the option of 

specifying this path of values using the lambda option, it is recommended that the user 

let glmnet compute the sequence on its own. glmnet uses the arguments passed to it to 

determine the value of λmax, defined to be the smallest value of λ such that the estimated 

coefficients would be all equal to zero3. The program then computes λmin such that the ratio 

λmin/λmax is equal to lambda.min.ratio (default 10−2 if the number of variables exceeds 

the number of observations, 10−4 otherwise). Model (3) is then fit for nlambda λ values 

(default 100) starting at λmax and ending at λmin which are equally spaced on the log scale.

In practice, it common to choose the value of λ via cross-validation (CV). The cv.glmnet 

function is a convenience function that runs CV for the λ tuning parameter. The returned 

object has class "cv.glmnet", which comes equipped with plot, coef and predict 

methods. The plot method produces a plot of CV error against λ (see Figure 2 for an 

example.) As mentioned earlier, we prefer to think of α as a higher level hyperparameter 

whose value depends on the type of prediction model we want. Nevertheless, the code below 

shows how the user can perform CV for α manually using a for loop. Care must be taken to 

ensure that the same CV folds are used across runs for the CV errors to be comparable.

3We note that when α = 0, λmax is infinite, i.e. all coefficients will always be non-zero for finite λ. To avoid such extreme values of 
λmax, if α < 0.001 we return the λmax value for α = 0.001.
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R> alphas <- c(1, 0.8, 0.5, 0.2, 0)

R> fits <- list()

R> fits[[1]] <- cv.glmnet(x, y, keep = TRUE)

R> foldid <- fits[[1]]$foldid

R> for (i in 2:length(alphas)) {

+      fits[[i]] <- cv.glmnet(x, y, alpha = alphas[i], foldid = foldid)

+  }

The returned cv.glmnet object contains estimated standard errors for the model CV error 

at each λ value. (We note that the method for obtaining this estimates is crude and are 

generally too small due to correlations across CV folds.) By default, the predict method 

returns predictions for the model at the "lambda.1se" value, i.e. the value of λ that gives 

the most regularized model such that the CV error is within one standard error of the 

minimum. To get predictions at the λ value which gives the minimum CV error, the s = 

"lambda.min" argument is passed.

R> cfit <- cv.glmnet(x, y)

R> predict(cfit, x)

R> predict(cfit, x, s = "lambda.min")

In large data settings, it may take some time to fit the entire sequence of elastic net models. 

glmnet and cv.glmnet come equipped with a progress bar which can be displayed with 

the argument trace.it = TRUE. This gives the user a sense of how model fitting is 

progressing.

The glmnet package provides a convenience function bigGlm for fitting a single 

unpenalized GLM but allowing all the options of glmnet. In particular, the user can set 

upper and/or lower bounds on the coefficients, and can provide the x matrix in sparse matrix 

format: options that are not available for the stats::glm function.

R> data(BinomialExample)

R> fit <- bigGlm(x, y, family = "binomial", lower.limits = −1)

3. Regularized Cox proportional hazards models

We assume the usual survival-analysis framework. Instead of having yi ∈ ℝ as a response, we 

have instead (yi, δi) ∈ ℝ+ × {0, 1}. Here yi is the observed time for observation i, and δi = 1 if 

yi is the failure time and δi = 0 if it is the right-censoring time. The Cox proportional hazards 

model (Cox 1972) is a commonly used model for the relationship between the predictor 

variables and survival time. It assumes a semi-parametric form for the hazard function

ℎi(t) = ℎ(t)exi
Tβ,
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where hi(t) is the hazard for observation i at time t, h is the baseline hazard for the entire 

population of observations, and β ∈ ℝp is the vector of coefficients to be estimated. Let t1 

< ⋯ < tm denote the unique failure times and let j(i) denote the index of the observation 

failing at time ti. (Assume for the moment that the yi’s are unique.) If yj ≥ ti, we say that 

observation j is at risk at time ti. Let Ri denote the risk set at time ti. β is estimated by 

maximizing the partial likelihood

L(β) = ∏
i = 1

m exj(i)
T β

∑j ∈ Ri exj
Tβ . (8)

