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Abstract
Modeling the global dynamics of emerging infectious diseases (EIDs) like COVID-19 can provide important guidance in the preparation 
and mitigation of pandemic threats. While age-structured transmission models are widely used to simulate the evolution of EIDs, 
most of these studies focus on the analysis of specific countries and fail to characterize the spatial spread of EIDs across the world. 
Here, we developed a global pandemic simulator that integrates age-structured disease transmission models across 3,157 cities and 
explored its usage under several scenarios. We found that without mitigations, EIDs like COVID-19 are highly likely to cause profound 
global impacts. For pandemics seeded in most cities, the impacts are equally severe by the end of the first year. The result highlights 
the urgent need for strengthening global infectious disease monitoring capacity to provide early warnings of future outbreaks. 
Additionally, we found that the global mitigation efforts could be easily hampered if developed countries or countries near the seed 
origin take no control. The result indicates that successful pandemic mitigations require collective efforts across countries. The role 
of developed countries is vitally important as their passive responses may significantly impact other countries.
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Significance Statement

By incorporating global geographic information in age-structured disease transmission models, we build a pandemic simulator to ex-
plore the global dynamics of emerging infectious diseases (EIDs) like COVID-19. Our results emphasize the importance of strengthen-
ing the global public health surveillance capacity to prevent future outbreaks and the crucial role of developed countries in 
maintaining the collective mitigation efforts of the world. The findings of this study offer valuable insights into the understanding 
of the global pandemic evolution process and provide decision support for improving the global pandemic preparedness capability.

Introduction
The continuing spread of COVID-19 has become the most severe 
health crisis in the last decades. For emerging infectious diseases 
(EIDs) like COVID-19, pharmaceutical solutions are typically un-
available at the beginning of the outbreak. Mitigation strategies 
are thus focused on nonpharmaceutical interventions (NPIs), 
most of which are social distancing measures like school closure 

and remote working that are used to suppress local disease trans-
missions in the population by reducing human contacts in corre-
sponding social settings like schools and workplaces (1–3). 
Assessing the control effects of NPIs relies on age-structured so-
cial contact matrix data like the POLYMOD data (4). The 
POLYMOD project constructs age-structured social matrix data 
(i.e. the POLYMOD data) in four social settings: home, school, 
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workplace, and the general community (e.g. bars, shops, and play-
grounds) based on contact surveys in 10 countries. Prem et al. (5) 
further developed a Bayesian hierarchical model and projected 
the social contact matrix data in 152 countries based on the 
POLYMOD data. These data are extensively used in age-structured 
disease transmission models and explore how various social dis-
tancing measures could help suppress the pandemic spread in 
countries like China (2, 6, 7), the United Kingdom (3, 8), and the 
United States (9). However, most of these studies focused on the 
analysis of individual countries.

The COVID-19 pandemic, marked by its rapid worldwide 
spread and profound global impact, is the most serious public 
health threat since the 1918 H1N1 influenza pandemic. One of 
the lessons from COVID-19 is to recognize the possibility of a pan-
demic starting from anywhere on earth and quickly spreading 
across the world. Incorporating global geographic information 
could play a critical role in the study of EIDs. Meanwhile, the spa-
tial couplings of the pandemic spread across different countries 
determine that the NPIs taken in one country could influence 
the pandemic evolution in other countries. Studies of EIDs should 
focus not only on their local transmissions in different social set-
tings but also on the pandemic spread across global geographic re-
gions. However, much of the published research on global 
pandemic simulations fails to incorporate both aspects together. 
For example, one type of work mainly focuses on modeling the 
pandemic spread across regions and examining the effects of trav-
el restrictions (10–12). Another type of work models the global 
population as one compartment and neglects the spatial hetero-
geneity of disease transmissions in different regions (13). 
Modeling frameworks are in need to integrate age-structured dis-
ease transmission models across different regions to assess the 
impacts of EIDs and evaluate the effect of NPIs on the global scale.

