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Abstract
Introduction  Identifying individual characteristics or underlying conditions linked to adverse drug reactions (ADRs) can 
help optimise the benefit–risk ratio for individuals. A systematic evaluation of statistical methods to identify subgroups 
potentially at risk using spontaneous ADR report datasets is lacking.
Objectives  In this study, we aimed to assess concordance between subgroup disproportionality scores and European Medi-
cines Agency Pharmacovigilance Risk Assessment Committee (PRAC) discussions of potential subgroup risk.
Methods  The subgroup disproportionality method described by Sandberg et al., and variants, were applied to statistically 
screen for subgroups at potential increased risk of ADRs, using data from the US FDA Adverse Event Reporting System 
(FAERS) cumulative from 2004 to quarter 2 2021. The reference set used to assess concordance was manually extracted 
from PRAC minutes from 2015 to 2019. Mentions of subgroups presenting potential differentiated risk and overlapping with 
the Sandberg method were included.
Results  Twenty-seven PRAC subgroup examples representing 1719 subgroup drug–event combinations (DECs) in FAERS 
were included. Using the Sandberg methodology, 2 of the 27 could be detected (one for age and one for sex). No subgroup 
examples for pregnancy and underlying condition were detected. With a methodological variant, 14 of 27 examples could 
be detected.
Conclusions  We observed low concordance between subgroup disproportionality scores and PRAC discussions of potential 
subgroup risk. Subgroup analyses performed better for age and sex, while for covariates not well-captured in FAERS, such 
as underlying condition and pregnancy, additional data sources should be considered.

1  Introduction

The response to a drug or vaccine includes both therapeu-
tic effects and potential adverse drug reactions (ADRs); 
the magnitude of such effects can be highly heterogeneous 
across patient subgroups [1]. If responses are significantly 
associated with known subgroup characteristics, such as 
age, sex or underlying condition, prescribers can use this 
information to identify individuals who are more likely to 
experience ADRs, and thus optimise the benefit–risk ratio 
for a given patient.

Associations between patient characteristics and ADRs 
are well understood in some cases and can be used to 
inform clinical decisions. For instance, the drug rasbur-
icase is used to prevent and treat tumour lysis syndrome, 
which is an oncological emergency in patients with certain 

solid tumours or haematological malignancies [2]. However, 
rasburicase is contraindicated in patients with glucose-
6-phosphate dehydrogenase (G6PD) deficiency because of 
an increased risk of haemolysis (rupturing of red blood cells) 
[2]. Thus, it is recommended that clinicians screen patients 
at high risk for G6PD deficiency, such as those of African 
or Mediterranean ancestry [3]. ADRs can also be associated 
with the sex of the patient. For example, young adult male 
patients are at increased risk of myocarditis associated with 
coronavirus disease 2019 (COVID-19) vaccination [4–6]. 
Conversely, female sex has been identified as a risk factor 
for drug-induced QT prolongation and Torsades de pointes 
[7–9], as well as congenital long-QT syndrome [10]. Addi-
tionally, lower doses of the hypnotic agent zolpidem are rec-
ommended for women, who eliminate zolpidem more slowly 
and are more prone to impairment of daytime activities than 
men [11].

Early in the drug development process, preclinical phar-
macodynamic and pharmacokinetic data are used to model Extended author information available on the last page of the article
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Key Points 

There is a lack of validated statistical methods that could 
help identify subgroups defined by characteristics such 
as age, sex and underlying conditions, and that might be 
at increased risk of adverse drug reactions.

We tested one of the few available first-pass screening 
subgroup methods using a large, diverse dataset of spon-
taneous adverse event reports (US FDA Adverse Event 
Reporting System [FAERS]).

Our study showed apparent low concordance between 
disproportionality scores calculated by subgroup analysis 
using FAERS and a reference set (European Medicines 
Agency Pharmacovigilance Risk Assessment Committee 
discussions of subgroup risk).

Age and sex were better captured within FAERS and 
showed relatively better concordance among the differ-
ent covariates tested. Covariates such as pregnancy and 
underlying condition might benefit from enrichment with 
additional data sources, such as electronic healthcare 
records data.

the risk of ADRs in human subjects [12–14]. The focus 
shifts to empirical evidence once a drug or vaccine enters 
human trials [15, 16]. Sometimes, rare but serious ADRs are 
recognised only after a drug is approved and marketed and 
appropriate steps are taken to minimise the risk [17].

Spontaneous reporting systems for adverse events (AEs) 
are the mainstay of postmarketing safety surveillance [18, 
19]. Because of the large volume of spontaneous reports, 
pharmaceutical companies and regulators use quantitative 
signal detection methodologies, mostly based on dispropor-
tionality analysis, to identify potential ADRs, which sub-
sequently undergo a focused clinical review [18, 20–22]. 
Quantitative signal detection is usually broadly applied to 
AE reporting datasets and often adjusts for potential con-
founders based on stratification. However, this one-size-fits-
all approach for stratification does not account for all the 
confounding in spontaneous AE reports and can therefore be 
misleading. It has been demonstrated that subgroup analyses 
can perform better than methods adjusted by stratification 
[21, 23–25] and potentially address modifying effects that 
might underly the AE data. Nevertheless, there is currently a 
lack of systematic subgroup analyses for first-pass screening 
and, when employed, subgroup analyses are often limited 
to specific demographic characteristics [26–28]. Quantita-
tive screening for a broad range of covariates in this context 
has recently been proposed [29]. This approach could be 

burdened by limitations related to the specificity of spon-
taneous reporting, such as lack of certain data needed to 
characterise subgroups, non-random reporting of specific 
elements on the spontaneous report, as well as a low number 
of AE reports for recently launched products or products 
with narrow indications or low exposure. However, sub-
group analysis could enable safety reviewers to efficiently 
screen large amounts of data to identify subgroups that may 
be at greater risk.