It is the conditional likelihood that the failure occurs for observation j(i) given all the 

observations at risk. Maximizing the partial likelihood is equivalent to minimizing the 

negative log partial likelihood

−ℓ(β) = 2
n ∑

i = 1

m
−xj(i)

T β + log ∑
j ∈ Ri

exj
Tβ . (9)

We put a negative sign in front of ℓ so that ℓ denotes the log partial likelihood, and the 

scale factor 2/n is included for convenience. Note also that the model does not have an 

intercept term β0, as it cancels out in the partial likelihood. Simon et al. (2011) proposed an 

elasticnet regularization path version for the Cox model, as well as Algorithm 3 for solving 

the minimization problem.
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Algorithm 3 Fitting Cox models with elastic net penalty

1 . Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > … > λm . Define β(λ0) = 0 .
2 . For ℓ = 1, …, m:

(a) Initialize β(λℓ) = β(λℓ − 1) .
(b) For t = 0, 1, … until convergence (outer loop):

i . For k = 1, …, n, compute ηk
(t) = β(λℓ)Txk .

ii . For k = 1, …, n, compute

ℓ′ η(t)
k

= δk − eηk
(t) ∑

i ∈ Ck

1
∑j ∈ Ri eηj

(t) , (10)

ℓ″ η(t)
k, k = ∑

i ∈ Ck

eηk
(t)

∑j ∈ Ri eηj
(t)

− eηk
(t) 2

∑j ∈ Ri eηj
(t) 2 , (11)

wk
(t) = − ℓ″ η(t)

k, k, (12)

zk
(t) = ηk

(t) +
ℓ′ η(t)

k

ℓ″ η(t)
k, k

, (13)

where Ck is the set of failure times i such that ti < yk (i.e. times for which
observation k is still at risk . )

iii . Solve the penalized WLS problem (inner loop):

β(λℓ) = argmin
β ∈ ℝp

1
2 ∑

k = 1

n
wk

(t) zk
(t) − xk

Tβ 2 + λℓ
1 − α

2 ‖β‖2
2 + α‖β‖1 .

Algorithm 3 has the same structure as Algorithm 1 except for different formulas for 

computing the working responses and weights. (We note that these formulas implicitly 

approximate the Hessian of the log partial likelihood by a diagonal matrix with the 

Hessian’s diagonal entries.) This means that we can leverage the fast implementation of 

the penalized WLS problem in Section 2.4 for an efficient implementation of Algorithm 3. 

(As a small benefit, it also means that we can fit regularized Cox models when the design 

matrix X is sparse.) Such a model can be fit with glmnet by specifying family = "cox". 

The response provided needs to be a Surv object from the survival package (Therneau 

2020).

R> glmnet(x, y, family = "cox")

The computation of these wk’s and zk’s can be a computational bottleneck if not 

implemented carefully: since the Ck and Ri have O(n) elements, a naive implementation 

takes O(n2) time. Simon et al. (2011) exploit the fact that, once the observations are sorted in 

order of the observed times yi, the risk sets are nested (Ri+1 ⊆ Ri for all i) and the wk’s and 

zk’s can be computed in O(n) time.
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If our data contains tied observed times, glmnet uses the Breslow approximation of the 

partial likelihood for ties (Breslow 1972) and maximizes the elastic net-regularized version 

of this approximation instead. See Simon et al. (2011) for details.

3.1. Extending regularized Cox models to (start, stop] data

Instead of working with right-censored responses, the Cox model can be extended to work 

with responses which are a pair of times (called the “start time” and “stop time”), with the 

possibility of the stop time being censored. This is an instantiation of the counting process 

framework proposed by Andersen and Gill (1982), and the right-censored data set-up is a 

special case with the start times all being equal to zero.

As noted in Therneau and Grambsch (2000), (start, stop] responses greatly increase the 

flexibility of the Cox model, allowing for

• Time-dependent covariates,

• Time-dependent strata,

• Left truncation,

• Multiple time scales,

• Multiple events per subject,

• Independent increment, marginal, and conditional models for correlated data, and

• Various forms of case-cohort models.

From a data analysis viewpoint, this extension amounts to requiring just one more variable: 

the time variable is replaced by (start, stop] variables, with (start, stop] indicating 

the interval where the unit is at risk. The survival package provides the function tmerge to 

aid in the creation of such datasets.

