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Abstract

By fixing all parameters in a phylogenetic likelihood model except for one branch length, 

one obtains a one-dimensional likelihood function. In this work, we introduce a mathematical 

framework to characterize the shapes of such one-dimensional phylogenetic likelihood functions. 

This framework is based on analyses of algebraic structures on the space of all frequency patterns 

with respect to a polynomial representation of thspace likelihood functions. Using this framework, 

we provide conditions under which the one-dimensional phylogenetic likelihood functions are 

guaranteed to have at most one stationary point, and this point is the maximum likelihood branch 

length. These conditions are satisfied by common simple models including all binary models, the 

Jukes-Cantor model and the Felsenstein 1981 model.

We then prove that for the simplest model that does not satisfy our conditions, namely, the Kimura 

2-parameter model, the one-dimensional likelihood functions may have multiple stationary points. 

As a proof of concept, we construct a non-degenerate example in which the phylogenetic 

likelihood function has two local maxima and a local minimum. To construct such examples, 

we derive a general method of constructing a tree and sequence data with a specified frequency 

pattern at the root. We then extend the result to prove that the space of all rescaled and translated 

one-dimensional phylogenetic likelihood functions under the Kimura 2-parameter model is dense 

in the space of all non-negative continuous functions on [0, ∞) with finite limits. These results 

indicate that one-dimensional likelihood functions under advanced evolutionary models can be 

more complex than it is typically assumed by phylogenetic inference algorithms; however, these 

complexities can be effectively captured by the Kimura 2-parameter model.
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1. Introduction.

The likelihood of a phylogenetic model is a function of the parameters of continuous time 

Markov chains (CTMCs) used to model sequence evolution along each branch. It is common 

to assume a single rate matrix and stationary frequency for the CTMCs but allow the 

branch lengths to vary, representing a single evolutionary process but differing amounts 

of evolution along each branch. Commonly used maximum-likelihood phylogeny programs 

improve likelihood by modifying branch lengths iteratively and one at a time [1]. The 

general approach for numerical maximization of the one-dimensional likelihood function 

given by fixing every parameter except for one branch length is to iteratively sample the 

function at a number of points, use surrogate functions to fit simple curves to those points, 

and use those fits as approximations to locate the maximum branch length. For example, 

programs often employ Newton’s method, in which the intuitive idea is to use first and 

second derivatives to approximate the likelihood function (varying along that branch) by a 

surrogate quadratic function. Since evaluations of the likelihoods (and their derivatives) are 

computationally expensive, many approaches have been tried to improve the efficiency of 

this optimization procedure [1].

Such approaches, however, rely on the assumptions that one-dimensional phylogenetic 

likelihood functions belong to some class of simple functions, and that the surrogate model 

can, at least, capture the shape of the functions. While there has been a considerable 

amount of work on finding multiple maxima of the multi-dimensional likelihood surfaces 

parameterized by all branch lengths for a tree [2, 3, 4], little has been done about the shapes 

of one-dimensional phylogenetic likelihood functions. The only attempt to investigate 

the shape of the one-dimensional phylogenetic likelihood functions has been [5], which 

provided a proof of uniqueness of the stationary points for one-dimensional phylogenetic 

likelihood functions in the case of the one parameter model of nucleotide substitution. Based 

on this proof, the authors of [5] asserted that there is at most one stationary point of the 

full likelihood surface. This claim was later disproved by [2], although the proof for the 

one-dimensional case still holds. However, the result has not been examined for the more 

complex models used in practice.

In this work, we introduce a mathematical framework to characterize the shapes of such 

one-dimensional phylogenetic likelihood functions. This framework is based on analyses 

of algebraic structures on the space of all frequency patterns with respect to a polynomial 

representation of the likelihood functions. Specifically, we introduce the new concept of 

logarithmic relative frequency patterns and analyze algebraic structures on the space of 

such patterns. These structures, along with the characteristic polynomial representations of 

one-dimensional phylogenetic likelihood functions, open a new way to explore the space of 

all possible likelihood functions. Moreover, by composing these structures, we are able to 

tackle the inverse problem of constructing a phylogenetic tree that has a given frequency 

pattern at the root. This enables us to construct phylogenetic trees that approximate any 

given likelihood function with arbitrary precision.

Using this framework, we provide conditions under which the one-dimensional phylogenetic 

likelihood functions are guaranteed to have at most one stationary point, and this point is 

Dinh and Matsen Page 2

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the maximum of the one-dimensional function. These conditions are satisfied by common 

simple models including all binary models, the Jukes-Cantor model [6] and the Felsenstein 

1981 model [7]. We then prove that for the simplest model that does not satisfy our 

conditions, namely, the Kimura 2-parameter model [8], the one-dimensional likelihood 

functions may have multiple stationary points. As a proof of concept, we construct a non-

degenerate example in which the phylogenetic likelihood function has two local maxima and 

a local minimum.

We then extend the result to prove that the space of all rescaled and translated one-

dimensional phylogenetic likelihood functions under the Kimura 2-parameter model is dense 

in the set of all non-negative continuous functions on [0, ∞) with finite limits. These results 

indicates that one-dimensional likelihood functions under advanced evolutionary models 

can be more complex than it is typically assumed by phylogenetic inference algorithms; 

however, these complexities can be effectively captured by the Kimura 2-parameter model.

2. Background and Definitions.

2.1. Markov models of sequence evolution.

Our setting is the standard IID setting for likelihood-based phylogenetics with a finite 

number of sites; we review the basics here but refer the reader to [9] for more details. Let 

Ω denote the set of states and let r = ∣Ω∣. For convenience, we assume that the states have 

indices 1 to r.

For an unrooted tree T with N taxa, we use E(T) and V(T) to denote the set of edges and 

vertices of T, respectively. On each edge e ∈ E(T), we assume that the mutation events occur 

according to a continuous time Markov chain on states Ω with instantaneous rate matrix Qe. 

This rate matrix Qe and the branch length te on the edge e define the transition matrix Pe = 

eQete on edge e, where P ij
e (te) denotes the probability of mutating from state i to state j across 

the edge e (with length te).

We further assume that for all edges e ∈ E(T), the Markov chains that describe the mutation 

events are ergodic and time-reversible with respect to a fixed stationary distribution π, that is

lim
t ∞

P ij
e (t) = πj,

and

πiP ij
e (t) = πjP ji

e (t) ∀t,

for all i, j ∈ Ω and e ∈ E(T).

The phylogenetic likelihood is computed as follows given a set of (aligned) observed 

sequences ψ = (ψ1, ψ2, …, ψS) ∈ ΩN×S of length S over N taxa of a tree τ. First orient 

the edges of τ away from an arbitrarily chosen root, ρ of the tree. (We can choose the 

root arbitrarily since each Pe is reversible with respect to π.) Each site i in the sequences 
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determines a labeling ψi of each leaf by a state in Ω. An extension a of a labeling ψi is an 

assignment of states to all of the nodes in the tree that agrees with ψ on the leaves.

The probability of an extension a given the vector of branch lengths t = (te)e∈E(T) is defined 

to be the probability of the state at the root (given by the stationary distribution) multiplied 

by the probabilities of all the state transitions (including self-transitions) across each branch 

in the tree

P (a ∣ t) = π(aρ) ∏
(u, v) ∈ E(T )

Pauav
uv (tuv),

where au denotes the assigned state of node u by a.

The likelihood of the data at site i is then the marginal probability over all the extensions

P (ψi ∣ t) = ∑
a extends ψ

P (a ∣ t) .

We further assume, as is standard, that evolution is independent between sites. This implies 

that the likelihood of a set of sequences evolving is just the product of the probabilities for 

the individual sites

L(ψ ∣ t) = ∏
s = 1

S
P (ψi ∣ t) .

In summary, the likelihood of observing ψ given the tree topology τ and the vector of 

branch lengths t = (te)e∈E(T) has the form

L(ψ ∣ t) = ∏
s = 1

S
∑
a

π(aρ) ∏
(u, v) ∈ E(T )

Pauav
uv (tuv)

where a ranges over all extensions of ψ to the internal nodes of T and au denotes the 

assigned state of node u by a.

For readers familiar with the theory of probabilistic inference on graphical models, the 

likelihood functions studied in this paper can be alternatively described as follows. Consider 

a tree T and let {Xν : ν ∈ V(T)} be a collection of random variables indexed by the nodes of 

the tree. For each edge (u, ν) ∈ E(T), we define the nonnegative potential function

k(u, v)(i, j, t) ≔ P ij
uv(t) .