In this study, we aimed to examine the extent to which 
subgroup analysis can serve as a first-pass quantitative signal 
detection method in screening spontaneous AE reports. We 
also aimed to examine the potential limitations of sponta-
neous AE data sources that might influence the ability to 
identify subgroup statistical signals, such as missing data 
elements required for subgroup differentiation and subse-
quently point to ways to improve high-risk subgroup iden-
tification. To this end, we compiled a reference set of AEs, 
which we defined as any AE discussed within the context 
of differentiated subgroup risk in European Medicines 
Agency (EMA) Pharmacovigilance Risk Assessment Com-
mittee (PRAC) meeting minutes from 2015 to 2019. We then 
applied a recently published quantitative approach for sub-
group analysis [29] across a large and diverse dataset of AE 
reports and examined whether we could detect the reference 
set of a priori identified AEs.

2 � Methods

2.1 � US FDA Adverse Event Reporting System 
(FAERS) Dataset

US FDA Adverse Event Reporting System (FAERS) data 
cumulative from 2004 through the second quarter of 2021 
were used for the analyses. All records in which the product 
was reported as suspect or interacting (but not concomi-
tant) were included. The analyses were performed on all 
events at the Medical Dictionary for Regulatory Activities 
(MedDRA®; version 24.0) Preferred Term (PT) level and 
on all mapped products at their active moiety level. The 
data were standardised and deduplicated. Active moieties 
were derived, in alignment with the FDA’s definition [30], 
by Commonwealth Informatics in the same manner as the 
commercially available signal management platform Com-
monwealth Vigilance Workbench.

Specifically, drug name cleaning was performed by 
processing their source values through successive map-
pings, including uppercasing; removing excess whitespace, 
quotes, parentheses, trailing periods and commas, outer 
square brackets, braces, etc.; removing certain literals and 
variants thereof (e.g. ‘tablet’, ‘caplet’, ‘capsule’, ‘unknown’, 



603Assessing Agreement Between Statistical Alerting and EU Regulatory Discussions of Subgroup Risk

‘formulation’, ‘generic’, ‘nos’, etc.); removing units such as 
‘mg’ and ‘milligrams’; and changing backslashes to for-
ward slashes. The adjusted verbatim drug names were then 
mapped to product active ingredients according to known 
verbatim-active ingredients mappings. Any remaining 
unmapped verbatim drug names were assigned to the literal 
‘UNMAPPED’ and excluded from the analysis.

Duplicate detection was performed after all other data 
transformation and standardisation was complete. A large 
number of candidate duplicate pairs were initially gener-
ated based on a set of simple heuristic rules. These can-
didate pairs were then scored by implementing a quanti-
tative method based on the hit-miss algorithm previously 
described [31]. Briefly, the method generates a score cor-
related to the statistical likelihood that two different reports 
represent two versions of the same underlying case. Pairs 
with a score above a selected threshold are considered true 
duplicates. Finally, the individually identified duplicate 
pairs are ‘coalesced’ into duplicate groups (consisting of 
two or more case reports) to address multiple duplicates for 
a given case report.

2.2 � Reference Set

2.2.1 � Initial Reference Set

The PRAC meeting minutes from 2015 to 2019 were down-
loaded from the EMA website to extract the reference set of 
positive controls for this study. PRAC meetings aim to evalu-
ate data from all sources, including spontaneously reported 
suspected ADRs and results from interventional and obser-
vational studies that offer important data for signal detec-
tion. The PRAC discusses the prioritisation of emerging 
safety signals and issues recommendations required for their 
management, such as further investigation or drug labelling 
changes [32]. The minutes were reviewed independently by 
two healthcare professionals to identify any discussion of an 
AE associated with the use of a drug and the potential for a 
differentiated risk in particular subgroups. Neither the context 
of the discussion (e.g. signal detection, signal validation, sig-
nal assessment or hypothesis testing) nor the trigger (e.g. case 
reports, clinical trials or epidemiological studies) were consid-
ered for the purpose of identifying these subgroup examples.

Only subgroups corresponding to those defined by Sand-
berg et al. [29] (Table 1) were considered for inclusion in the 
subgroup analyses. Subgroups mentioning products in devel-
opment or vaccines were excluded from the reference set as 
they are rarely listed in FAERS. The included subgroups will 
be referred to as PRAC subgroup examples.