For this more general setup, inference for β can proceed as before. The formulas for the 

partial likelihood and negative log partial likelihood (Equations (8) and (9)) remain the 

same; what changes is the definition of what it means for an observation to be at risk at time 

ti. If we let (y1j, y2j] denote the (start, stop] times for observation j, then observation j is at 

risk at time ti if and only if ti ∈ (y1j, y2j]. Similarly, the elastic net-regularized version of the 

Cox model for (start, stop] data can be fitted using Algorithm 3 with this new definition of 

what it means for an observation to be at risk at a failure time.

With (start, stop] data, it is no longer true that the risk sets are nested. For example, if ti < 

y1j < ti+1 < y2j, then j ∈ Ri+1 but j ∉ Ri. However, as Algorithm 4 shows, it is still possible 

to compute the working responses and weights in O(n log n) time. In fact, only the ordering 

of observations (Step 1) requires O(n log n) time: the rest of the algorithm requires just O(n) 

time. Since the ordering of observations never changes, the results of Step 1 can be cached, 

meaning that only the first run of Algorithm 4 requires O(n log n) time, and future runs just 

need O(n) time.
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The differences between right-censored data and (start, stop] data for Cox models are hidden 

from the user, in that the function call for (start, stop] data is exactly the same as that 

for right-censored data. The difference is in the type of Surv object that is passed for the 

response y. glmnet checks for the Surv object type before routing to the correct internal 

subroutine.

3.2. Stratified Cox models

An extension of the Cox model is to allow for strata. These strata divide the units into 

disjoint groups, with each group having its own baseline hazard function but having the 

same values of β. Specifically, if the units are divided into K strata, then the stratified Cox 

model assumes that a unit in stratum k has the hazard function

ℎi(t) = ℎk(t)exi
Tβ,

where hk(t) is the shared baseline hazard for all units in stratum k. In several applications, 

allowing different subgroups to have different baseline hazards approximates reality more 

closely. For example, it might be reasonable to have different baseline hazards based on 

gender in clinical trials, or a separate baseline for each center in multi-center trials.

In this setting, the negative log partial likelihood is

ℓ(β) = ∑
k = 1

K
ℓk(β),

where ℓk(β) is exactly (9) but considering just the units in stratum k. Since the negative log 

partial likelihood decouples across strata (conditional on β), regularized versions of stratified 

Cox models can be fit using a slightly modified version of Algorithm 3.

To fit an unpenalized stratified Cox model, the survival package has a special strata 

function that allows users to specify the strata variable in formula syntax. Since glmnet 

does not work with formulas, we needed a different approach for specifying strata. To 

fit regularized stratified Cox models in glmnet, the user needs to add a strata attribute 

to the response y. glmnet checks for the presence of this attribute and if it is present, 

it fits a stratified Cox model. We note that the user cannot simply add the attribute 

manually because R drops attributes when subsetting vectors. Instead, the user should use 

the stratifySurv function to add the strata attribute. (stratifySurv creates an object 

of class "stratifySurv" that inherits from the class "Surv", ensuring that glmnet can 

reassign the strata attribute correctly after any subsetting.) The code below shows an 

example of how to fit a regularized stratified Cox model with glmnet; there are a total of 

20 observations, with the first 10 belonging to the first strata and the rest belonging to the 

second strata.
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Algorithm 4 Computing working responses and weights for Algorithm 3

Input: ηj = xj
Tβ (where β is the current estimate for β), (y1j, y2j], δj for j = 1, …, n . For

simplicity, assume that the observations are ordered by ascending stop time, i.e. y21 < ⋯ <
y2n . As before, let t1 < …, tm denote the failure times in increasing order.

1 . Get the ordering for the observations according to start times . Let start(j) denote the
index for the observation with the jth earliest start time .

2 . Compute the risk set sums RSSi = ∑j ∈ Ri eηj, i = 1, …, m using the following steps:

(a) For j = 1, …, n, set RSSj ∑ℓ = j
n eηℓ .