We assume that the joint probability distribution p(xV(T)) factorizes over the tree edges:

p xV (T ) ∼ ∏
(u, v) ∈ E(T )

k(u, v)(xu, xv, tuv) .
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The likelihood functions of interest may then be represented as the marginal probability 

of the observation ψ on the leaves of the tree T. This formulation allows us to study 

the phylogenetic likelihood functions beyond the reversible Markov framework. We will 

investigate partial extensions to this more general case in Section 7, but for the next several 

sections we will focus on the standard phylogenetic setting (in which we can prove the 

strongest results).

2.2. One-dimensional phylogenetic likelihood functions.

To investigate the one-dimensional likelihood function on one branch e0, we fix all other 

branches, partition the set of all extensions of ψ according to their labels at the end points of 

e0, and split E(T) into two sets of edges Eleft and Eright corresponding to the location of the 

edges with respect to e0. The likelihood function can be rewritten as a univariate function of 

t, the branch length of e0:

L(ψ ∣ t) = ∏
s = 1

S
∑
ij

∑
a ∈ Aij

π(aρ) ∏
e ∈ Eleft

Pauav
e (tuv)

× P ij
e0(t) × ∏

e ∈ Eright

Pauav
e (tuv)

where ij denotes the set of all extensions of ψ for which the labels at the left end point and 

the right end point of e0 are i and j, respectively. We note that some ij may be empty if e0 

is a pendant edge and the observed value on the corresponding leaf is not i.

By grouping the products over Eleft and Eright as well as the sum over a in a single term bij
s , 

we can define the one-dimensional log-likelihood function as

ℓe0(t) = log L(ψ ∣ t) = ∑
s = 1

S
log ∑

ij
bij

s P ij
e0(t) .

Such ℓe0(t) are the object of study of this paper.

For convenience, we will assume that e0 has been chosen and will drop the index e0 

hereafter.

2.3. Evolutionary models.

Throughout the paper, we use the term evolutionary model on state set Ω to refer to a 

collection ℋ of (Q,π) pairs, where π is a vector of stationary frequencies and Q is a 

rate matrix on Ω that is reversible with respect to π. If at every edge of the tree τ, the 

matrix-frequency pair (Qe, π) belongs to ℋ, we say that τ is a tree under evolutionary model 

ℋ.

We will consider a number of different evolutionary models of DNA sequences. These DNA 

substitution models differ in terms of the parameters used to describe the rates at which one 

state replaces another during evolution and the stationary frequencies:
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• Jukes-Cantor model [6]: this model assumes equal stationary frequencies (πA = 

πG = πT = πC = 1/4) and equal mutation rates.

• Felsenstein 1981 model [7]: this is an extension of the Jukes-Cantor model in 

which stationary frequencies are allowed to vary.

• Kimura 2-parameter model [8]: this model assumes equal stationary frequencies, 

but distinguishes between the rates of transitions (A ↔ G i.e. from purine to 

purine, or C ↔ T, i.e. from pyrimidine to pyrimidine) and transversions (from 

purine to pyrimidine or vice versa).

Following common usage, we use κ to denote the transition/transversion rate 

ratio and write the rate matrix for this model as

Qκ = 1
2(κ + 1)

−(κ + 2) κ 1 1
κ −(κ + 2) 1 1
1 1 −(κ + 2) κ
1 1 κ −(κ + 2)

.

The special case κ = 3 will play a central role in the analysis of this paper. We 

clarify that the single κ parameter in the Kimura 2-parameter model determines a 

rate matrix that is shared across the tree, while this paper primarily concerns the 

effect of changing a single branch length parameter.

While the focus here is on DNA models, we emphasize that our theoretical framework is 

capable of analyzing any time-reversible evolutionary model on any state space. In fact, we 

do not assume a uniform molecular clock, or even a single evolutionary model along the 

edges of the tree.

2.4. Characteristic polynomials of one-dimensional phylogenetic likelihood functions.

We will frequently use the following assumption:

ASSUMPTION 2.1. The eigenvalues of the rate matrix Q are equal to

0 = d0γ ≥ − d1γ ≥ − d2γ ≥ … ≥ − dr − 1γ

for some positive number γ and non-negative integers d1, …, dr−1.

The following remark, whose proof is provided in the Appendix, guarantees that 

Assumption 2.1 does not affect the generality of our analyses up to an arbitrarily small 

approximation error:

REMARK 2.1. The set of rate matrices Q for a given evolutionary model that satisfy 

Assumption 2.1 is dense in the set of rate matrices under the same evolutionary model.

Under Assumption 2.1, if we denote the entries of the diagonalizing matrix M and N of Q by 

mij and nij, respectively, then the transition probabilities can computed as
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P ij(t) = ∑
k

mike−dkγtnkj .

By reparametrizing with x := e−γt, we can represent these transition probabilities as 

polynomial functions

P ij(x) = ∑
k

mikxdknkj .

Similarly, the log-likelihood function can be rewritten as

ℓ(x) = ∑
s = 1

S
log (λs(x)) where λs(x) = ∑

ij
bij

s P ij(x) .

Hereafter, we will refer to Pij(x) and λs(x) as the transition polynomials of the evolutionary 

model and the characteristic polynomials of the one-dimensional phylogenetic likelihood 

function, respectively.

As we will see in later sections, this polynomial representation will enable us to exploit 

many algebraic and analytic properties of the likelihood functions. The most noticeable 

feature is that one can use the Fundamental Theorem of Algebra to factorize λs(x) as 

products of linear and quadratic polynomials. As a result, the log-likelihood function can be 

written in the form

ℓ(x) = ∑
s = 1

S
∑

i = 1

is, 1
log(αs, i + βs, ix)

+ ∑
s = 1

S
∑

i = 1

is, 2
log(μs, i + νs, ix + ωs, ix2)

where μs,i, νs,i, ωs,i are the (real) coefficients of the quadratic polynomials in the 

decomposition of λs, while αs,i, βs,i are coefficients of the linear terms in the decomposition.

This enables us to decompose a complicated evolutionary model into smaller modules, each 

of which can be approximated either by a “linear” model (like the binary symmetric model) 

or by a “quadratic” model (like the Kimura 2-parameter model). In Section 3, we use this 

formulation to prove that if the phylogenetic log-likelihood function is essentially linear 

(that is, there are no quadratic terms in the expression), its shape resembles those generated 

by binary models, with a unique stationary point that is also the maximum point. In Section 

5, we illustrate that this property does not hold for quadratic models by constructing a 

counter-example with the Kimura 2-parameter model. Finally, in Section 6, we use this 

formulation once again to prove that the space of all rescaled and translated one-dimensional 

phylogenetic likelihood functions under the Kimura 2-parameter model is dense in the space 

of all continuous functions on [0, ∞) with finite limits.
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3. Uniqueness of the stationary point.

In this section, we discuss a condition under which the uniqueness of the stationary branch 

length is guaranteed.

The analyses in this section stem from two observations:

1. If for every site index s, the characteristic polynomial λs has no non-real root, 

then the likelihood function can be decomposed into smaller modules, each of 

which resemble a binary model.

2. The likelihood functions of binary models and summations of such models are 

incave.

DEFINITION 3.1 (Hanson [10]). A vector-valued function f is said to be incave in ℝn if there 

exists a vector-valued function ϕ(t, u) such that

f(t) − f(u) ≤ ϕ(t, u) ⋅ ∇f(u), ∀t, u ∈ ℝn

where ∇f denotes the gradient of f.

Incave functions were introduced in the optimization literature as a generalization of 

concave functions[10]. It can be proven that a function is incave if and only if every 

stationary point is a global maximum [11]. We are interested in the case of functions of a 

single real argument, for which the following result also holds:

LEMMA 3.1. If f is a real-valued incave function with a finite number of stationary points, 

then f has at most one stationary point. Moreover, if such a point exists, it is also a global 

maximum.

PROOF. Denote A = {t ∈ [0, ∞) : f′(t) = 0} and assume that A has more than one element. 

Since A is finite, we can choose two elements t1 and t2 in A such that the interval 

(t1, t2) ⊂ ℝ − A. Since f is incave, every stationary point of f is a global maximum. We deduce 

that t1 and t2 are both global maxima of f and f(t1) = f(t2). Using the mean value theorem, 

there exists t ∈ (t1, t2) such that f′(t) = 0. This is a contradiction.