2.2.2 � Mapping of Drugs, Events and Subgroups

The drugs and events discussed in the PRAC subgroup 
examples did not fully correspond to the drug and medical 
ontologies used to code the FAERS data. For instance, a 
group of drugs rather than a specific drug may have been dis-
cussed or generic medical nomenclature rather than specific 
MedDRA® terms may have been used to describe events in 
PRAC examples. Additionally, the subgroups discussed by 
PRAC may not be readily identifiable in the AE reporting 
data set (e.g. pregnancy).

Where needed, events described in PRAC subgroup 
examples were independently mapped to MedDRA® PTs 
available in FAERS by two drug safety experts. The two 
mappings were then jointly reviewed by the experts and con-
sensus was reached.

Where needed, drugs described in PRAC subgroup exam-
ples were independently mapped to the active moieties avail-
able in FAERS by two drug safety experts. As for events, the 
two mappings were then jointly reviewed by the experts and 
consensus was reached.

PRAC subgroups were mapped to subgroups defined 
by Sandberg et al. [29]. Because the raw narratives were 
not available in the FAERS data used for this study, iden-
tifying cases for the pregnancy subgroup was challeng-
ing. Therefore, a slightly adapted algorithm was needed. 
Upper case MedDRA® PTs that included the substrings of 
‘PREGN’ or ‘GESTAT’ or ‘GRAVID’ or ‘MATERN’ or 
‘LABOUR’ and excluded terms such as ‘Pregnancy test 
negative’, ‘Pregnancy test false positive’ and ‘Pregnancy 
test urine negative’ were used to identify potential preg-
nancy cases. Additionally, the reported case must have 
concerned a woman between the age of 15 and 44 years. 
However, if the MedDRA® PT fell under the MedDRA® 
High Level Term ‘Unintended pregnancies’, these were 
excluded. This algorithm was used only to identify cases 
for the pregnancy subgroup and not to identify pregnancy-
related AEs.

2.3 � Subgroup Analysis 

Subgroup disproportionality scores were computed on the 
overall FAERS data using the method described by Sand-
berg et al. [29]. This method is based on the Information 
Component, which is the binary logarithm of a shrunk 
disproportionality data mining algorithm comparing the 
observed (O) number of reports for a given drug–event 
combination (DEC) with an expected (E) number of 
reports estimated from the overall database, and is fully 
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described elsewhere [33]. Briefly, subgroup dispropor-
tionality scores were obtained by restricting the O/E ratio 
computation to the subgroups of interest. No combinations 
of the subgroup covariates were considered and no further 
adjustment was performed within the subgroups. Bayesian 
credibility intervals were computed and the lower limit of 
95% credibility intervals was used to set the threshold for 
signal detection. For subgroup analyses, broader credibil-
ity intervals were used [29] compared with the intervals 
reported by Norén et al. [33] to control for the rate of 
spurious associations due to multiple comparisons [34]. 
The requirements reported by Sandberg et al. were used to 
identify subgroup signals, followed by sensitivity analyses 
using algorithm adaptations (Table 2). The analyses were 
run in Azure Databricks using PySpark.

2.4 � Assessment of Concordance

Concordance was determined at two different levels: at the 
subgroup example level, requiring just one of the PRAC 
subgroup DECs to be detected in FAERS to consider the 
subgroup example detected; and at the subgroup DEC level, 
assessing for each PRAC subgroup DEC whether it was 
detected in FAERS or not. Because the PRAC examples 
included combinations of covariates (i.e. age and underlying 
condition, sex and underlying condition, sex and age) but no 
combinations were considered for the subgroup analysis in 
FAERS, these examples were considered independently for 
each covariate. For instance, an example representing age 
and underlying condition was tested once for age and once 
for underlying condition.

3 � Results 

3.1 � Reference Set

Review of the PRAC meeting minutes from 2015 to 2019 
allowed retrieval of 52 subgroup examples (Fig. 1). Four 
PRAC subgroup examples that mentioned drugs pertaining 
to classes or events with different aetiology or biological 
mechanisms were split further, leading to the addition of 
seven PRAC subgroup examples and bringing the total to 
59 examples.

One PRAC subgroup example was excluded because it 
described an AE following vaccination. Twenty-four PRAC 
subgroup examples were excluded from the analysis, 8 
because of duplicates and 16 because the subgroups men-
tioned in the minutes were not considered by Sandberg et al. 
[29], i.e. AE in offspring from exposure during pregnancy 
or AE resulting from concomitant use of another substance 
(Fig. 1). All drugs discussed in the included PRAC sub-
group examples are approved for similar indications in the 
EU and US. After the mapping to FAERS active moieties 
and MedDRA® PTs, seven PRAC subgroup examples were 
excluded because the corresponding subgroup DECs were 
not reported in the FAERS database. Six of the seven were 
reported as DECs but not for the subgroup described in the 
PRAC minutes, and one was not reported as a DEC but was 
reported independently as a drug and an event.