(b) Set curr 0, i m, start_idx n .
(c) While i > 0 and start_idx > 0:

i . If y1start(start_idx) < ti, set RSSj(i) RSSj(i) − curr and i i − 1 .
ii . If not, set curr curr + eηstart(start_idx) and start_idx start_idx − 1 .

(d) Take just the elements of RSS corresponding to death times, i.e. set RSSi

RSSj(i) .

3 . Compute the partial sums RSKk = ∑i ∈ Ck
1

RSSi
, k = 1, …, n using the following steps:

(a) For i = 1, …, m, set RDi ∑ℓ = 1
i 1

RSSi
. Set RD0 0 .

(b) For k = 1, …, n, set Dk ∑ℓ = 1
k δℓ .

(c) For k = 1, …, n, set RSKk RDDk .
(d) Set curr 0, i 1, start_idx 1 .
(e) While i ≤ m and start_idx ≤ n:

i . If y1start(start_idx) < ti, set RSkstart(start_idx) RSKstart(start_idx) − curr
and start_idx start_idx + 1 .

ii . If not, set curr curr + 1
RSSi

and i i + 1 .

4 . Compute the partial sums RSKSQk = ∑i ∈ Ck
1

RSSi
2 , k = 1, …, n in a similar manner

as Step 3 .
5 . Compute ℓ′(η)k amd ℓ″(η)k, k using the formulas (10) and (11):

ℓ′(η)k = δk − eηk ⋅ RSKk, ℓ″(η)k, k = (eηk)2 ⋅ RSKSQk − eηk ⋅ RSKk .
6 . Compute the working responses and weights using the formulas (12) and (13) .

R> strata <- c(rep(1, 10), rep(2, 10))

R> y2 <- stratifySurv(y, strata)

R> glmnet(x, y2, family = "cox")

3.3. Plotting survival curves

The beauty of the Cox partial likelihood is that the baseline hazard, h0(t), is not required 

for inference on the model coefficients β. However, the estimated hazard is often of 

interest to users. The survival package already has a well-established survfit method 

that can produce estimated survival curves from a fitted Cox model. glmnet implements a 
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survfit method for regularized Cox models fit by glmnet by creating the coxph object 

corresponding to the model and calling survival::survfit.

The code below is an example of calling survfit for coxnet objects for a particular value 

of the λ tuning parameter (in this case, λ = 0.05). Note that we had to pass the original 

design matrix x and response y to the survfit call: they are needed for survfit.coxnet 

to reconstruct the required coxph object. The survival curves are computed for the 

individuals represented in newx: we get one curve per individual, as seen in Figure 3.

R> fit <- glmnet(x, y, family = "cox")

R> sf_obj <- survfit(fit, s = 0.05, x = x, y = y, newx = x[1:2, ])

R> plot(sf_obj, col = 1:2, mark.time = TRUE, pch = "12")

The survfit method is available for Cox models fitted by cv.glmnet as well. By default, 

the survival curves are computed for the lambda.1se value of the λ hyperparameter. The 

user can use the code below to compute the survival curve at the lambda.min value:

R> c.fit <- cv.glmnet(x, y, family = "cox", nfolds = 5)

R> survfit(cfit, s = "lambda.min", x = x, y = y, newx = x[1:2, ])

4. The relaxed lasso

Due to the regularization penalty, the lasso tends to shrink the coefficient vector β  toward 

zero. The relaxed lasso (Meinshausen 2007) was introduced as a way to undo the shrinkage 

inherent in the lasso estimator. Through extensive simulations, Hastie et al. (2020) conclude 

that the relaxed lasso performs well in terms of predictive performance across a range of 

scenarios. It was found to perform just as well as the lasso in low signal-to-noise (SNR) 

scenarios and nearly as well as best subset selection in high (SNR) scenarios. It also has a 

considerable advantage over best subset and forward stepwise regression when the number 

of variables, p, is large. In this section, we describe the simplified version of the relaxed 

lasso proposed by Hastie et al. (2020) and give details on how it is implemented in glmnet.

