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Neural stem cells (NSCs) generate new neurons throughout lifein

the mammalian hippocampus'. Advancing age leads to adeclinein
neurogenesis, which is associated with impaired cognition?*. The cellular
mechanisms causing reduced neurogenesis with advancing age remain
largely unknown. We genetically labeled NSCs through conditional
recombination driven by the regulatory elements of the stem-cell-expressed
gene GLIfamily zinc finger 1 (Glil) and used chronic intravital imaging to
follow individual NSCs and their daughter cells over months within their
hippocampal niche*’. We show that aging affects multiple steps, from cell
cycle entry of quiescent NSCs to determination of the number of surviving
cells, ultimately causing reduced clonal output of individual NSCs. Thus,
we here define the developmental stages that may be targeted to enhance
neurogenesis with the aim of maintaining hippocampal plasticity with

advancing age.

Throughoutlife, NSCsin the hippocampal dentate gyrus (DG) giverise
to new neurons that are involved in DG-dependent brain function'™>.
Thenumber of newborn neuronsis dynamically regulated and has been
associated with the etiology of numerous diseases affecting the hip-
pocampus, including major depression and cognitive aging®®. Indeed,
advancingageis associated with adramatic decrease inthe rate of hip-
pocampal neurogenesis, which drops by around 80% from 2 to 8 months
ofageintherodentbrainbeforeit plateaus and continues throughout
the entire lifespan, albeit at low levels’ . Levels of neurogenesis and
performance in hippocampus-dependent behavior are correlated in
rodents, and recent evidence suggests that an age-dependent and
neurodegeneration-associated decrease in neurogenesis may also
occur in the human hippocampus"" . The NSC pool is reduced in

middle-aged mice (around 12 months of age) when neurogenesis has
sharply dropped®'®. Reduced NSC numbers and subsequently reduced
levels of neurogenesis may be due to NSC exhaustion, altered NSC fate,
enhanced quiescence or altered cell death caused by cell-intrinsic stem
cell aging and niche-dependent mechanisms*”” 2%, Owing to hetero-
geneity of clonal behavior and poor temporal resolution, the recovery
of lineage information from static pulse-chase lineage tracing assays
suchas Cre-mediated lineage tracing s, by definition, ambiguous and
uncertain. However, defining the cellular principles that mediate the
age-dependent drop in neurogenesis in the DG is a prerequisite for
targeted enhancement of neurogenesis in the aging brain**", Thus, we
used chronicintravitalimaging to record individualNSClineages and
analyzed their fate behavior, clonal output and neuronal maturation
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within the endogenous hippocampal niche in young (2-month-old,
2MO) and middle-aged (12MO) mice.

Dormancy and neurogenic output of middle-aged
NSCs
We first analyzed NSC pool size, proliferation and neurogenic output
using young (2MO) and middle-aged (12MO) Nestin-GFP mice (Fig. 1a)
(ref.?®). Consistent with the results of previous studies”*'*??, the num-
ber of radial glia-like NSCs (hereafter called R cells) and nonradial glia-
like progenitors (hereafter called NR cells) declined from 2MO to 12MO
(Fig. 1b,c). Further, the population of proliferating NSCs declined, as
measured by colabeling with cell cycle protein K167 (Fig. 1d,e), causing a
reductionwithageinthe number of newly generated neurons express-
ing doublecortin (DCX) (Fig. 1f,g) and corroborating previous findings
that neurogenesis is strongly reduced in 122MO mice compared with
young adult mice. Using intravital imaging, we aimed to identify the
cellular principles mediating the observed age-dependent decline in
hippocampal neurogenesis. We used in vivo two-photon microscopy
to followsparsely labeled R cells that were genetically targeted in Glil-
Cre®™™::Rosa26-LSL-tdTomato (TOM) young (2MO) and middle-aged
(12-14MO) mice upon injection of tamoxifen (TAM) (Extended Data
Fig.1a) (ref.”). Starting R cells were identified by the presence of a radi-
ally oriented process that could be identified unambiguously (Supple-
mentary Video1) (refs. *°). Middle-aged mice received a higher dose of
TAM (180 mg kg™) than young mice, given the sparseness of remaining
NSCs at this age (Fig. 1c), targeting approximately 20% of R cells in
the middle-aged DG (Extended Data Fig. 1b,c) (ref.>). Glil-mediated
recombination predominantly labeled R cellsinthe DG of middle-aged
mice, resulting in longer chases after TAM injection in the generation
of neuronal progeny, as expected (Extended Data Fig. 1d—f) (ref. ).
Implantation of a cortical window and repeated intravitalimaging did
notsignificantly affect the size of the NSC pool, or the proliferation or
differentiation of NSCs in middle-aged mice, consistent with previ-
ous findings in young adult mice (Extended Data Fig. 1g—j) (refs. *°).
Cellular dynamics and cell fate of individual clones were tracked for up
to115days, usingapreviously established approach (Fig. 1h) (refs. **).In
total, we analyzed 47 active clonesin 12-14MO mice and compared their
behavior and clonal features with those of 56 tracked clones in 2MO
mice thathad beenrecorded previously underidentical experimental
conditions (Extended Data Fig. 2 and Supplementary Fig. 1) (ref.°).
Whereas the majority of Glil-targeted R cells remained quiescent at
all ages, the fraction of R cells recruited into the proliferative pool was
substantially reduced in 12-14MO mice compared with 2MO mice, in
line with the results of our Nestin-GFP experiments, indicating reduced