This enables us to prove the following theorem.

THEOREM 3.1. If for every site index s, the polynomial λs has only real roots, then ℓ has at 

most one stationary point. Moreover, if such a point exists, it is also a global maximum.

PROOF. Since λs has only real roots, it can be written as product of linear functions

λs(x) = ∏
i = 1

dp
(αs, i + βs, ix)

where dp, defined in Assumption 2.1, is the degree of the polynomial λs.
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The log-likelihood function ℓ can be computed as

ℓ(t) = ∑
s = 1

S
log λs(e−γt)

= ∑
s = 1

S
log ∏

i = 1

dp
(αs, i + βs, ie−γt)

= ∑
s = 1

S
∑

i = 1

dp
log(αs, i + βs, ie−γt) .

For any t, u > 0, we have

ℓ(t) − ℓ(u) = ∑
s = 1

S
∑

i = 1

dp
log αs, i + βs, ie−γt

αs, i + βs, ie−γu

≤ ∑
s = 1

S
∑

i = 1

dp αs, i + βs, ie−γt

αs, i + βs, ie−γu − 1

= ∑
s = 1

m
∑

i = 1

dp βs, i(e−γt − e−γu)
αs, i + βs, ie−γu

= 1
γ 1 − e−γ(t − u) ∑

s = 1

S
∑

i = 1

dp −βs, i γe−γu

αs, i + βs, ie−γu

= 1
γ 1 − e−γ(t − u) ℓ′(u) .

Hence, ℓ is an incave function.

Furthermore, since λs are polynomial and e−γt is a bijective map from [0, ∞) to (0, 1], we 

deduce that ℓ(t) only has a finite number of stationary points. Using Lemma 3.1, we conclude 

that ℓ has at most one stationary point; moreover, if such a point exists, it is also a global 

maximum.

We note that Theorem 3.1 imposes a condition on the characteristic polynomials rather than 

the evolutionary model, and can be applied to assess the uniqueness of the stationary point 

of any time-reversible evolutionary model satisfying Assumption 2.1. In fact, Theorem 3.1 

does not assume a uniform molecular clock, or even a single evolutionary model along the 

edges of the tree. However, it is worth noting that for the class of models on which the rate 

matrices have only one non-zero eigenvalue, the result automatically holds:

COROLLARY 3.1. For binary, Jukes-Cantor and Felsenstein 1981 models, the one-dimensional 

likelihood function has at most one stationary point; if such point exists, it is the global 

maximum.

We also note that the results in previous studies about the number of maxima of likelihood 

surfaces [2, 3, 4] are derived for binary models. Theorem 3.1 complements those results 

in the sense that while the likelihood surfaces considered in those work may have multiple 

(or even a continuum of) local maxima, the stationary points of one-dimensional likelihood 

functions are still unique.
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This corollary also extends and clarifies a result from the first attempt to investigate the 

shape of the one-dimensional phylogenetic likelihood functions [5]. By studying the location 

of the solutions of phylogenetic likelihood functions, the paper proves that one-dimensional 

phylogenetic likelihood functions have unique stationary points under the same model 

assumptions as Corollary 3.1.

This result also provides a full characterization of one-dimensional likelihood functions of 

binary models (and those considered by Corollary 3.1). Indeed, since the derivatives of 

log-likelihood functions are continuous with a single zero, this result implies that:

1. If there is no stationary point, then ℓ(t) is a monotonic function (either strictly 

decreasing or strictly increasing).

2. If the stationary point t0 exists and is unique, then the function is increasing in 

the interval (0, t0) and is decreasing in (t0, ∞).

This simplicity of the shapes of phylogenetic likelihood functions provides a strong 

theoretical foundation for the use of simple optimization methods to locate the maximum 

likelihood branch length. However, we emphasize that these results are only about one-

dimensional phylogenetic likelihood functions and do not mean that there is a unique 

(multivariate) stationary point of the likelihood surface or that simple hill-climbing methods 

will find this optima

4. Algebraic structures on the space of all logarithmic relative frequency 

patterns under the Kimura 2-parameter model.

While Section 3 provides a uniqueness result for the maximum likelihood branch lengths 

under three simple models, the result does not extend to more general models. In fact, as 

we will illustrate in the next section, the shapes of likelihood functions under the Kimura 

2-parameter model [8] can be quite complicated, for example with multiple local and global 

maxima

In order to enable theoretical analyses of phylogenetic likelihood functions under more 

complex evolutionary models, here we introduce the concept of conditional logarithmic 

frequency patterns and study the algebraic structures on the space of such patterns.

Definition 4.1. Given a rooted tree τρ with root ρ and N taxa, some labelings ψ = (ψ1, …, 

ψS) ∈ ΩN×S of its taxa and a vector of real constants (c1, …, cS) we define the logarithmic 
relative frequency pattern ϕ(τρ, ψ, c) as the r × S matrix with entries

ϕi, s = cs + log ∑
a ∈ ℒi, s

π(i) ∏
(u, v) ∈ E(τρ)

Pauav
uv (tuv)

for i ∈ Ω, s = 1, …, S and ℒi,s being the set of all extensions a of ψs to all the nodes of τ 
such that a(ρ) = i. For convenience, we will use the shorter term frequency pattern to refer 

to a logarithmic relative frequency pattern. Because the Kimura 2-parameter model has a 

uniform stationary distribution, we will drop the constant term π(i) in the analyses.
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In probabilistic terms, for a fixed site index s, the (i, s)-entry of a logarithmic relative 

frequency pattern ϕ(τρ, ψ, c) is (up to a constant cs) the logarithm of the likelihood of 

observing state i at the root of the tree, given leaf states ψs. This definition is directly related 

to the formulation of the characteristic polynomials λs, whose coefficients bij
s  are the product 

of the probabilities of observing state i and j at the two end points of an edge, given that 

the labeling ψs is observed at the taxa It is straightforward to verify that for models with 

uniform stationary distribution on a fixed tree, we have

log bij
s = ϕi, s(τ1) + ϕj, s(τ2) + c s

for all i, j, s, where c s is a constant depending only on s, and τ1 and τ2 are the trees obtained 

by removing the edge e0 from the tree τ and rooting the newly created trees at the endpoints 

of e0 (see the proof of Theorem 4.1 in the Appendix for more details).

Hence, to characterize the space of all phylogenetic characteristic polynomials under a 

given evolutionary model, we just need to characterize the space of all possible logarithmic 

relative frequency patterns under that model.

Definition 4.2. We denote the space of all possible logarithmic relative frequency patterns 

under the Kimura 2-parameter model by

G = {ϕ(τ, ψ, c) :τ ∈ T , ψ ∈ Ψτ
S, c ∈ ℝS}

where  denotes the set of all rooted trees and Ψτ
S denotes the set of all tuples (ψ1, …, ψS) 

of S labelings of the taxa of τ.

The goal of this section is to establish that for any sequence of S column vectors v1, v2, …, 

vS in ℝ4, there exists a tree τ under the Kimura 2-parameter model, labelings ψ = (ψ1, ψ2, 

…, ψS) of its taxa and a vector of real constants c such that

ϕ(τ, ψ, c) = [v1 v2 … vS] .

The existence of such tree is guaranteed indirectly by proving that under the Kimura 

2-parameter model:

1. G is an algebraic subgroup of (ℝ4 × S, +).

2. G is a linear subspace of ℝ4 × S.

3. G is equal to ℝ4 × S itself.

Noting again that the stationary distribution of the Kimura 2-parameter model is the uniform 

distribution across states π = (1/4, 1/4, 1/4, 1/4), the first two steps are confirmed by the 

following theorem.

THEOREM 4.1. If the stationary frequency of the evolutionary model is the same for every 

state, then the following properties hold:

Dinh and Matsen Page 11

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. (G, +) is a subgroup of (ℝ4 × S, +).

2. G is path-connected.

3. G is a linear subspace of ℝ4 × S.

SKETCH OF PROOF.

A detailed proof of this Theorem is provided in the Appendix, but the main arguments can 

be simply illustrated. The fact that G is closed under addition follows because we can add 

two frequency patterns just by gluing the roots of the two corresponding trees, labeling the 

taxa of τ correspondingly and taking the pattern at the new root (Figure 2). Similarly, we can 

create the inverse of a pattern by gluing all permuted versions of its corresponding tree (with 

an appropriate vector of real constants).