The primary objective of this study is to develop a pandemic 
simulator that accounts for two essential aspects of the global 
spread of EIDs: (i) age-structured disease transmissions and (ii) 
the pandemic spread across global regions (Figs. S1 and S2). 
Based on the simulator, we explored the global pandemic 

evolutions of EIDs and the effect of control measures under a 
wide range of scenarios. We explored the dynamics of unmiti-
gated pandemics seeded in different cities to examine the poten-
tial risks of infectious diseases that emerged in different cities. We 
also investigated the effect of different control measures through 
comparisons with the unmitigated scenario. Finally, we examined 
the influence of pandemic evolutions between countries and eval-
uated how much the global mitigation effort could be affected if 
individual countries take no control.

Results
Baseline scenarios
We first present the baseline scenario results over 100 simulations 
under the assumption of no interventions taken to mitigate the 
pandemic. Figure S1A and B show the expected patterns of the glo-
bal pandemic spread with R0 = 2.4. The pandemic is first estab-
lished around the seed origin and then rapidly distributed across 
the world (Movie S1). The infected population peaks 224 days 
[95% CI (221, 227)] after the outbreak, with a peak day infection 
rate of 2.60% [95% CI (2.56%, 2.63%), Fig. 1C]. By the end of the first 
year, 72.39% [95% CI (72.33%, 72.46%)] of the global population is 
infected, with 29.99% [95% CI (29.98%, 30.00%)] showing clinical 
symptoms (Fig. S3). The population between 20 and 55 has higher 
infection rates than the rest of all age groups (Fig. 1D). The dynam-
ics of the global epidemic spread are sensitive to the virus’ trans-
missibility. Greater R0 leads to higher infection rates [R0 = 2.7, 
77.26%, 95% CI (77.23%, 77.28%)] at the end of the first year and 
also quicker pandemic evolution processes (Fig. S4 and Movie S1).

We found that the global evolution of the pandemic is dependent 
on the location of the seed origin. Changing the seed origin would 
alter the trajectory of the pandemic evolution (Movie S2). 
Figure 2A shows the curves for pandemics randomly seeded in 
300 cities across the world. The color of each curve is determined 
by the total passenger flow (Fm) of the corresponding city. The pan-
demic evolutions are influenced by the Fm values of the seed city. 
For example, dense connections of hub cities with large Fm like 

Fig. 1. Global pandemic dynamics of the baseline scenario. A, B) Snapshots of the global spread pattern of a single baseline simulation with R0 = 2.4. 
Global administrative units are represented by dots with different colors. C) Daily and cumulative infection curves in the baseline scenario. The solid line 
represents the daily infection curve; the dashed line represents the cumulative infection curve. D) Age-specific infection rate by the end of the first year in 
the baseline scenario.
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New York City would facilitate the rapid spread of the pandemic 
(Movie S2). In contrast, pandemics seeded in cities with small Fm 

like Gulbarga, India, have slower pandemic processes and lower 
first-year infection rates (Movie S2). We further used generalized 
additive models (GAMs) to fit the relationship between the first-year 
infection rates and Fm. As shown in Fig. 2B, the first-year infection 
rate grows nonlinearly with the increase of Fm. For cities with small 
Fm, the first-year infection rate is positively correlated with Fm. 
However, the relationship shows a converging trend for cities with 
large Fm. For cities with Log10Fm ≥ 4.5 (over 70% of all cities), the glo-
bal infection rates are nearly the same at the end of the first year.