Eventually, 27 PRAC subgroup examples were included 
in the analyses (Table 3). The drugs, medical concepts and 
subgroups described in these 27 examples were mapped to 
FAERS active moieties, MedDRA® PTs and subgroups as 

Table 1   Covariates and corresponding subgroups described by Sandberg et al., and subsets included in our analysis

BMI body mass index, FAERS Food and Drug Administration Adverse Event Reporting System, HLGTs High Level Group Terms, MedDRA 
Medical Dictionary for Regulatory Activities
a Algorithm slightly adapted given that free-text fields were not available in the FAERS version used for this analysis (see Methods section 2.2.2 
for details)
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described in Sect. 2.2.2, resulting in 1719 subgroup DECs 
included in the analysis (Online Resource Table 1).

The 27 PRAC subgroup examples were dominated by 
age and underlying condition, with underlying condition 
less dominant when considering the number of subgroup 
DECs (Table 3). These included subgroup examples that 
were triggered from case reports, clinical trials and epi-
demiological studies (Fig. 2). Age was mentioned in 22 
PRAC subgroup examples (1028 subgroup DECs), with 
only 11 exclusively about age (Table 4). Ten PRAC sub-
group examples referred to underlying conditions (385 
subgroup DECs), but only one exclusively mentioned 
underlying condition. Of the six PRAC examples men-
tioning sex as a subgroup (305 subgroup DECs), only two 
exclusively mentioned sex. Pregnancy was described in 
only one PRAC example (and only one subgroup DEC) 
that focused on exposure and harm to the mother. None 
of the PRAC subgroup examples specifically described 
countries or regions or referred to body mass index (BMI). 
Therefore, no country, region or BMI subgroupings were 
included in the present analysis. However, these covariates 
were, to some extent, available in FAERS. Country was 
reported in 98% of reports, and regions could be derived 
from countries. BMI, although not readily available in 
FAERS, could be approximated by the weight that was 
reported in 21% of reports. Height was not available in 
the version of FAERS used for this analysis but would be 
available in other spontaneous report systems.

3.2 � Availability of Subgroups in FAERS

Age was reported in 58% of FAERS cases, with adult cat-
egories being predominant (Online Resource Table 2). There 
were more than 5×106 subgroup DECs in FAERS for age, 

for approximately 7.5×106 AE reports with age known. Sex 
was provided in 89% of FAERS reports (Online Resource 
Table 2), with women representing 61% of reports where sex 
was known. Sex corresponded to more than 4×106 subgroup 
DECs in FAERS, with a total of approximately 11.6×106 
reports where sex is known. The underlying condition was 
approximated by all-drugs indication reported in the cases 
and at least one drug indication was reported in 88% of 
FAERS cases, of which 77% reported only one drug indi-
cation (Online Resource Table 2). There were more than 
19×106 drug indication subgroup DECs in FAERS, for a 
total of 11.5×106 reports with at least one drug indication. 
Finally, pregnancy cases represented 0.5% of FAERS reports 
(Online Resource Table 2) and translated to 129,826 sub-
group DECs in FAERS.

3.3 � Concordance Between FAERS Subgroup Signals 
and Pharmacovigilance Risk Assessment 
Committee (PRAC) Subgroup Examples

3.3.1 � Subgroup Example Level

Overall, 2 of the total 27 PRAC subgroup examples (7%) 
were detected in FAERS when applying the Sandberg sub-
group methodology (Table 3). Looking at each covariate, 
1 of the 22 (5%) and 1 of the 6 (17%) PRAC subgroup 
examples for age and sex, respectively, were detected. 
For underlying condition and pregnancy, none of the 10 
and none of the 1 PRAC subgroup examples, respectively, 
were detected. When relaxing the requirement for sub-
group signals to not be disproportionately reported in the 
entire database (i.e. removal of the requirement that IC025 
for the entire database ≤ 0), 14 of the 27 (52%) PRAC 
subgroup examples were detected, with 10 of 22 (45%), 
5 of 6 (83%), 1 of 10 (10%) and 1 of 1 (100%) examples 

Table 2   Requirements to identify disproportionately reported subgroup DECs

DECs drug–event combinations, IC information component, IC0005, IC005 and IC025 lower limit of the 99.9%, 99% and 95% credibility interval 
for the IC, respectively, O/E observed-to-expected ratio
a This alternative allows for detecting patterns that would exist in several but not all subgroups with a less strict credibility interval for each indi-
vidual subgroup
b Observed (O) is the number of observed reports for the subgroup DEC and expected (E) is the number of expected reports for the subgroup 
DEC obtained by multiplying the number of reports for the product of interest in the subgroup by the number of reports for the event of interest 
in the subgroup divided by the total number of reports in the subgroup. The adjusted O/E ratio for the remainder of the database is computed as 
a weighted average of the O/E ratios in the other subgroups for the same covariate
c ICΔ cannot be calculated when the product or event is not reported with other subgroups (i.e. the expected number of reports from the remain-
der of the database is 0); thus, the related adjusted O/E ratio cannot be calculated

Requirements by Sandberg et al. [29] Adaptations for sensitivity analyses

1. Subgroup IC0005 > 0 and unadjusted entire database IC025 ≤ 0
or for covariates with > 2 subgroups:
IC005 > 0 simultaneously in ≥ 2 subgroups and unadjusted entire database IC025 ≤ 0a