To prove that G is path-connected, given two arbitrary trees with roots ρ1, ρ2, we create a 

new tree by adding a new root ρ, joining ρ1, ρ2 with ρ by two new edges of length t and 1/t, 
respectively, and making ρ the root of τ (Figure 3). By varying t continuously from zero to 

infinity, we can make a continuous path in G that connects the two frequency patterns. Since 

any path-connected subgroup of ℝn is a linear subspace [12], so is G.

We note that although the aforementioned arguments are made for the Kimura 2-parameter 

model, which describes a model of DNA evolution (r = 4), Theorem 4.1 only requires that 

the stationary frequency of the evolutionary model is the same for every state. Hence, this 

result also extends to models with more parameters.

Similarly, the fact that (G, +) is a subgroup of (ℝr × S, +) can be established under the 

assumption that the root distribution π is uniform, without assuming that it is the stationary 

distribution of the evolutionary process. However, our current approach requires the uniform 

root distribution to be the stationary distribution for the proof of path-connectivity of G, and 

an alternative approach to the proof of path-connectivity will be needed if we want to extend 

the analyses to a more general framework.

Recalling that the Kimura 2-parameter model corresponds to the uniform stationary 

distribution and a family of rate matrices Qκ indexed by κ, the transition/transversion rate 

ratio, we then establish that when κ = 3, the space of all frequency pattern G = ℝ4 × S. The 

proof is done through proving by induction that G contains 4 × S independent frequency 

patterns (also proven in the Appendix):

THEOREM 4.2. The set of all possible logarithmic conditional frequency patterns with S sites 

under the Kimura 2-parameter model with κ = 3 is equal to ℝ4 × S.

With those results, we finally can establish the main theorems of the section.

THEOREM 4.3. For any sequence of column vectors v1, v2, …, vS in ℝ4, there exists a rooted 

tree τ under the Kimura 2-parameter model with κ = 3, S labelings ψ1, ψ2, …, ψS of its 

taxa, and a vector of real constants c such that

Dinh and Matsen Page 12

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϕ(τ, ψ, c) = [v1 v2…vS] .

While Theorem 4.3 provides a theoretical guarantee about the existence of a tree under the 

Kimura model with a given frequency patterns, the proof is not constructive. This raises 

some concerns about the practicality of the approach. For example, one can not derive an 

estimation of the number of edges required to produce a given frequency pattern. Those 

concerns are addressed by the following theorem.

THEOREM 4.4. A tree as in Theorem 4.3 can be constructed with at most 64S edges.

Not only does the theorem provide an upper bound on the number of edges required to 

construct a tree with a given frequency pattern, its proof also provides a simple algorithm to 

construct such a tree.

PROOF OF THEOREM 4.4. The main steps of the proof are as follows:

Step 1. As shown in the Appendix, any frequency pattern of the form [x, 0, 0, 0]t can be 

produced (up to a real constant c1) by a tree τ with 4 edges and some labeling ψ of its taxa

Step 2. Using τ from Step 1, we create a tree τ′ of 16 edges by gluing the roots of 4 different 

versions τ1, τ2, τ3, τ4 of τ together and define S labelings of τ′ as follows.

• For s = 1, we copy the labeling of τ onto τ′.

ψ1(a) = ψ(a)

for each taxon a of τ1, τ2, τ3, τ4.

• For all s ≥ 2, the labelings are defined as follows:

ψs(a) = σj(ψ(a)) if a is a taxon of τj

where σ is the permutation (A G T C) in cycle notation.

The construction of τ′ is similar to the construction of the inverse of elements in the group 

G in the proof of Theorem 4.1. Because of symmetry, for s ≥ 2, the frequency pattern 

corresponding to site s at the root of the newly created tree will be the same for every state 

while for s = 1, the frequency pattern of τ′ is obtained by multiplying the frequency pattern 

of τ by a factor of 4.

We deduce that the pattern created by (τ′, {ψi}) is:

4x 0 … 0
0 0 … 0
0 0 … 0
0 0 … 0

+

c1 c2 … cS

c1 c2 … cS

c1 c2 … cS

c1 c2 … cS
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for some real constants c1, c2, …, cS.

Step 3. By similar arguments, for any i = 1, 2, 3, 4 and s = 1, 2, …, S, we can construct a tree 

of 16 edges for any patterns with S sites whose only non-zero entry is at the (i, s)-position. 

Hence, it takes 16 × 4S = 64S edges to construct a tree with an arbitrary given frequency 

pattern.

5. Non-uniqueness of stationary points: Kimura 2-parameter model.

In this section, we provide an example for which there are multiple stationary points of the 

likelihood function. To construct such an example, we find two polynomials p1(x) and p2(x) 

with coefficients b1, b2 such that the product p1p2 has 2 local maxima in [0, 1], and p1 

and p2 can be expressed as positive linear combination of the basis polynomial functions 

Pi derived from an evolutionary model (as will be carefully described in this section). This 

gives a counter-example with S = 2 sites.

Consider the Kimura 2-parameter model with κ = 3 which has the rate matrix

Q =

−5 ∕ 8 3 ∕ 8 1 ∕ 8 1 ∕ 8
3 ∕ 8 −5 ∕ 8 1 ∕ 8 1 ∕ 8
1 ∕ 8 1 ∕ 8 −5 ∕ 8 3 ∕ 8
1 ∕ 8 1 ∕ 8 3 ∕ 8 −5 ∕ 8

. (5.1)

This matrix has eigenvalues 0 > −γ > −2γ where γ = 0.5. The transition probabilities under 

this evolutionary model can be computed explicitly by

P1(t) = 0.25 + 0.25 exp( − 0.5t) + 0.5 exp( − t)
P2(t) = 0.25 + 0.25 exp( − 0.5t) − 0.5 exp( − t)
P3(t) = P4(t) = 0.25 − 0.25 exp( − 0.5t)

where P1(t), P2(t), P3(t), P4(t) are the probabilities of transitioning from state A to state A, T, 

G, C respectively. This simple model is “universal” in an appropriate sense as shown in the 

end of the paper.

This leads to a representation of the likelihood as the product of two different linear 

combinations of the transition polynomials

P1(x) = 0.25 + 0.25x + 0.5x2

P2(x) = 0.25 + 0.25x − 0.5x2
P3(x) = P4(x) = 0.25 − 0.25x

(5.2)

where x = exp(−0.5t).

We assume that the likelihood is computed by observing two sites s1 and s2, and that the 

edge of interest e is a pendant edge with the observed values at that tip being A for both 

sites. Assume further that the state observation probabilities at the inner node of the edge e 
are provided by
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b1 = [0.24977275, 0.34067358, 0.2051904, 0.20436327]

and

b2 = [0.25, 0.16087344, 0.29328435, 0.29584221] .

As discussed earlier, the log-likelihood function can be computed as

ℓ(t) = log(λ1(t)) + log(λ2(t)) (5.3)

where

λs(t) = ∑
i = 1

4
bs(i)P i(t) .

Plots of the log-likelihood function ℓ and its perturbations (by varying the coefficients 

slightly) in terms of x and t are provided in Figure 4 and Figure 5, respectively. The figures 

show that ℓ has three stationary points (two local maxima at t1 < t2 and one local minimum), 

all in the interval [0, 1]. The fact that ℓ(t1) > ℓ(t2) for some cases and ℓ(t1) < ℓ(t2) for some 

others indicates that there exist some values of bi
s such that ℓ(t1) = ℓ(t2), i.e. the smoothly 

varying likelihood function can even have two global maxima

We note that these examples can be achieved under the assumption that given any positive 

coefficients bi
s of the inner node, we can find some trees under the Kimura 2-parameter 

model with these precise coefficients. This assumption is confirmed by the following result, 

proven in the Appendix.

THEOREM 5.1. For every set of positive coefficients ηi
s, there exist a phylogenetic tree τ and 

S labelings ψ1, ψ2, …, ψS of the taxa such that for some edge e in τ, the one-dimensional 

likelihood function on e under the Kimura 2-parameter model with κ = 3 satisfies

ℓ(τ, t) = C0 + ∑
s = 1

S
log ∑

i
ηi

sP i(t)

where Pi(t) is the probability of transition from state A to state i and C0 is a constant. 

Moreover, such a tree τ can be constructed with at most 64S + 1 edges.

In our examples, the upper bound on the number of edges to produce the given frequency 

pattern is 64 × 2 + 1 = 129 edges.