The effects of NPIs
Since the World Health Organization (WHO) declared the 
COVID-19 pandemic on 2020 March 11, a variety of NPIs have 
been implemented to contain the pandemic. These NPIs mainly 
include two groups of controls: social distancing and travel re-
strictions (14). Social distancing measures aim to suppress disease 
transmission within cities (1–3), while travel restrictions aim to 
control the disease spread across cities. We examined the effect 
of three social distancing measures (i.e. contact reductions in 
schools, workplaces, and general communities) and travel restric-
tions by comparing the results of 100 simulations (for each NPI) 
with the baseline scenario. As experimental controls, each NPI 
was assumed to be separately implemented 1 week after the iden-
tification of the first clinical case. Figure 3A summarizes how 
much the first-year infection rate would be averted when imple-
menting social distancing measures and travel restrictions with 
different intensities. It was observed that the relationship be-
tween the outcome and the control intensity is different for con-
tact reductions and travel restrictions. Contact reductions in 
schools (S), workplaces (W), and general communities (G) are con-
sistently effective, as the impacts gradually increase with more in-
tensive controls. In contrast, there is a divergence for the effect of 
travel restrictions: even though travel restrictions could prevent 
85.94% [95% CI (85.10%, 86.79%)] of the global infections with 
maximum intensity (99.9%), controls with intensities below 90% 
have almost no effect on the first-year infection rate [lower than 
7.31%, 95CI (6.70%, 7.92%)].

The effects of social distancing measures are closely related to 
the proportion of each contact type. For example, the proportion 

of contacts in general communities is substantially larger than 
those in schools and workplaces (Fig. S5). Thus, reducing contacts 
in general communities is the most effective social distancing 
measure (Fig. 3A). This correlation implies that governments in 
different geographic regions could focus on different social dis-
tancing strategies based on their contact structure (Fig. 3B). For 
example, developed regions such as Europe and Northern 
America have higher labor force participation rates (Fig. 3B). 
Therefore, people have relatively more contacts at workplaces 
and fewer contacts in general communities. The situation is the 
opposite for developing regions like Africa, which have a higher 
proportion of contacts in general communities and a lower pro-
portion in workplaces (Fig. 3B).

In addition to separate NPIs, we also examined the effects of 
combined NPIs. Figure 3C presents the averted infections for the 
combined NPIs of school closure (i.e. 100% school contact reduc-
tions), 90% travel restrictions, and different intensities of contact 
reductions in workplaces and general communities. The results 
revealed the importance of contact reductions in workplaces 
and general communities to contain the pandemic spread. 
Compared with 80% contact reductions in workplaces and general 
communities which could prevent 99.5% [95% CI (99.5%, 99.5%)] 
infections, 30% contact reductions in them could only prevent 
75.1% [95% CI (74.7%, 75.4%)]. Figure 3D presents the averted in-
fections for combined NPIs of 70% contact reductions in schools, 
workplaces, and general communities and different intensities 
of travel restrictions. The result also revealed the importance of 
travel restrictions as 10% travel restrictions could only prevent 
94.0% [95% CI (93.5%, 94.4%)] infections, even combined with 
70% social distancing measures.

Impacts between countries
During the COVID-19 pandemic, global countries have shown dis-
crepancies in their commitment to take actions to suppress dis-
ease transmissions. Countries that adopt passive mitigation 
strategies, like herd immunity (15), might eventually overwhelm 
their health care system and impact the mitigation efforts of other 
countries (14). To examine such impacts, we first ran 100 simula-
tions assuming that all countries take the same 120-day control of 
70% contact reductions in schools, workplaces, and general com-
munities and 90% travel restrictions 1 week after the first clinical 

Fig. 2. A) The curves of pandemics randomly seeded in 300 cities across the world. Colors indicate the relative size of the seed city’s total passenger flow 
(Log10Fm). B) The relationship between first-year infection rates and the passenger flow of the seed cities (Log10Fm). Line denotes the best estimate using 
GAMs. The gray area denotes the 95% CIs.
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case as a reference of the collective control scenario. In this scen-
ario, 98.18% [95% CI (98.05%, 98.31%)] of global infections would 
be prevented in the first year. We then chose one country assum-
ing that no NPIs are applied in it (i.e. the NC country) and reran the 
simulation to monitor its impacts. For each NC country, we ran 
the simulation 100 times and compared the results with the col-
lective control scenario to test if the infections in the other coun-
tries were significantly increased (the significance was tested 
using two-sample t test). Since the impact of the seed origin is in-
comparable with other countries, we only analyzed the results of 
nonorigin countries.