For simplicity, we describe the method for the OLS setting (family = "gaussian") and 

for the lasso (α = 1). For a given tuning parameter λ, let β lasso(λ) ∈ ℝp denote the lasso 

estimator for this value of λ. Let λ denote the active set of the lasso estimator, and let 

β Aλ
LS ∈ ℝ ∣ Aλ ∣  denote the OLS coefficients obtained by regressing y on X λ (i.e. the subset 

of columns of X which correspond to features in the active set λ). Let βLS(λ) ∈ ℝp denote 

the OLS coefficients β Aλ
LS

 padded with zeros to match the zeros of the lasso solution. The 

(simplified version of the) relaxed lasso estimator is given by

β relax(λ, γ) = γβ lasso(λ) + (1 − γ)βLS(λ), (14)
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where γ ∈ [0, 1] is a hyperparameter, similar to α. In other words, the relaxed lasso 

estimator is a convex combination of the lasso estimator and the OLS estimator for the 

lasso’s active set.

The relaxed lasso can be fit with glmnet function in glmnet by setting the argument relax 

= TRUE:

R> data(QuickStartExample)

R> fit <- glmnet(x, y, relax = TRUE)

When called with this option, glmnet first runs the lasso (Algorithm 1 with α = 1) to obtain 

the lasso estimates β lasso(λk) and the active sets λk for a path of hyperparameter values 

λ1 > ⋯ > λm. It then goes down this sequence of hyperparameter values again, fitting the 

unpenalized model of y on each X λk
 to obtain βLS(λk). The refitting is done in an efficient 

manner. For example, if λℓ = λk, glmnet does not fit the OLS model for λℓ but sets 

βLS(λℓ) = βLS(λk).

The returned object has a predict method which the user can use to make predictions 

on future data. As an example, the code below returns the relaxed lasso predictions for the 

training data at γ = 0.5 (the default value is gamma = 1, i.e. the lasso estimator):

R> predict(fit, x, gamma =0.5)

The cv.glmnet function works with the relaxed lasso as well. When cross-validating a 

relaxed lasso model, cv.glmnet provides optimal values for both the lambda and gamma 

parameters.

We note that we can consider as many values of the γ hyperparameter as we like in CV. 

Most of the computational time is spent obtaining β lasso(λ) and βLS(λ); once we have 

have computed them β relax(λ, γ) is simply a linear combination of the two. By default, 

cv.glmnet performs CV for gamma = c(0, 0.25, 0.5, 0.75, 1).

In the exposition above we have focused on the family = "gaussian" case. Relaxed fits 

are also available for the rest of the other model families, i.e. any other family argument. 

Instead of fitting the OLS model of the response on the active set to obtain the relaxed fit, 

glmnet fits the unpenalized model for that model family on the active set.

We note that while the relaxation can be applied for α values smaller than 1, we do not 

recommend doing this. Relaxation is typically applied to obtain sparser models. It achieves 

this by undoing shrinkage of coefficients in the active set toward zero, allowing the model to 

have more freedom to fit the response. Together with CV on λ and γ, this often gives us a 

model that is sparser than the lasso. Selecting α smaller than 1 results in a larger active set 

than that for the lasso, working against the goal of obtaining a sparser model.
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4.1. Application to forward stepwise regression

One use case for the relaxed fit is to provide a faster version of forward stepwise regression. 

When the number of variables p is large, forward stepwise regression can be tedious since it 

only adds one variable at a time and at each step, it needs to try all predictor variables that 

are not already included in the model to find the best one to be added. On the other hand, 

because the lasso solves a convex problem, it can identify good candidate sets of variables 

over 100 values of the λ hyperparameter even when p is in the tens of thousands. In a case 

like this, one can run cv.glmnet and fit the OLS model for a sequence of selected variable 

sets.

R> fitr <- cv.glmnet(x, y, gamma = 0, relax = TRUE)

5. Assessing models

After fitting elastic net models with glmnet, we often want to assess their performance on 

a set of evaluation or test data. After deciding on the performance measure, for each model 

in the fitted sequence (indexed by the value of λ and possibly γ for relaxed fits) we have to 

build a matrix of predictions and compute the performance measure for it.

cv.glmnet does some of this evaluation automatically. In performing CV, cv.glmnet 

computes the pre-validated fits (Tibshirani and Efron 2002), that is the model’s predictions 

of the linear predictor on the held-out fold, and then computes the performance measure 

with these pre-validated fits. The performance measures are recorded in the cvm element of 

the returned cv.glmnet and are used to make the CV plot when the plot method is called.

glmnet supports a variety of performance measures depending on the model family: the 

full list of measures can be seen via the call glmnet.measures(). The user can change 

the performance measure computed in CV by specifying the type.measure argument. For 

example, the code below computes the area under the curve (AUC) of the pre-validated fits 

instead of the deviance which is the default for family = "binomial":

R> fitr <- cv.glmnet(x, y, family = "binomial", type.measure = "auc")

More generally, model assessment can be performed using the assess.glmnet function. 