REMARK 5.1. While the algorithm to construct a tree given a frequency pattern given by 

Theorem 4.4 always outputs a star-tree (a tree without internal edges), we note that

1. We can approximate any star tree by resolved trees with arbitrary precision.
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2. The maximum number of stationary points of a polynomial of degree four is 3, 

hence small perturbations on the coefficient of a polynomial of degree four with 

three stationary points do not change the number of stationary points.

We deduce that there are resolved trees for which the one-dimensional likelihood function 

on certain edges have multiple maxima

Since a resolved tree with n taxa has 2n−3 edges, the upper bound on the number of edges 

of a resolved tree for which the one-dimensional likelihood function on certain edges has 

multiple maxima is 2 × 129 − 3 = 255 edges.

6. Universality and complexity of the Kimura 2-parameter model.

As we discussed earlier in the paper, the main idea behind the results in Section 3 and 

Section 4 is that by using the Fundamental Theorem of Algebra, we can decompose a 

complicated evolutionary model into smaller modules, each of which can be approximated 

either by a “linear” model or by a “quadratic” model. This paradigm focuses on the branch 

lengths of the tree and is independent of the state space Ω of the evolutionary model, 

which provides a way to represent advanced evolutionary models (aminoacid models, codon 

models) by simple ones (nucleotide models).

This motivates the problem of constructing a complete characterization of one-dimensional 

likelihood functions. The main question is: does there exist an evolutionary model that 

can represent all one-dimensional likelihood functions of any time-reversible evolutionary 

model?

Such a model M, if it exists, and which we will refer to as a universal model, needs to satisfy 

the following two conditions:

1. All one-dimensional likelihood functions under any reversible evolutionary 

model can be written as a product of polynomials, each of which is a positive 

linear combination of the transition polynomials of M.

2. For every set of positive coefficients bij
s , there exists a phylogenetic tree τ and 

S labelings ψ1, ψ2, …, ψS of the taxa such that for some edge e in τ, the 

one-dimensional likelihood function on e under the M satisfies

ℓ(τ, t) = C1 + ∑
s = 1

S
log ∑

ij
bij

s P ij(t)

for some constant C1.

In this section, we will prove that the Kimura 2-parameter model with κ = 3 is, in fact, 

a universal model. The key components of the proof are Theorem 5.1, the Fundamental 

Theorem of Algebra and the fact that the transition polynomials of the Kimura 2-parameter 

model effectively span a large class of linear and quadratic polynomials.
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6.1. Universality of the Kimura 2-parameter model.

We first make the following observation, proven in the Appendix.

LEMMA 6.1. If f is a real-coefficient polynomial that satisfies

1. f is positive on [0, 1],

2. deg f = 1 or f is a quadratic polynomial with no real root,

then f can be written as positive linear combination of the transition polynomials of the 

Kimura 2-parameter model if and only if

1. deg f = 1 and f(−1) > 0,

or

2. deg f = 2 and f has no root inside the set

B = {z ∈ ℂ : ∣ z + 1 ∣ ≤ 1 or ∣ z − 1 ∣ ≤ 2} . (6.1)

This enables us to establish the universality of the Kimura 2-parameter model.

THEOREM 6.1 (Universality). If L is a one-dimensional phylogenetic likelihood function of 

a tree under an arbitrary time-reversible model that satisfies Assumption 2.1, then up to 

translation and rescaling, L is equal to a one-dimensional likelihood under the Kimura 

2-parameter model.

That is, there exist c1, c2, c3 > 0 such that

L(t) = c2LK2P(τ, ψ, c3t) − c1, ∀t ∈ [0, ∞),

where LK2P(τ, ψ, ·) is the one-dimensional likelihood function under the Kimura 2-

parameter model on some edge of a tree τ with labeling ψ.

PROOF. Assumption 2.1 implies that the function

ℒ (x) ≔ L − 1
γ log x

is a polynomial in x for some γ > 0. Since ℒ is continuous and the set B defined by (6.1) is 

compact, if we define

c1 = 1 + sup
z ∈ B

∣ ℒ (z) ∣ ,

then by the triangle inequality, the polynomial ℒ(x) + c1 has no root in B.

By the Fundamental Theorem of Algebra, the polynomial ℒ(x) + c1 can be written as
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ℒ (x) + c1 = ∏
s = 1

S
gs(x),

where each gs is either a quadratic polynomial with no real root, or a polynomial of degree 

1. Moreover, each gs is positive on [0, 1] and has no root in B (which also implies gs(−1) 

> 0 if deg gs = 1). Lemma 6.1 implies that each gs can be written as a positive linear 

combination of the transition polynomials of the Kimura 2-parameter model

gs(x) = ∑
ij

bij
s P ij(x) .

We deduce that

log( ℒ (x) + c1) = ∑
s = 1

S
log ∑

ij
bij

s P ij(x) .

We recall that the Kimura 2-parameter model has symmetries such that any transition 

probability Pij(t) is in fact equal to PAl(t) = Pl(t) for some l. Therefore, by grouping

ηl
s ≔ ∑

i, j:P ij = PAl

bij
s ,

we have

log( ℒ (x) + c1) = ∑
s = 1

S
log ∑

l
ηl

sP l(x) .

Also, the characteristic polynomial for the Kimura 2-parameter model (5.1) with κ = 3 is 

parameterized by x = exp(−0.5t) such that the one-dimensional likelihood LK2P(τ, ψ, t) 
satisfies

LK2P(τ, ψ, t) = ℒK2P (τ, ψ, exp( − 0.5t)) .

Now, Theorem 5.1 guarantees that there exists a tuple (τ, ψ) under the Kimura 2-parameter 

model on an edge of the tree such that

log ℒK2P (τ, ψ, x) = − log c2 + ∑
s = 1

S
log ∑

l
ηl

sP l(x)

for some positive constant c2.

In other words, we have
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ℒ (x) = c2 ℒK2P (τ, ψ, x) − c1, ∀x ∈ (0, 1] .

Hence,

L − 1
γ log x = c2LK2P(τ, ψ, − 2 log x) − c1, ∀x ∈ (0, 1],

or

L(t) = c2LK2P(τ, ψ, c3t) − c1, c3 = γ ∕ 2, ∀t ∈ [0, ∞) .

That is, up to translation and rescaling, L is equal to a one-dimensional phylogenetic 

likelihood function under the Kimura 2-parameter model.

Since the set of rate matrices for a given evolutionary model that satisfy Assumption 2.1 is 

dense in the set of all possible rate matrices under the same evolutionary model (Remark 

2.1), we also have the following corollary.

COROLLARY 6.1. Any one-dimensional phylogenetic likelihood function under an arbitrary 

time-reversible evolutionary model can be uniformly approximated with arbitrary precision 

by (rescaled and translated) one-dimensional phylogenetic likelihood functions under the 

Kimura 2-parameter model.

We also note that the rescaling and translation constants in the statements of Theorem 

6.1 can not be removed: Lemma 6.1 indicates that some polynomial function can not be 

represented exactly as a Kimura 2-parameter likelihood function. For example, one of the 

transition polynomials of the Jukes-Cantor model is

J(x) = 0.25 + 0.75x

which has J(−1) < 0. For this reason, some likelihood functions under the Jukes-Cantor 

model may not be represented exactly by the Kimura 2-parameter model without adjusting 

by an additive constant.

6.2. Complexity of the Kimura 2-parameter model.

The universality results in the previous section can be adapted easily to analyze the set 

of all one-dimensional phylogenetic likelihood functions under the Kimura 2-parameter 

model. The following complexity results imply that one-dimensional likelihood functions 

under advanced evolutionary models can be more complex than it is typically assumed by 

phylogenetic inference algorithms.

First, it is straightforward to check that Theorem 6.1 still holds (without changing the proof) 

if we replace the one-dimensional phylogenetic likelihood function L with an arbitrary 

polynomial P in x = exp(−γt) for some γ > 0 and relax Assumption 2.1. Moreover, if P 

Dinh and Matsen Page 19

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is of degree n, then by Theorem 5.1, it can be represented by a one-dimensional likelihood 

function of a tree with at most (64n + 1) edges with respect to some n-site labeling of its taxa

COROLLARY 6.2. Given an arbitrary polynomial P of degree n and γ > 0, then up to translation 

and rescaling, P(exp(−γt)) is equal to a one-dimensional likelihood under the Kimura 2-

parameter model on a phylogeny with at most 64n + 1 edges.