activation of R cellsin mice of advanced age (Fig. 1i) (refs.'*"*?*?°). When
R cells entered the cell cycle, they showed no substantial differences
in the time to first cell division in young compared with middle-aged
mice (Fig.1j,k and Extended Data Fig. 3a). We next analyzed the clonal
output, the number of newborn cells generated, of individual active R
cells that became active during the time course. Strikingly, we found
that the final number of cells generated within clones (clone size) was
markedly reduced in 12-14MO mice compared with2MO mice (Fig. 1),
indicating that cellular output ofindividual R cellsisreduced with age,
afinding supported by recent static lineage tracing experiments®.

Cellular dynamics of middle-aged NSCs

Toidentify a potential cause for reduced output of R cells with advanc-
ing age, we analyzed kinetics of cell divisions and fate behavior of
neurogenic cells. Total duration of activity (thatis, time from the first
observed cell division to the last division of any proliferative cell in
the clone) and total R self-renewal duration (that is, time from the
first R division to the last point the active R cell was observed) were
increased with age (Fig. 2a—-c and Extended Data Fig. 2). Further, the
interval between cell divisions of Rand NR cells appeared to be longer
in advanced age precursors when all clones recorded were analyzed
(Fig.2d-g), suggesting that age-related alterations of neurogenic cells
may be influenced by the individual division history of the cell***°.
However, extended divisionintervalsinRcellsbut notin NR cells were
influenced by the relative proportion of cells that showed long-term
self-renewal (>30 days), which increased in middle-aged mice com-
pared with young mice (Fig. 2h-i and Extended Data Fig. 3b-e). We
next analyzed whether cell division capacity and cell fate choices of
hippocampal precursors were affected by advancing age. Successive
rounds of cell divisions in 2MO and 12-14MO mice were comparable for
RandNRcells (Extended Data Fig. 3g), suggesting that the potential for
cell division of hippocampal precursors is not affected by advancing
age. Cell division modes were classified using classic categorizations
of progenitor cell divisions (Extended Data Fig. 3h) (refs. *>*>*'). Modes
of cell division were comparable in 2MO and 12-14MO mice (Extended
Data Fig. 3h-i), suggesting that a developmental-like program, for
example, sequentially moving from self-renewing divisions to more
differentiating divisions*, is preserved with advancing age in neuro-
genic cells of the hippocampus. However, R cellsin middle-aged mice
showed distinct behavior in terms of long-term self-renewal (defined
as return to quiescence for >30 days after proliferation) (Fig. 2h)
(ref.®). We found an increase in the proportion of activated R cells
returning to long-term quiescence in middle-aged mice (Fig. 2i),
corroborating previous results based on static lineage tracing

Fig.1|Increased dormancy and decreased neurogenic output of
hippocampal NSCs at middle age. a, Schematic experimental illustration

of age-related changes in adult mouse hippocampal neurogenesis using
Nestin-GFP mouse line. b, Representative immunofluorescence images of
Nestin-GFP-labeled NSCs (both R and NR cells). ¢, Quantification of the