1. Unadjusted entire database IC025 ≤ 0 ignored
2. Subgroup IC0005 > 0 changed to subgroup IC005 > 0

2. IC value computed by dividing the subgroup O/E by the adjusted O/E for the remain-
der of the databaseb with log adjustment and shrinkage (ICΔ) > 1

3. ICΔ > 1 changed to ICΔ > 0 or ICΔ not calculablec
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detected for age, sex, underlying condition and pregnancy, 
respectively (Table 3). This suggests that when a subgroup 
example from the PRAC discussions was a subgroup sta-
tistical signal, it could have initially been identified by 
an overall statistical signal, at the DEC level, and then 
the stratum-specific effect identified as a second step. The 
detected examples included subgroups triggered from case 
reports, clinical trials and epidemiological studies (Fig. 2). 
None of the other adjustments to the requirements reported 
by Sandberg et al. [29] for sensitivity analyses had a sig-
nificant impact on detection (Table 3).

3.3.2 � Subgroup Drug–Event Combination (DEC) Level

When moving from the subgroup example level to the sub-
group DEC level, only 2 of the 1719 PRAC subgroup DECs 
(0.1%) were detected by applying the Sandberg subgroup 
methodology [29] to FAERS data (Table 3). One of 1028 
(0.1%) and 1 of 305 (0.3%) subgroup DECs for age and 
sex, respectively, were detected. None of the 385 and none 
of the 1 PRAC subgroup DECs were detected for under-
lying condition and pregnancy, respectively. Increased 
concordance was achieved when a subgroup signal was 

Fig. 1   PRAC subgroup examples (attrition diagram). FAERS Food and Drug Administration Adverse Event Reporting System, PRAC​ Pharma-
covigilance Risk Assessment Committee
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considered detected regardless of whether it was dispro-
portionately reported in the entire database (i.e. removal 
of the requirement that IC025 for the entire database ≤ 0). 
In this case, 170 of the 1719 PRAC subgroup DECs (10%) 
were detected, but at the cost of generating more subgroup 
signals (increased from 193,656 to 1,312,922). When relat-
ing to patient’s age, sex, underlying condition, and preg-
nancy status, 69 of 1028 (7%), 75 of 305 (25%), 25 of 385 
(6%), and 1 of 1 (100%) subgroup DECs were detected, 
respectively. The poorer performance at this level com-
pared with the subgroup example level is explained by the 
low specificity of the PRAC subgroup discussions that led 
to dilution of the effect across the many MedDRA® PTs 
and drug active moieties, and, subsequently, decreased 
detection power.

3.4 � Post Hoc Sensitivity Analysis

3.4.1 � Restriction of PRAC Subgroup Examples

Some of the PRAC subgroup examples could not be rigor-
ously analysed in the same way as the subgroup statistical 
alerts for which the Sandberg methodology was proposed. 

Hypothesizing that excluding such subgroups might improve 
the performance, a post hoc sensitivity analysis was per-
formed in which the following PRAC subgroup examples 
were excluded.

•	 Any PRAC example where only one subgroup had the 
ability to be exposed to the drug or to experience the 
event (e.g. risk of developing ovarian macrocysts in 
women exposed to mitotane). Despite subgroup analyses 
being more appropriate in these situations, it cannot be 
argued that there is a differentiated risk in the subgroups 
of the same covariate.

•	 Any PRAC example where the subgroups were condi-
tional, i.e. they involved two different covariates (Table 4; 
e.g. adults [age] with pulmonary hypertension associated 
with idiopathic interstitial pneumonia [underlying condi-
tion] experiencing an increased risk of mortality when 
exposed to riociguat). Given that combinations of covari-
ates were not considered in the study by Sandberg et al. 
[29], these were assessed independently for each covari-
ate, thereby applying an approach using ‘OR’ instead of 
‘AND’; however, this led to considerable deviation from 
the subgroup signals initially discussed in the PRAC 
meeting minutes.

Fig. 2   Distribution of PRAC subgroup examples per trigger category
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Table 4   Individual subgroup combinations identified in PRAC meeting minutes

Covariates Subgroup originally discussed in 
PRAC meeting minutes

Individual subgroups as available in FAERS, after mapping to the Sandberg et al.  
definition

PRAC subgroup 
examples, n (cor-
responding subgroup 
DECs, n)

Age Neonate 0–27 days 1 (3)
Paediatric 0-27 days; 28 days–23 months 1 (4)
Child 2–11 years 1 (3)
Paediatric 12–17 years 1 (1)
Adult 18–44 years; 45–64 years 2 (37)
Elderly 65–74 years 1 (1)
Elderly 65–74 years; 75+ years 4 (23)

Pregnancy Pregnanta 1 (1)
Age and underlying 

condition
Adult with pulmonary arterial 

hypertension
18–44 years; 45–64 years; indication HLGT: Pulmonary vascular disorders 1 (14)

Adult who underwent surgery 18–44 years; 45–64 years; indication HLGTs:
Bone and joint therapeutic procedures
Cardiac therapeutic procedures
Endocrine gland therapeutic procedures
Gastrointestinal therapeutic procedures
Haematological and lymphoid tissue therapeutic procedures
Head and neck therapeutic procedures
Nervous system, skull and spine therapeutic procedures
Obstetric and gynaecological therapeutic procedures
Soft tissue therapeutic procedures
Therapeutic procedures and supportive care NEC
Vascular therapeutic procedures