This corollary indicates that by increasing the number of sites and the size of the tree, we 

can obtain likelihood functions shaped like an arbitrary polynomial in the interval [0, 1]. 

For example, given an arbitrary finite sequence t1, t2, …, tk ∈ (0, ∞), we can construct a 

polynomial Pk that peaks precisely at xk = exp(−0.5tk) and use Corollary 6.2 to obtain the 

following result.

COROLLARY 6.3. Given an arbitrary finite sequence t1, t2, …, tk ∈ (0, ∞), there exists a 

phylogenetic tree τ and some labeling of its taxa such that for some edge of the tree, the 

one-dimensional likelihood function under the Kimura 2-parameter model peaks precisely at 

t1, t2, …, tk.

Furthermore, since rescaling and translation do not change the relative order of the 

likelihood values at the stationary points, we can make any of the ti’s (or all of them) 

the function’s global maxima

Finally, we can replace the phylogenetic likelihood functions in Corollary 6.1 by an arbitrary 

continuous function f with finite limit to obtain the following density result.

COROLLARY 6.4. The space of all rescaled and translated one-dimensional phylogenetic 

likelihood functions under the Kimura 2-parameter model is dense in the space of all 

non-negative continuous functions on [0, ∞) with finite limits.

PROOF. Let f be a continuous function on [0, ∞) with finite limit. Define

g(x) = f( − log(x)) ∀x ∈ (0, 1],

then g(x) can be extended continuously to [0, 1]. By Weierstrass’s theorem [13], there exists 

a sequence of positive polynomials {Pn} such that

sup
x ∈ [0, 1]

∣ Pn(x) − g(x) ∣ 0 .

This implies that

sup
t ∈ [0, ∞)

∣ Pn(exp( − t)) − f(t) ∣ 0 .

On the other hand, we deduce from Corollary 6.1 that Pn(exp(−t)) is, up to rescaling 

and translation, a one-dimensional likelihood under the Kimura 2-parameter model. This 

completes the proof.
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7. Non-reversible Markov models of evolution.

As we mentioned in Section 2, the analyses in the previous sections can be described in the 

more general framework of probabilistic inference for graphical models. In this framework, 

the likelihood function can be be defined as the marginal distribution on the leaf nodes of 

a joint probability distribution that factorizes over the edges of the tree via the non-negative 

kernels (also referred to as potential functions) ke(i, j, t). The one-dimensional phylogenetic 

likelihood functions can be obtained by fixing all but one branch length.

In this section, we briefly analyze the extent to which our analyses of one-dimensional 

likelihood functions (in this general framework) are valid in this more general setting. As 

we illustrate below, the results in this section do not assume the reversibility of the kernels 

and thus apply for non-reversible models of evolution. However, we need to modify our 

assumptions accordingly.

Several parts of our analysis rely on the core assumption that the kernel functions need to 

be polynomials of x = exp(−γt) for some γ > 0. Thus we require the following assumption, 

which is the equivalent of Assumption 2.1 but in a more general setting.

ASSUMPTION 7.1 (Polynomial representation). There exists a constant γe > 0 and polynomials 

pe
ij (x) such that

ke(i, j, t) = pe
ij(exp( − γet)) ∀t,

for all i, j ∈ Ω and e ∈ E(T).

This assumption implies that the limit of ke(i, j, t) for large t exists, that is, the kernels 

are stationary. We also note that using the density results for Bernstein’s polynomial 

approximation (see, for example, [13]), any non-negative continuous function on [0, ∞) 

with finite limit can be approximated with arbitrary precision by some kernels that satisfy 

Assumption 7.1.

Under this assumption, the characteristic polynomials λs(x) can be defined in a similar 

manner and the result in Section 3 (Theorem 3.1) is still valid.

THEOREM 7.1. Under Assumption 7.1, if for every site index s, the polynomial λs has 

only real roots, then one-dimensional likelihood function has at most one stationary point. 

Moreover, if such a point exists, it is also a global maximum.

While Section 4 is specifically developed to analyze the Kimura 2-parameter model, the 

logarithmic relative frequency pattern can be extended easily by replacing the transition 

probabilities across the edge e by the kernel ke and by setting the distribution of the root by 

the uniform distribution. Building upon this concept, we can study the algebraic structure 

of the space of all frequency patterns and obtain a partial extension of Theorem 4.1 in a 

more general setting as described below. However, the proofs of Theorems 4.2 and 4.3 are 

tailor-made for the Kimura 2-parameter model and are not easily extended to the general 

case. We leave their extension as open problems.
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We do obtain the following partial extension of Theorem 4.1 in the more general setting.

THEOREM 7.2. The following properties hold:

1. (G, +) is a subgroup of (ℝr × S, +).

2. Assume

lim
t ∞

ke(i, j, t) = pe
ij(0) = 1

r and lim
t 0

ke(i, j, t) = pe
ij(1) = δij

for all i, j ∈ Ω and e ∈ E(T), where δij = 1 if i = j and δij = 0 otherwise. Then G is 

a linear subspace of ℝr × S.

We recall that the frequency patterns can be defined without the polynomial representation 

of the likelihood. Thus, in Theorem 7.2, Assumption 7.1 is not required. We further note 

that for part (1) of the theorem to be valid, we do not need to assume that the kernels are 

stationary. In fact, the only condition required is that the distribution at the root is uniform. 

To provide a proof for path-connectivity of G, however, the conditions about the behavior of 

the kernels at 0 and ∞ are necessary.

Polynomial representation of likelihood functions (Assumption 7.1) is needed to extend the 

results of Section 6. By the same arguments as in the proof of Theorem 6.1, we obtain an 

equivalent result.

THEOREM 7.3. If L is a one-dimensional phylogenetic likelihood function of a tree under a 

model whose kernels satisfy Assumption 7.1, then up to translation and rescaling, L is equal 

to a one-dimensional likelihood under the Kimura 2-parameter model.

8. Conclusions and discussion.

In this work, we investigate the problem of characterizing the shape of one-dimensional 

phylogenetic likelihood functions. Our results classify all evolutionary models into two 

categories:

1. For binary, Jukes-Cantor and Felsenstein 1981 models: the one-dimensional 

likelihood function has at most one stationary point.

2. For Kimura 2-parameter model and more advanced evolutionary models: the 

shape of the one-dimensional likelihood function can be much more complex. 

In fact, the space of all rescaled and translated one-dimensional phylogenetic 

likelihood functions under such a model is dense in the set of all non-negative 

continuous functions on [0, ∞) with finite limits.

Despite the complexity of the one-dimensional likelihood functions under advanced 

evolutionary models, we prove that all one-dimensional phylogenetic likelihood function 

are essentially Kimura 2-parameter likelihood functions. This result establishes a strong 

foundation for the use of the Kimura 2-parameter as the building block of all evolutionary 

models.
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Our results are based on two novel techniques. First, we introduce and use characteristic 
polynomial representations of one-dimensional phylogenetic likelihood functions and the 

Fundamental Theorem of Algebra to decompose any evolutionary models into smaller 

modules, each of which resembles the Kimura 2-parameter model. Second, we introduce 

the new concept of logarithmic relative frequency patterns and analyze algebraic structures 

on the space of such patterns. These structures open a new way to explore the space of 

all possible likelihood functions. Moreover, by analyzing these structures, we are able to 

tackle the inverse problem of constructing a phylogenetic tree that has a given frequency 

pattern at the root. This enables us to construct phylogenetic trees that approximate any 

given likelihood function with arbitrary precision.

There are several avenues for improvement. Firstly, while we know that the shape of 

one-dimensional likelihood function can be very complex, it is not clear how frequently 

multimodality might be encountered in practice and to which degree it affects the accuracy 

of phylogenetic algorithms. Since the space of high degree polynomials are dominated by 

multimodal functions, one might expect that as the number of sites and the size of the tree 

increase, multimodality becomes more likely. However, since the space of phylogenies is 

known to possess considerable hidden structure which sometimes lead to counter-intuitive 

properties, careful analysis of the space of all rescaled and translated one-dimensional 

phylogenetic likelihood functions under the Kimura 2-parameter model are required to 

evaluate this hypothesis. Secondly, although the focus of this work is on one-dimensional 

phylogenetic likelihood functions, it is possible to utilize the framework we propose to study 

full phylogenetic likelihood functions. This will be a subject for future work.
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10.: Appendix.