Thirty countries or territories were identified whose passive 
strategies would significantly increase the infections in the re-
maining countries (Fig. 4A). Japan has the largest impact which 
may cause approximately 9.45 million additional infections 
[0.17%, 95% CI (0.15%, 0.18%)] in other countries. The 30 countries 
with significant impacts fall into two categories: (i) Asian coun-
tries like Japan and Korea which are close to the seed origin and 
(ii) developed countries in Europe and Northern America like the 
United Kingdom and the United States. The result implies that 
the NC country’s negative impact is associated with its economic 
status and proximity to the seed origin. We further used GAMs to 

analyze the influencing factors of increased infections with two 
variables: the gross domestic product (GDP) of NC countries and 
their effective distances from the seed origin (see Materials and 
methods). As shown in Fig. 4B and C, the relationship between in-
creased infection and GDP presents a nonlinear pattern. The im-
pacts of most countries with low GDP are minor, which presents 
a flat pattern in low GDP ranges. For countries with high GDP, their 
impacts significantly increase with the increase in GDP. The rela-
tionship between increased infection and the effective distance 
also shows a nonlinear trend. Countries that are distant from 
the seed origin show little impact. For countries near the seed ori-
gin, their impacts significantly increase with the decrease of ef-
fective distance.

Such associations were also observed in the impacts between 
countries. As shown in Fig. S6, we identified 6,135 impact relations 
between countries, each of which represents that the infection 
rate of one country would be significantly increased if another 
country (i.e. NC country) takes no control. For example, one link 
from Japan (JPN) to Korea (KOR) means that the infection rate of 
KOR would be significantly increased if JPN takes no control. As 
displayed in Fig. S6A, 4,632 (75.50%) of these impact relations 
are directed from countries with higher GDP to countries with 

Fig. 3. Global effects of NPIs. A) Averted first-year infections of each NPI with different control intensities. S, W, and G indicate the reduction of social 
contacts in schools, workplaces, and general communities, respectively; T indicates travel restrictions. B) Percentage of contacts in schools (red), 
workplaces (blue), and general communities (green) summarized in global regions. Dots indicate the mean value in each region; bars indicate the 95% CIs. 
LAC represents Latin America and the Caribbean region, and NA represents the Northern American region. C) Effects of combined NPIs with school 
closure (100% school contact reduction), 90% travel restrictions, and different intensities of contact reductions in workplaces and general communities. 
The y-axis denotes contact reductions in workplaces and general communities. D) Effects of combined NPIs with 70% contact reductions in school, 
workplace, and general communities and different intensities of travel restrictions. The y-axis denotes percentages of travel restrictions.
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lower GDP, tripling the number from the opposite direction (1,503, 
24.50%). Meanwhile, 3,727 (60.75%) of the intercountry impacts 
are directed from countries that are closer to the seed origin, while 
the rest 2,408 (39.25%) are from farther countries (Fig. S6B).

Discussion
In this study, we developed an age-structured pandemic simula-
tor that could model the spatial–temporal spread of EIDs like 
COVID-19 on the global scale. Prior to this study, the contact ma-
trix data were mostly used in local age-structured models to 
evaluate the effect of NPIs in individual countries or regions. 
The simulator we developed was a novel attempt to integrate 
age-structured disease transmission models across cities in differ-
ent countries. The baseline scenario results indicate that an un-
mitigated pandemic is highly likely to spread across the world 
regardless of where it originated. For over 70% of global cities, 
the impacts at the end of the first year are nearly the same if no 
controls are implemented.