1 (109)

Elderly patient with cancer 65–74 years; 75+ years; indication HLGTs:
Breast neoplasms malignant and unspecified (incl. nipple)
Endocrine neoplasms malignant and unspecified
Gastrointestinal neoplasms malignant and unspecified
Haematopoietic neoplasms (excl. leukaemias and lymphomas)
Hepatobiliary neoplasms malignant and unspecified
Leukaemias
Lymphomas NEC
Lymphomas non-Hodgkin’s B-cell
Metastases
Miscellaneous and site unspecified neoplasms malignant and unspecified
Neoplasm-related morbidities
Plasma cell neoplasms
Renal and urinary tract neoplasms malignant and unspecified
Reproductive neoplasms female malignant and unspecified
Reproductive neoplasms male malignant and unspecified
Respiratory and mediastinal neoplasms malignant and unspecified
Skin neoplasms malignant and unspecified

1 (37)

Adult with type 2 diabetes mellitus 18–44 years; 45–64 years; indication HLGT: glucose metabolism disorders (incl. 
diabetes mellitus)

1 (142)

Adult with pulmonary hyperten-
sion associated with idiopathic 
interstitial pneumonia

18–44 years; 45–64 years; indication HLGTs: pulmonary vascular disorders
Lower respiratory track disorders (excl. obstruction and infection)

1 (7)

Adult with antiphospholipid 
syndrome and a history of 
thrombosis

18–44 years; 45–64 years; indication HLGTs: coagulopathies and bleeding diatheses 
(excl. thrombocytopenic)

Embolism and thrombosis

1 (370)

Adult with haematopoietic stem 
cell transplantation

18–44 years; 45–64 years; indication HLGT: Haematological and lymphoid tissue 
therapeutic procedures

1 (12)

Adult with inflammatory bowel 
disease

18–44 years; 45–64 years; indication HLGT: Gastrointestinal inflammatory conditions 1 (283)

Underlying condition Cockayne syndrome Indication HLGT: neurological disorders congenital 1 (1)
Sex and underlying 

condition
Men with benign prostatic hyper-

plasia
Male; indication HLGT: prostatic disorders (excluding infections and inflammations) 1 (10)

Sex Man Male 1 (6)
Woman Female 1 (4)

Sex and age Postmenopausal woman Female; 45–64 years; 65–74 years; 75+ years 2 (636)
Man and postmenopausal woman Female; 45–64 years; 65–74 years; 75+ years; male 1 (15)

DECs drug–event combination, FAERS Food and Drug Administration Adverse Event Reporting System, HLGT High Level Group Term, NEC 
not elsewhere classified, PRAC​ Pharmacovigilance Risk Assessment Committee
a Algorithm slightly adapted given that free-text fields were not available in the version of FAERS used for this analysis (see Methods section 2.2.2 
for details)
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3.4.2 � Results at Subgroup Example Level

Applying these additional exclusion criteria, our sample of 
PRAC subgroup examples was reduced from 27 to a smaller 
sample size of 11. Of those 11, one (9%) was detected using 
the Sandberg methodology. When considered regardless of 
whether they were disproportionately reported in the entire 
database, two examples (18%) were detected as subgroup 
signals. These represented 2 of 10 PRAC examples (20%) for 
age and none for the one underlying condition PRAC exam-
ple. The main reasons that nine subgroup examples were 
not detected by the latter approach were that the number of 
observed cases for the subgroup DECs was small and with 
broad credibility intervals (7 of 9), the subgroup DECs were 
not reported more than expected (1 of 9) and the O/E ratios for 
the subgroups were not substantially different from the O/E 
ratios for the remainder of the database (i.e. ICΔ ≤0; 1 of 9).

3.4.3 � Results at Subgroup DEC Level

The remaining 11 PRAC subgroup examples represented only 
70 subgroup DECs. One of 70 (1%) PRAC subgroup DECs 
was detected in FAERS using the Sandberg method [29]. 
When examined regardless of whether they were dispropor-
tionately reported in the entire database, four subgroup DECs 
were detected, all of which related to age (4 of 69 [6%]).

4 � Discussion

Subgroup analyses can be of vital importance in postmarket-
ing safety surveillance to identify subgroups at higher risk of 
developing specific ADRs. Currently, both a widely accepted 
gold standard to assess quantitative signal detection methods 
[35] and systematic assessment of the extent to which quan-
titative data mining on spontaneous reports correlates with 
subgroup safety risk differences are lacking. In this study, we 
applied a recently published method [29] that describes first-
pass screening subgroup analysis for a variety of risk fac-
tors, to a large AE dataset. To test this methodology, FAERS 
data were selected because they include more than 13 × 106 
reports, are public domain, are widely used for method test-
ing and contain a diverse set of medications, albeit not vac-
cines. In the absence of any gold-standard reference set for 
the subgroup analyses, the PRAC subgroup examples were 
selected as a reference set. They were chosen because they 
are externally recognised, are in the public domain and are 
not reliant on spontaneous reporting. They constitute a valu-
able independent reference set of safety concerns that war-
rant discussion by a regulatory body, regardless of future 
labelling status. To our knowledge, this is the first study 

to evaluate the Sandberg subgroup method [29] and report 
on its ability to detect subgroups of potential increased risk 
across a large, diverse dataset. Our analysis demonstrated 
that the subgroup methodology detected PRAC subgroup 
examples in FAERS with a low sensitivity (7% at subgroup 
example level and 0.1% at subgroup DEC level).