PROOF OF REMARK 2.1. If we denote the entries of the diagonalizing matrix M and N of Q by 

mij and nij, respectively, then

Qij = ∑
k

mike−rknkj .

where −rk are the eigenvalues of Q. (The eigenvalues are known to be non-positive, so rk are 

non-negative.)

Since the set of rational numbers ℚ is dense in ℝ+, we can find r(k, l) ∈ ℚ+ such that for all 

k, r(k, l) → rk as l approaches infinity. If we define

Qij
l = ∑

k
mike−r(k, l)nkj,
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then Ql → Q element-wise as l approaches infinity. Since r(k, l) are all rational the matrices 

are of fixed finite dimension, we can also find γl > 0 and d(k, l) ∈ ℕ such that r(k, l) = d(k, 

l)γl.

PROOF OF THEOREM 4.1. We define the equivalence relation ~ on ℝ4 × S as follows: u ~ v if 

and only if there exists a vector of real constants c = (c1, …, cS) such that for all i = 1, 2, 3, 4 

and s = 1, …, S, we have

ui, s = vi, s + cs .

If we define

[ℎ(τ, ψ)]i, s = log ∑
a ∈ ℒi, s

∏
(u, v) ∈ E(τ)

Pauav
uv (tuv)

for i ∈ Ω, s = 1, …, S and ℒi,s being the set of all extensions a of ψs to all the nodes of τ 
such that a(ρ) = i.

Then for all τ, ψ, c, we have ϕ(τ, ψ, c) ~ h(τ, ψ).

1. (Addition): Consider any two elements x1, x2 ∈ G. By the definition of G and 

since the stationary frequency of the evolutionary model is the same for every 

state, there exist trees τ1, τ2 with n1, n2 taxa and labelings ψ1, ψ2 such that

xi ∼ ℎ(τi, ψi), i = 1, 2 .

If we construct a new tree τ from τ1 and τ2 by gluing the roots ρ1, ρ2 and label 

the taxa of τ corresponding to ψ1, ψ2, then we have

[ℎ(τ, ψ)]i, s = log ∑
a ∈ ℒi, s

∏
(u, v) ∈ E(τ1)

Pau1av2
uv (tuv) ∏

(u, v) ∈ E(τ2)
Pau2av2

uv (tuv)

where each term a in the sum corresponds uniquely to a pair of extensions (a1, 

a2) of, ψ1
s, ψ2

s to the internal nodes of τ1, τ2, respectively, such that a1(ρ) = a2(ρ) = 

i.

Therefore,

[ℎ(τ, ψ)]i, s = log∑
a1

∏
(u, v) ∈ E(τ1)

Pau1av1
uv (tuv) + log∑

a2
∏

(u, v) ∈ E(τ2)
Pau2av2

uv (tuv)

= [ℎ(τ1, ψ1)]i, s + [ℎ(τ2, ψ2)]i, s

for all i ∈ Ω and s = 1, …, S.

Therefore

ℎ(τ, ψ) ∼ ℎ(τ1, ψ1) + ℎ(τ2, ψ2)
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and

x1 + x2 ∼ ℎ(τ, ψ) ∈ G

which implies that G is closed under addition.

2. (Inverse): Consider any element x ∈ G and its corresponding representative tree τ 
and labeling ψ. For any permutation σ of the states, we define the labeling ψσ as

ψσ(ω) = σ(ψ(ω))

for every taxon ω of T. For example, if σ is the permutation (A G T C) in cycle 

notation, then ψσ is obtained from ψ by replacing A by G, G by T, T by C and C 
by A.

Now let σ0 be a permutation of order r on the state space Ω, create r identical 

copies τ1, τ2, …, τr of the tree τ with labelings ψσ0, ψσ0
2, …, ψσ0

r and glue the root 

of all the trees together with taxon labeling γ corresponding to the labelings of 

τ1, τ2, …, τr. Then because of symmetry, the frequency pattern f at the root of 

the newly created tree μ will be the same for every state, i.e., f ~ 0. We deduce 

that 0 ∈ G and for every x ∈ G, there exists y ∈ G such that x + y = 0.

This property and the fact that G is closed under addition prove that (G, +) is a 

subgroup of (ℝr × S, +).

3. (Connectedness): Consider any two elements x1, x2 ∈ G and their corresponding 

trees τ1, τ2, labelings ψ1, ψ2 and vectors of real constants c1, c2. For any α ∈ (0, 

1), we create a new tree τ(α) by adding a new root ρ, joining ρ1, ρ2 by new edges 

of length t1 = tan(π
2 α), t2 = 1/t1, respectively. We make ρ the root of τ and label 

the taxa of τ according to ψ1, ψ2.

Now we note that when α → 0, we have

ℎ(τ(α), ψ) ℎ(τ1, ψ1) + log 1
r

since the contribution of τ2 becomes stationary (the stationary frequency is 1/r 
because of the model’s symmetry). Similarly, when α → 1, we have

ℎ(τ(α), ψ) ℎ(τ2, ψ2) + log 1
r .

Therefore, the function g(α) = ϕ(τ(α),ψ) can be extended continuously to the 

closed interval [0, 1]. By changing c continuously from c1 to log (1/r), varying α 
continuously from 0 to 1, then changing c continuously from log (1/r) to c2, we 

can make a path in G that connects x1 and x2.

4. Since any path-connected subgroup of ℝn is a linear subspace [12], so is G.
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PROOF OF THEOREM 4.2. Denote by ℋ the set of all rooted trees with one edge (which have 

varying branch lengths) and

H = {ϕ(τ, ψ, c) :τ ∈ ℋ , ψ = (ψ1, ψ2, …, ψS) ∈ ℝS, c ∈ ℝS} .

Note that in the context of this paper, trees with different branch lengths (or in other words, 

different values of x) are considered as different trees. Thus the set H defined here is 

non-trivial.

We have

[ℎ(τ, ψ)]j, s = log Pψsj(x) (10.1)

where x = exp(−0.5t), j = A, G, T, C, and t is the length of the unique edge of τ.

Let x1 = 1/4, x2 = 1/2, x3 = 3/4. We will prove, by induction on S, that H contains 4 × S 
independent frequency patterns.

For S = 1, by considering the 4 different patterns (A), (G), (T), (C) at the only leaf and 

the 3 values of x (corresponding to different branch lengths) described above, we can create 

a set of 4 × 3 = 12 different pairs (τ, ψ). A quick check by computer shows that the 

corresponding frequency patterns generated by those pairs span the whole vector space 

ℝ4 × 1. We can achieve similar result for S = 2 with the patterns (A, G), (G, T), (T, C), (C, 

A).

Now assume that for S = n, H contains 4 x n independent frequency patterns of the form 

(10.1).

For l = A, G, T, C and x ∈ [0, 1], we define the building blocks

Rl(x) ≔ [log P lA(x) log P lG(x) log P lT(x) log P lC(x)]

W l(x) ≔
Rl(x1)
Rl(x2)
Rl(x3)

,

The induction hypothesis implies that there exist 4 × n independent frequency patterns of the 

form (10.1). This means that for some labelings ψ1, ψ2, …, ψ4n, the block matrix

J =

B1

B2

⋯
B4n

has maximal rank 4n, where
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Bs ≔
Rψs1(x1)⋯Rψsn(x1)
Rψs1(x2)⋯Rψsn(x2)
Rψs1(x3)⋯Rψsn(x3)

.

For s = 1, …, 4n, we consider all the labelings obtained by appending ψs with one of the 

four nucleotides A, T, G, C. By doing so, we create a set of 48n different frequency patterns. 

We want to prove that the block matrix

C =

B1 W A(x)
B2 W A(x)

⋯
B4n W A(x)
B1 W G(x)
B2 W G(x)

⋯
B4n W G(x)
B1 W T(x)
B2 W T(x)

⋯
B4n W T(x)
B1 W C(x)
B2 W C(x)

⋯
B4n W C(x)

has maximal rank 4n + 4.

Note that this matrix is row-equivalent to

J U
0 V

where each row of V is of the form Ri(xk) − RA(xk) for i = G, T, C. (This is done by 

subtracting the blocks (Bs Ri(x)) by the block (Bs RA(x)) then rearranging the row to obtain 

the sub-matrix J at the top-left corner.)