The results inform the need for a systematic global framework 
for the surveillance of EIDs. Prior studies have shown that current 
public health surveillance systems have uneven global coverages 
(16) and many countries lack sufficient resources to maintain 
high-quality and continuous surveillances (17). As we revealed 
that unmitigated pandemics seeded in most cities have the poten-
tial to cause severe global impacts within 1 year, the need is ur-
gent to strengthen and optimize the global public health 
surveillance system. Moreover, the results also indicate that the 
mitigation of EIDs like COVID-19 relies on joint efforts across 
countries. We found that global mitigation efforts could be signifi-
cantly hampered if developed countries or countries near the seed 
origin take no control. Existing studies have shown that human 
mobility contributes to the increase of COVID-19 infections (18). 
Developed countries have greater human mobility and broad con-
nections with others and thus are more likely to export infected 
cases to the rest of the world once no mitigations are enforced. 
We suggest that developed countries should pay more attention 

to containing the pandemic as they are more likely to impact other 
countries or regions.

Our study is subject to several limitations. First, the current 
study mainly considers the effect of NPIs in the first year of the 
pandemic, in which pharmaceutical approaches are often un-
available for EIDs. Further studies could implement a pharma-
ceutical intervention module on the basis of the proposed 
framework to account for its influences. Second, our simulation 
results are subject to limitations of the data we used. For example, 
due to the lack of individual-level data like mobile phone trajec-
tories (19, 20), the current model is unable to evaluate the impacts 
of health care capacity limitation (21), clinical testing (22), contact 
tracing (23, 24), and case isolation (25). The static social contact 
matrix data we used are unable to explicitly capture human con-
tacts in specific locations or specific time periods. Therefore, the 
proposed model could not track the decline of contacts as several 
studies did using the Mobility Index (26). Future studies could in-
tegrate Mobility Index into the current model if the quantitative 
relations between social contact matrix data proposed in Prem 
et al. (5) and the Mobility Index are identified. The airline network 
is unable to characterize human travels with road and railway 
transport modes and thus might be biased for the simulations in 
small regions (10, 27, 28). Besides, the global air traffic network 
we built is undirected because the monthly air traffic data are 
symmetrical. When examining the effects of travel restrictions, 
we applied the same level of restrictions on both directions be-
tween two regions. Further studies could try to examine more 
travel restriction policies with the support of more detailed air 
traffic data. Third, more scenarios could be considered in future 
studies. In the Results section, we presented a few examples to 
demonstrate how the model could provide decision support for 
the global pandemic mitigation. However, the usage of the model 
is not limited to the scenarios we explored. For example, we only 
presented the simulation results in the first year since the out-
break. Future studies could examine the simulation results in 
the following years. When assessing the effects of NPIs, we as-
sumed that each control was implemented separately 1 week 

Fig. 4. The impact of passive strategies. A) Scatterplot of the number of significantly impacted countries (x-axis) and increased infections in the rest of the 
countries (y-axis) in the first year if the NC country takes no control. Dot size indicates the relative size of each country’s gross domestic product (GDP) in 
2019. Dot color indicates countries in different geographic regions. Gray dots indicate that the global impacts of corresponding countries are not 
significant at 95% CIs. B) The relationship between increased infections and the GDP of NC country. C) The relationship between increased infections and 
the effective distance of the NC country to the seed origin. In B) and C), the gray area indicates 95% CIs.

Xiao et al. | 5

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad127#supplementary-data


after the identification of the first clinical case. Future studies 
could also examine the effects of combined NPIs or set different 
response times. Finally, when modeling the effects of NPIs, we 
do not distinguish each country’s ability in implementing the con-
trol. Yet, existing research found that the capability of global 
countries in taking controls significantly influences the outcome. 
Future studies could further integrate indices like the Global 
Health Security (GHS) Index (29) into our model to account for 
such influences.