Removing the requirement of the Sandberg methodol-
ogy for signals to not be disproportionately reported over-
all, not only improved the sensitivity (from 7 to 52% at the 
subgroup example level and from 0.1 to 10% at the sub-
group DEC level) but also generated more subgroup sig-
nals from FAERS data. It resulted in improved sensitivity 
for age and sex (detection of 45% and 83% at the subgroup 
example level and 7% and 25% at the subgroup DEC level, 
respectively). However, it should be noted that those signals 
would have been identified as DECs by routine dispropor-
tionality analysis and subsequently used by safety review-
ers to identify subgroups disproportionately reported and 
potentially responsible for the overall disproportionality. 
Eighty-one percent of the DECs detected by this adapted 
subgroup methodology would have been detected by rou-
tine overall disproportionality analysis. Conversely, 57% of 
DECs detected by routine disproportionality analysis would 
also be detected by the adapted subgroup methodology. We 
also assessed the sensitivity after excluding PRAC examples 
with combinations of covariates or where only one subgroup 
had the ability to be exposed to the drug or to experience 
the event in a post hoc analysis. PRAC examples for age 
were mainly included and the sensitivity at the subgroup 
example level was reduced to 20% for age and 18% overall. 
After reviewing the outputs of the post hoc analysis, the 
low sensitivity observed was mostly attributed to the small 
sample size of observed cases in FAERS and the resulting 
broad credibility intervals.

Candore et al. [20] assessed several overall disproportion-
ality methods using various spontaneous reporting systems 
and showed a sensitivity ranging from 19 to 46% and a posi-
tive predictive value from 10 to 21%. In this study, the sen-
sitivity ranged from 0.1 to 52%, therefore sensitivities were 
similar to overall disproportionality analyses. Positive pre-
dictive value could not be calculated because our reference 
set did not include the exhaustive list of positive controls but 
is likely very low. It should be noted that the reference set 
of positive controls used by Candore et al. [20] and the one 
used in this study are very different.

The decision of how to group or split covariates into sub-
groups may affect the analysis. For example, age subgroups 
defined by Sandberg et al. [29] did not always match with 
the age subgroups mentioned in PRAC examples, potentially 
diluting the disproportionality. In addition, not combining 
covariates, when combinations were present in 59% of 
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PRAC examples, ignores the fact that the modifying effect of 
one covariate may differ by subgroups of the other covariate. 
A scan test (or more advanced machine learning techniques) 
could be used to handle these limitations by assessing all 
meaningful combinations while controlling for multiple test-
ing and not having to define the subgroups a priori.

There are several limitations to our study that should be 
considered when interpreting concordance. First, the PRAC 
minutes may not use product active moieties and event 
MedDRA® PTs to represent drug exposure and adverse 
events. Translating these to standardised dictionaries with a 
different granularity, such as MedDRA®, may allow for vari-
ability in results. After the mapping, the majority of PRAC 
subgroup examples concerned a range of active moieties, 
subgroups and MedDRA® PTs. These multiple entries for 
drug, event and subgroup may reduce the detection power 
by resulting in more subgroup DECs with fewer data, or 
diluting the effect by mixing subgroups with high expo-
sure effect with subgroups with low exposure effect. This 
might explain the observed discrepancy between sensitiv-
ity at the subgroup example level versus the subgroup DEC 
level. Furthermore, the PRAC subgroup examples included 
in this study represent a sample of only 5 years, therefore 
the reference set used is not comprehensive and specificity 
could not be assessed. Moreover, any mention of subgroups 
that might be at greater risk of developing a particular AE 
after exposure to a given drug was included in our refer-
ence set regardless of whether it was validated. Sensitivity to 
validated subgroup signals may differ from sensitivity to the 
reference set we used in our experiment. To some extent, the 
overall low concordance observed might also be explained 
by the fact that subgroups discussed by PRAC are based 
on various data and methods, whereas the method used in 
this analysis is purely quantitative and does not account for 
qualitative aspects that are not readily available in structured 
databases. Additional work would be needed to understand 
whether traditional methods as used by PRAC could be 
complemented by quantitative subgroup disproportionality 
analyses. Additionally, the number of our PRAC examples 
was small and weighted towards specific subgroups tested 
(age and underlying condition). On the other hand, the use 
of FAERS data, which mainly cover the US population 
(whereas PRAC is a European committee that likely uses 
European data), may have impacted concordance. However, 
none of the products from the PRAC subgroup examples are 
exclusively marketed in the European Union, and although 
healthcare provision and usage might differ, this is unlikely 
to result in highly different subgroup categorisation in the 
two geographical regions.