On the other hand, from the case S = 1, we have

rank

W A(x)
W G(x)
W T(x)
W C(x)

= 4,

which implies that rank(V) = 4. Hence, rank(C) = rank(J) + rank(V) = 4n + 4.
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We deduce that for every S, the set G of all possible logarithmic conditional frequency 

patterns with S sites under the Kimura 2-parameter model is a linear subspace of ℝ4 × S

(Theorem 4.1) that contains 4S linearly independent vectors. This implies that G = ℝ4 × S.

PROOF OF THEOREM 4.4 (STEP 1). (Any pattern of the form v = [x 0 0 0] can be produced by a 

tree τ with four edges.)

Denote

x1(t) = PAA(t) x2(t) = PAG(t)
x3(t) = PAT(t) x4(t) = PAC(t)

we note that in the Kimura 2-parameter model, x3(t) = x4(t).

Now consider two trees τ1 and τ2, each with one edge, whose branch lengths are t and s, 

respectively. We label the only nodes of τ1 and τ2 by the patterns ψ1 = (A) and ψ2 = (G), 

and obtain the frequency patterns f1(t) and f2(s) respectively. By gluing the roots of τ1 (1 

edge) and the “inverse” of the tree τ2 (3 edges)), we obtain a tree T(t, s) with 4 edges whose 

frequency pattern is equivalent to

f1(t) − f2(s) ∼ log x1(t)x4(s)
x4(t)x2(s) , log x2(t)x4(s)

x4(t)x1(s) , 0, 0 .

On the other hand, we note that for the Kimura 2-parameter model (5.1),

x2(t)
x4(t) = 1 + 2 exp( − 0.5t)

only admits values in the interval [1, 3], while x1(s)/x4(s) is a continuous decreasing function 

in s that admits all values in the interval [1, ∞). Hence, for every t > 0, there exists a unique 

k(t) > 0 such that

x2(t)x4(k(t))
x4(t)x1(k(t)) = 1 .

Moreover, k(t) is a continuous function in t and

lim
t ∞

k(t) = ∞ lim
t 0

k(t) = k0

where k0 satisfies x1(k0)/x4(k0) = 3.

Now if we denote

g(t) = x1(t)x4(k(t))
x4(t)x2(k(t))

Dinh and Matsen Page 28

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



then g(t) is a continuous function that satisfies

lim
t ∞

g(t) = 1 lim
t 0

g(t) = ∞ .

We deduce that for a range of t,

f1(t) − f2(k(t)) ∼ [log g(t), 0, 0, 0]

which admits every patterns of the form [x, 0, 0, 0] with x > 0. Similarly

f2(k(t)) − f1(t) ∼ [ − log g(t), 0, 0, 0]

admits every patterns of the form [x, 0, 0, 0] with x < 0. This completes the proof.

PROOF OF THEOREM 5.1. From Theorem 4.1, there exists a rooted tree τ, a labeling ψ and a 

vector of real constants c = (c1, …, cS) such that

cs + log ∑
a ∈ ℒi, s

π(i) ∏
(u, v) ∈ E(τ)

Pauav
uv (tuv) = log(ηi

s) .

For any t > 0, we create a new tree τ(t) by adding an edge e of length t to the root ρ 
and labeling the additional taxon by the constant vector (A, A, …, A). The log-likelihood 

function on e of τ(t) given this taxon labeling is

ℓ(t) = ∑
s = 1

S
log ∑

i
∑

a ∈ ℒi, s

π(i) ∏
(u, v) ∈ E(τ)

Pauav
uv (tuv)P iA(t)

= − ∑
s = 1

S
cs + ∑

s = 1

S
log ∑

i
ηi

s P i(t) .

Theorem 4.4 implies that the tree τ can be constructed with at most 64S edges. Hence, τ(t) 
has at most (64S + 1) edges.

PROOF OF LEMMA 6.1. We first consider the case of linear functions. Assume that f(x) = ax + b 
such that f is positive in [0, 1]. We deduce that b + a = f(1) > 0. Hence f can be written as

f(x) = ax + b
= 2(b − a) 1

4 − 1
4x + (b + a) 1

4 + 1
4x − 1

2x2 + (b + a) 1
4 + 1

4x + 1
2x2

= 2(b − a)P3(x) + (b + a)P2(x) + (b + a)P1(x)

using the transition polynomials Pi(x) from equation (5.2).

Since {P1, P2, P3} are linearly independent, we deduce that f can be expressed as positive 

linear combination of P1, P2, P3 if and only if f(−1) = b − a > 0.

If f(x) is a monic polynomial of degree 2 with no real roots, then f can be written as
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f(x) = x2 − 2ax + a2 + b2

= [(a − 1)2 + b2 − 1]P1(x)
+ [(a − 1)2 + b2 − 2]P2(x)
+ 2[(a + 1)2 + b2 − 1]P3(x) .

The coefficients are positive if and only if a ± bi do not belong to B.

References.

[1]. Bryant D, Galtier N, and Poursat M-A, “Likelihood calculation in molecular phylogenetics,” 
Mathematics of Evolution and Phylogeny, pp. 33–62, 2005.

[2]. Steel M, “The maximum likelihood point for a phylogenetic tree is not unique,” Systematic 
Biology, pp. 560–564, 1994.

[3]. Chor B, Hendy MD, Holland BR, and Penny D, “Multiple maxima of likelihood in phylogenetic 
trees: an analytic approach,” Molecular Biology and Evolution, vol. 17, no. 10, pp. 1529–1541, 
2000. [PubMed: 11018159] 

[4]. Rogers JS and Swofford DL, “Multiple local maxima for likelihoods of phylogenetic trees: 
a simulation study.,” Molecular biology and evolution, vol. 16, no. 8, pp. 1079–1085, 1999. 
[PubMed: 10507922] 

[5]. Fukami K and Tateno Y, “On the maximum likelihood method for estimating molecular trees: 
uniqueness of the likelihood point,” Journal of molecular evolution, vol. 28, no. 5, pp. 460–464, 
1989. [PubMed: 2501507] 

[6]. Jukes TH and Cantor CR, “Evolution of protein molecules,” Mammalian protein metabolism, vol. 
3, pp. 21–132, 1969.

[7]. Felsenstein J, “Evolutionary trees from DNA sequences: a maximum likelihood approach,” 
Journal of molecular evolution, vol. 17, no. 6, pp. 368–376, 1981. [PubMed: 7288891] 

[8]. Kimura M, “A simple method for estimating evolutionary rates of base substitutions through 
comparative studies of nucleotide sequences,” Journal of molecular evolution, vol. 16, no. 2, pp. 
111–120, 1980. [PubMed: 7463489] 

[9]. Felsenstein J, Inferring phylogenies. Sinauer associates Sunderland, 2004.

[10]. Hanson MA, “On sufficiency of the Kuhn-Tucker conditions,” Journal of Mathematical Analysis 
and Applications, vol. 80, no. 2, pp. 545–550, 1981.

[11]. Ben-Israel A and Mond B, “What is invexity?,” The Journal of the Australian Mathematical 
Society. Series B. Applied Mathematics, vol. 28, no. 01, pp. 1–9, 1986.

[12]. Hayashida T, “Arc-wise connected subgroup of a vector group,” in Kodai Mathematical Seminar 
Reports, vol. 1, pp. 16–16, 1949.

[13]. Farouki RT, “The bernstein polynomial basis: a centennial retrospective,” Computer Aided 
Geometric Design, vol. 29, no. 6, pp. 379–419, 2012.

Dinh and Matsen Page 30

Ann Appl Probab. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1: 
[Left:] A general Markov model of DNA evolution along a tree edge. [Right:] An extension 

a of the labelling ψi (corresponds to site i in the sequences) of the leaves of a simple tree τ 
to its inner nodes.
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Fig 2: 
G is closed under addition: we can add two frequency patterns [X] and [Y] just by gluing the 

roots of the two corresponding trees, labeling the taxa of τ correspondingly and taking the 

pattern at the new root.
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Fig 3: 
G is path-connected: We can connect any two patterns [X] and [Y] by adding a new root ρ, 

joining it with the roots of the two corresponding trees with two new edges of length t and 

1/t, respectively, and making ρ the root of τ.
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Fig 4: 
The log-likelihood (5.3) as a function of x = exp(−0.5t) for various values of the coefficients 

of the characteristic polynomial.
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Fig 5: 
The log-likelihood (5.3) as a function of branch length t for various values of the coefficients 

of the characteristic polynomial.
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