This study models the global dynamics of EIDs with epidemio-
logical parameters derived from evidence-based studies of 
COVID-19. Instead of focusing on the ongoing pandemic evolu-
tion, we tried to learn from the pandemic and established a frame-
work that could model the global evolution of EIDs under a wide 
range of scenarios. The framework could be used to model other 
EIDs with different epidemiological parameters and support the 
disease intervention in advance. However, a note of caution is 
that the simulation results are sensitive to the uncertainty of 
the parameters. For example, the first-year infection rate signifi-
cantly increases with greater R0 (Fig. S7A). Figure S7B presents an-
other example, showing that the first-year infection rate is also 
significantly influenced by the latency period (Z ). The modeling 
results are therefore needed to be interpreted with caution. In 
addition, as our model did not integrate real-time data sources 
such as Mobility Index or up-to-date flight information, it is 
more applicable for the scenario analysis of EIDs, rather than 
monitoring or predicting the ongoing pandemic.

Materials and methods
Age-structured pandemic model
The mathematical formula of the model is as follows:
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Here, i and j are the indexes of a 5-year age band G (G = {[0, 5), 
[5, 6), [10, 15), . . . , [70, 75), [75, )}, i, j = 1, 2, 3 . . . 16), while 

m and n are the indexes of cities, (m, n = 1, 2, 3 . . . 3157). Si
m, Ei

m, 

Ici
m, Iai

m, Ri
m, and Ni

m are the susceptible, exposed, symptomatic in-
fected, asymptomatic infected, removed, and the total population 
of age band Gi in city m, respectively. Z is the average latency pe-
riod. Dc and Da are the average time of symptomatic and asymp-
tomatic infections (see Table S1). αm(t) is the seasonal factor of 
virus transmission (Eq. S1 and Fig. S3). β is the transmission 

rate and is derived from R0 (Eqs. S2 and S3). ri
m represents the 

proportion of symptomatic infection of age band Gi in city m. ui
m 

represents the relative susceptibility of age band Gi in city m. 

The values of age-specific symptomatic infection rate ri
m and sus-

ceptibility ui
m are derived from past studies (Table S1) (30). C is the 

contact matrix, where Cij
m is the daily number of contacts in age 

band i for per capita population in age band j in city m. We use 

qi
m to represent the case isolation for the symptomatic infected 

population of age band Gi in city m, and qi
m is set as 1, denoting ab-

solute isolations (i.e. no social contacts for the isolated popula-

tion). We use the daily number of people (Fi
mn) in the age band Gi 

flying from m to n to characterize disease transmission across cit-

ies. We assume that the symptomatic infected population (Ici
m) do 

not travel between cities, while the asymptomatic infected popu-

lation (Iai
m) are free to travel. The core model is integrated stochas-

tically with each term on the right-hand side in Eqs. 1–5
determined using a random sample from the Poisson distribution. 
Simulations are initialized with one case of each age group in the 
seed city being infected with all populations assumed to be sus-
ceptible. The seed time is set as October 15 following existing 
modeling studies (31). In the modeling analysis, we set R0 = 2.4 
as a representative example following previous work (9, 30) and 
set R0 = 2.1 and R0 = 2.7 for low and high transmissibility 
scenarios.

The age-structured social contact matrix Cij
m is used to denote 

the number of daily contacts in age band i for per capita popula-
tion in age band j in city m. As introduced in previous research, 
Cij

m consists of four types of contacts:

Cij
m = Cij

m(H) + Cij
m(S) + Cij

m(W) + Cij
m(G), (6) 

where Cij
m(H), Cij

m(S), and Cij
m(W) represent contacts at home, 

schools, and workplaces. Cij
m(G) represents the contacts in all other 

social settings such as restaurants and shopping malls. The ef-
fects of social distancing measures are examined through the ma-
nipulation of the four contact matrices. For example, to model the 
effect of 70% reduction of contacts at workplaces, we could multi-

ply Cij
m(W) with 1–70% and run the simulation with the adjusted Cij

m 

(i.e. only 30% of Cij
m(W) is retained in the adjusted Cij

m).

Global simulation network
The global pandemic simulator we proposed is based on three 
data: the contact matrix data proposed in Prem et al. (5), the global 
flight data, and the global population data. Figure S1 presents the 
workflow we used to integrate the three data.