Another limitation resides in the use of spontaneous data. 
Non-random reporting patterns at the case level, and also at 

the case attribute level, impact what data are listed or miss-
ing on a case report and the way they are recorded. This 
non-random recording of data in spontaneous AE reports 
may make it particularly challenging to conduct quantitative 
analysis of spontaneous data. Subgroups such as underly-
ing condition and pregnancy are captured sporadically and 
unsystematically in spontaneous AE data, therefore impos-
ing limitations on subgroup analyses. In our study, when 
the data were considered regardless of disproportionately 
reported in the entire database, the sensitivity for underlying 
condition was low (10% at subgroup example level and 6% at 
the subgroup DEC level). The sensitivity for pregnancy was 
100% but accounted for only one subgroup example/DEC, 
for an event that only pregnant women can experience (ges-
tational diabetes). Consequently, this example was excluded 
from the post hoc analysis. Although it was attempted to 
minimise missing data (e.g. by using indications of drugs to 
determine underlying condition), the alternative informa-
tion required was also frequently missing or could intro-
duce bias into the analysis (e.g. due to certain indications of 
concomitant drugs being more frequently reported than oth-
ers). In addition, identification of the subgroup of pregnant 
cases relied on an algorithm based on structured fields and 
coded events because we could not access free-text fields in 
FAERS. This limited our capacity to identify pregnant cases 
and resulted in a low number of such cases. Sandberg et al. 
[29] did not consider concomitant medication or exposure in 
pregnancy with the risk in offspring, therefore we excluded 
4 and 12 such examples, respectively. Nevertheless, these 
data might also pertain to this category of covariates, i.e. 
sporadically and unsystematically reported, and are therefore 
difficult to assess in spontaneous data because of reporting 
biases and missing mother–child linkage. Electronic health 
care records data in these situations could provide additional 
insights. A logical next step could be to assess whether per-
formance is improved for these covariates when enriching 
spontaneous data with these relevant observational data [36].

In light of these limitations, we would recommend to not 
consider subgroups meeting one of the following criteria for 
subgroup analyses in spontaneous reports data.

•	 Timebound subgroups (e.g. definitive overlap of expo-
sures for a specific period of time, such as with drug–
drug interactions, exposure to a concomitant drug within 
60 days of occurrence of an event following another drug 
exposure, exposure to a drug for at least 1 year). The 
dates and times are not reliable and are often missing in 
spontaneous reports data, rendering temporal relation-
ships between subgroup elements difficult to establish.

•	 Conditional subgroups (e.g. patients with a history of a 
particular event or patients who take a particular con-
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comitant drug). The rationale for exclusion is that report-
ing of medical or medication history and concomitant 
drugs in spontaneous reports data is very sporadic and 
heavily biased.

•	 Combination subgroups (e.g. a female under the age of 
20 years). Although certain characteristics (e.g. age and 
sex) are more commonly reported in spontaneous reports 
data, combining these would potentiate the variability of 
the results based on the sporadic and non-random report-
ing of these data elements.

•	 Subgroups normally missing from spontaneous reports 
data (e.g. genetic risk factors). The rationale for exclu-
sion is that if the data element is not populated on the 
database, then it cannot be used to determine allocation 
to subgroups.

•	 Subgroups requiring linkage to other records (e.g. in 
utero exposure and fetal adverse events). There are very 
few reports of linkage of mother–child records with 
robust data in spontaneous safety databases.

Alternative approaches have been proposed in the lit-
erature. Giangreco and Tatonetti proposed a subgroup 
method within the paediatric population [37] using a gen-
eralised additive model (GAM) approach, more technical 
than simple proportional reporting ratios. Nonetheless, 
their results do not convincingly suggest that the GAM 
approach performed significantly better than proportional 
reporting ratios. In another study, Chandak and Tatonetti 
created matched cohorts for sex, which could be used to 
identify differential effects in sex subgroups [38]. They 
generated propensity scores (PSs) for women then used 
them to create PS-matched cohorts of men and women, 
and subsequently evaluated all drug AEs in both cohorts. 
While an independent PS model could be created for sex 
regardless of the drug/AE investigated, it may be driven by 
factors that are good predictors of sex but have no effect on 
the risk of the ADR or on the probability of being exposed 
to the drug, preventing a good adjustment for confounding 
factors.

5 � Conclusions

Overall, we noted apparent low concordance between the 
Sandberg method applied in a large ADR database and a ref-
erence set of PRAC meeting subgroup examples, especially 
when used as first-pass screening. The performance was 
improved for variables that are better captured in spontane-
ous report data, namely age and sex, but covariates such as 
underlying condition and pregnancy likely require enrichment 
with alternative data sources. While we have offered some sug-
gestions for future approaches to improve subgroup analyses, 
further research is needed to assess the optimal combination 

of data sources, individual characteristics, reference set and 
statistical methods and thresholds needed to screen subgroups 
that might be at high risk of ADRs. Ultimately, the nature 
of spontaneous reports and the application of quantitative 
approaches, rather than the specific use of subgroup analyses, 
seemed to limit the ability to identify issues discussed in a 
regulatory context. Thus, progress to an increasingly person-
alised view of predictive safety will require a multimodal data 
approach.
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