The user can pass a matrix of predictions, a class "glmnet" object, or a class "cv.glmnet" 

object to assess.glmnet along with the true response values. The code below shows how 

one can use assess.glmnet with these three objects, where the training design matrix 

and response is x[itrain, ] and y[itrain] respectively and the testing design matrix and 

response is x[-itrain, ] and y[-itrain] respectively.

R> fit <- glmnet(x[itrain, ], y[itrain])

R> assess.glmnet(fit, newx = x[-itrain, ], newy = y[-itrain])
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R> pred <- predict(fit, newx = x[-itrain, ])

R> assess.glmnet(pred, newy = y[-itrain])

R> cfit <- cv.glmnet(x[itrain, ], y[itrain])

R> assess.glmnet(cfit, newx = x[-itrain, ], newy = y[-itrain])

By default assess.glmnet will return all possible performance measures for the model 

family. Note that if a matrix of predictions is passed, the user has to specify the model 

family via family argument since assess.glmnet cannot infer that from the inputs. (The 

default value for the family argument is "gaussian", which is what would have been used 

in the code above.) If a class "glmnet" object is passed to assess.glmnet, it returns one 

performance measure value for each model in the λ sequence while if a class "cv.glmnet" 

object is passed, it returns the performance measure value at the lambda. 1se value of the 

λ hyperparameter. The user can get the performance measure values at other values of the 

hyperparameters using the s and gamma arguments as in the predict method.

One major use of assess.glmnet is to avoid running CV multiple times to get the 

values for different performance measures. By default, cv.glmnet will only return a single 

performance measure. However, if the user specifies keep = TRUE in the cv.glmnet call, 

the pre-validated fits are returned as well. The user can then pass the pre-validated matrix 

to assess.glmnet. The code below is an example of how to do this for the Poisson model 

family. (The keep argument is FALSE by default as the pre-validated matrix is large when 

the number of training observations is large, thus inflating the size of the returned object.)

R> cfit <- cv.glmnet(x[itrain, ], y[itrain], keep = TRUE)

R> assess.glmnet(cfit$fit.preval, newy = y, family = "poisson")

We have two additional functions that provide test performance which are unique to 

binomial data. As the function names suggest, roc.glmnet and confusion.glmnet 

produce the receiver operating characteristic (ROC) curve and the confusion matrix 

respectively for the test data. Here is an example of the output the user gets from 

confusion.glmnet:

R> data(MultinomialExample)

R> set.seed(101)

R> itrain <- sample(1:500, 400, replace = FALSE)

R> cfit <- cv.glmnet(x[itrain, ], y[itrain], family = "multinomial")

R> cnf <- confusion.glmnet(cfit, newx = x[-itrain, ], newy = y[-itrain])

R> print(cnf)
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True

Predicted 1 2 3 Total

 1 13 6 4 23

 2 7 25 5 37

 3 4 3 33 40

 Total 24 34 42 100

Percent Correct: 0.71

6. Discussion

We have shown how to extend the use of the elastic net penalty to all GLM model families, 

Cox models with (start, stop] data and with strata, and to a simplified version of the relaxed 

lasso. We have also discussed how users can use the glmnet package to assess the fit of 

these elastic net models. These new capabilities are available in version 4.1 and later of the 

glmnet package on CRAN.

Acknowledgments

We would like to thank Robert Tibshirani for helpful discussions and comments. Balasubramanian Narasimhan’s 
work is funded by Stanford Clinical & Translational Science Award grant 5UL1TR003142-02 from the NIH 
National Center for Advancing Translational Sciences (NCATS). Trevor Hastie was partially supported by grants 
DMS-2013736 and IIS 1837931 from the National Science Foundation, and grant 5R01 EB 001988-21 from the 
National Institutes of Health.