The global airline data are derived from the International Air 
Transportation Association (IATA) (https://www.iata.org) 
(11, 12). The IATA data contain the flight route information of 
4,418 commercial airports around the world. For each flight route, 
the origin airport, the destination airport, and the estimated num-
ber of monthly passengers between them are recorded. The cover-
age of the data set is estimated to cover 99% of global commercial 
air flights (12). In this study, we used the monthly IATA data from 
2019 January to 2019 December to avoid the influence of COVID-19 
on air traffic. For each flight route, the monthly total volume was 
equally disaggregated to each day within the corresponding 
month (e.g. the traffic volume of January 1 equals to the January 
total divided by 31). Since the monthly air traffic data between 
two airports are nearly the same for both directions, we also sym-
metrized the air traffic data following existing work (28) so that the 
traffic volume from one airport to another equals the opposite 
direction.
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The global population data we used are the Administrative Unit 
Center Points (AUCP) population data derived from the fourth ver-
sion of the Gridded Population of the World (GPWv4) collection 
(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4). The GPWv4 
data are available for five time periods: 2000, 2005, 2010, 2015, 
and 2020. The 2010 data are produced based on the most detailed 
worldwide Population and Housing Census in 2010. Data for the 
rest years are interpolated with the 2010 census. The population 
data are stored in two formats: one raster format and one vector 
format. In this study, we use the vector data which consist of 
13.5 million administrative unit center points as suggested in 
Wang and Wu (28). In the original data set, the age-structured 
population data are only available for 2010 and are categorized 
in 5-year age bands for all ages from 1 to 90. We first reclass the 
data to match the age band of the contact matrix proposed in 
Prem et al. (5) and then rescaled the age band population of 2010 
to 2020 based on the ratio of each unit’s total population in 2020 
and 2010.

The AUCP data are integrated with IATA data to determine how 
many people each airport in IATA data serves (Fig. S1). 
Specifically, each AUCP is assigned to the closest airport with 
two constraints: (i) the assigned airport is within the same country 
as the AUCP, and (ii) the distance between each AUCP and the as-
signed airport is smaller than 200 km, a cutoff distance intro-
duced by Balcan et al. (12) to characterize the maximum 
service area of commercial airports. Existing studies noted that 
the global flight network is densely connected, and thus, it is 
computationally consuming and unnecessary to include all 
nodes and edges to characterize the global spread of disease 
(28). As shown in Fig. S1, we further use the following constraints 
to trim the network and increase computational efficiency: (i) all 
cities should be located within the 152 countries that have social 
contact matrix data; (ii) all routes should have more than 365 
passengers in 2019, assuming at least one daily passenger on 
average; and (iii) all cities should have more than 500 population, 
a standard proposed by the European Union to identify clusters 
of human settlement. The result is a simulation network with 
3,157 cities (nodes) and 195,934 flight routes (edges), which cov-
ers 7.07 billion population in the world (Fig. S2). The characteris-
tics of cities in different geographic regions are summarized in 
Table S2.

Effective distance
The effective distance proposed in Brockmann and Helbing (32) is 
used to characterize the distance between cities. Compared with 
geographic distance measures, the effective distance is a better 
approach to characterizing the dynamics of network-driven con-
tagion phenomena. Specifically, the effective distance (dmn) from 
city n to a directly connected city m is defined as:

dmn = 1 − log Pmn, (7) 

where Pmn is the fraction of passenger flow from city n to city m.
For cities with no direct connections, the effective distance Dmn 

is defined as the shortest effective path between two cities:

Dmn = min
Γ

λ(Γ), (8) 

where λ(Γ) is the directed length for ordered path 
Γ = {n1, n2, n1, . . . , nL}.

In this study, we analyze the effective distance of countries 
from the seed origin. The effective distance from city n to country 
M is defined as the mean effective distance from n to all cities in 
M(M = {m1, m2, m3, . . . , mk}):

DMn =

M

k=1
mk

Nk
, (9) 

where DMn is the effective distance from city n to country M. mk 

is the kth city in country M. Nk is the total number of cities in 
country M.
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