References

Andersen PK, Gill RD (1982). “Cox’s Regression Model for Counting Processes: A Large Sample 
Study” Annals of Statistics, 10(4), 1100–1120.

Breslow NE (1972). “Contribution to the Discussion of the Paper by D. R. Cox” Journal of the Royal 
Statistical Society: Series B (Methodological), 34, 216–217.

Cox DR (1972). “Regression Models and Life-Tables” Journal of the Royal Statistical Society: Series 
B (Methodological), 34(2), 187–220.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via 
Coordinate Descent” Journal of Statistical Software, 33(1), 1–24. [PubMed: 20808728] 

Hastie T, Tibshirani R, Tibshirani R (2020). “Best Subset, Forward Stepwise or Lasso? Analysis and 
Recommendations Based on Extensive Comparisons.” Statistical Science, 35(4), 579–592.

Hoerl AE, Kennard RW (1970). “Ridge Regression: Biased Estimation for Nonorthogonal Problems.” 
Technometrics, 12(1), 55–67.

McCullagh P, Nelder JA (1983). Generalized Linear Models. Springer US. ISBN 9780412238505. 
URL https://books.google.com/books?id=OUitAQAACAAJ.

Meinshausen N (2007). “Relaxed Lasso.” Computational Statistics & Data Analysis, 52(1), 374–393.

Nelder JA, Wedderburn RWM (1972). “Generalized Linear Models.” Journal of the Royal Statistical 
Society: Series A (General), 135(3), 370–384.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). “Regularization Paths for Cox’s Proportional 
Hazards Model via Coordinate Descent.” Journal of Statistical Software, 39(5), 1–13.

Therneau TM (2020). A Package for Survival Analysis in R. R package version 3.2–7, URL 
https://CRAN.R-project.org/package=survival.

Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model. Springer.

Tay et al. Page 19

J Stat Softw. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://books.google.com/books?id=OUitAQAACAAJ
https://CRAN.R-project.org/package=survival


Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal 
Statistical Society: Series B (Methodological), 58(1), 267–288.

Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ (2012). “Strong Rules for 
Discarding Predictors in Lasso-Type Problems.” Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), 74(2), 245–266. [PubMed: 25506256] 

Tibshirani RJ, Efron B (2002). “Pre-Validation and Inference in Microarrays.” Statistical Applications 
in Genetics and Molecular Biology, 1(1), 1–19.

van der Kooij AJ (2007). Prediction Accuracy and Stability of Regression with Optimal Scaling 
Transformations. Ph.d. thesis, Leiden University.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal of the 
Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

Tay et al. Page 20

J Stat Softw. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The top plot compares model fitting times for family = "gaussian" and family = 

gaussian() for a range of problem sizes, while the plot below compares that for family 

= "binomial" and family = binomial(). Each point is the mean of 5 simulation runs. 

Note that both the x and y axes are on the log scale.
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Figure 2: 
Example output for plotting a cv.glmnet object: a plot of CV error against log(λ). The 

error bars correspond to ±1 standard error. The left vertical line corresponds to the minimum 

error while the right vertical line corresponds to the largest value of λ such that the CV error 

is within one standard error of the minimum. The top of the plot is annotated with the size of 

the models, i.e. the number of predictors with non-zero coefficient.
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Figure 3: 
An illustration of the plotted survfit object. One survival curve is plotted for each 

individual represented in the newx argument.
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Table 1:

Examples of generalized linear models (GLMs) and their representations in R.

GLM family / Regression
type

Response type Representation in R

Gaussian ℝ gaussian()

Logistic {0, 1} binomial()

Probit {0, 1} binomial(link = "probit")

Quasi-Binomial {0, 1} quasibinomial()

Poisson ℕ0 = {0, 1, …} poisson()

Quasi-Poisson ℕ0 quasipoisson()

Negative binomial ℕ0 MASS::negative.binomial(theta = 3)

Gamma ℝ+ = [0, ∞) Gamma()

Inverse Gaussian ℝ+ inverse.gaussian()

Tweedie Depends on variance power parameter statmod::tweedie()
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