numbers of Rand NR cells in the DG of young and middle-aged mice (R cells:
2MO 5435 + 707 cells, 12MO 980 + 265 cells, two-tailed unpaired ¢ test with
Welch’s correction, **P=0.0039, ¢t =10.22, d.f. = 2.551; NR cells: 2MO 3613 + 265
cells, 12MO 329 + 147 cells, two-tailed unpaired ¢ test with Welch’s correction,
**P=0,0003,t=18.79, d.f.=3.119, for the comparison of NR cells; n = 3 for
eachage).d, Representative immunofluorescence images of Ki67-labeled
proliferating NSCs. e, Left, quantification of the number of Ki67* NSCs in the DG
of young and middle-aged mice (Ki67* R cells:2MO 277 + 30 cells,12M010.3 + 4.7
cells, two-tailed unpaired t test with Welch’s correction, **P = 0.0036, t =15.04,
d.f.=2.097;Ki67" NR cells: 2MO 1906 + 362 cells, 12MO 47.7 + 21.1 cells, two-tailed
unpaired ¢ test with Welch'’s correction, *P=0.0122, ¢ = 8.871, d.f. = 2.014; n =3 for
eachage). Right, percentages of Ki67* NSCs in the DG of young and middle-aged
mice (Ki67* R cells: 2M0O 5.2 + 0.9% Ki67' R cells/total R cells,12MO 1.0 + 0.4%
Ki67' R cells/total R cells, two-tailed unpaired ¢ test with Welch’s correction,
**P=0.0044,t=7.578,d.f. =3.076; Ki67" NR cells: 2MO 53.4 +13.2% Ki67" NR cells/
total NR cells, 12MO 15.5 + 5.1% Ki67* NR cells/total NR cells, two-tailed unpaired ¢

test with Welch’s correction, *P=0.0247, t = 4.565, d.f. = 2.697; n = 3 for each age).
f, Representative immunofluorescence images of DCX-labeled neuronal progeny.
g, Quantification of numbers of DCX" cells in the DG of young and middle-

aged mice (2MO: 7685 + 1189 DCX" cells; 12M0:163 + 55 DCX" cells; two-tailed
unpaired ¢ test with Welch’s correction, *P=0.0081, ¢ =10.95, d.f. =2.009,n=3
for eachage). h, Schematic experimental design of chronic intravital imaging

of Glil-targeted NSCs. Sac, sacrificed. i, Percentages of active and quiescent
Glil-targeted NSCs in young and middle-aged mice (young: 41.2%; middle-aged:
22.6%) Two-sided Fisher’s exact test, P= 0.0003. j, Representative active clone
inmiddle-aged mice. Left, representative images (collapsed z-stacks) of a Glil-
targeted R cell (indicated by arrowhead) and its progeny imaged over 100 days.
Right, corresponding lineage tree. k, Post hocimmunofluorescence images of
the resting R cell from j with cell body indicated by arrow and radial process by
arrowhead., Final number of cells per active clone (young: 5.0 + 4.3 cells,n =56
clones from six mice; middle-aged: 2.1+ 1.9 cells, n = 47 clones from five mice);
two-tailed unpaired t test with Welch’s correction, ****P < 0.0001, t = 4.538,
d.f.=78.73.d, day; m, month; N, neuron; TPM, two-photon microscopy; w, week.
All dataare presented as mean + s.e.m. Scale bars, 20 pm. NS, not significant;
P>0.05;*P<0.05,*P<0.01,**P<0.001,***P< 0.0001. For detailed statistics,
see Supplementary Table 1Source Data.
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experiments®***2, A fraction of long-term self-renewing R cells did
notdivide again but persisted throughout the observed period; these
arereferred toasresting R cells***.Indeed, the proportion of resting R
cells was threefold higher in aged animals (Fig. 2j), consistent with an
increased proportion of R cellsin the final composition of clones with
advancing age (Extended Data Fig. 3k). Resting R cells in young mice
underwentstrictly one round of division, whereas resting R cells in mid-
dle-aged mice underwent up to three cell divisions before they returned
tolong-term quiescence (Fig. 2k,1). Importantly, the persisting time of
resting R cells was substantially longer than the R cell divisioninterval,
clearlyindicatingareturn tolong-term quiescence instead of extended
division intervals going beyond the observation periods (Fig. 2m).
We further compared the distribution of individual values of the R cell

divisionintervals and the time to the first cell division using Kolmogo-
rov-Smirnov testing. Indeed, the time to first cell division and observed
division intervals were significantly distinct for R cells in young mice
(young: P<0.0001, Kolmogorov-Smirnov D = 0.4725; middle-aged:
P> 0.05, Kolmogorov-Smirnov D = 0.1733), suggesting that R cells in
young mice had not divided immediately before the onset of imaging
(Fig. 2d and Extended Data Fig. 3a). However, we found no significant
difference between divisioninterval and timeto first division for R cells
inmiddle-aged mice (P> 0.05), indicating that some R cells might have
had divisional history before the onset of the imaging experiments
(Fig.2d and Extended Data Fig. 3a). Taken together, these results sup-
portthe conceptthat once activated, afraction of youngR cells under-
goes aburst of divisions and becomes depleted within arelatively short
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Fig.2|Cell cyclekinetics are slowed down and a substantial proportion

of active NSCs return to long-term quiescence at middle age. a, Pictogram
illustrating the definition of activity duration and R self-renewal duration.

b, Activity durationis elongated in middle-aged lineages (young:16.39 +15.81
days, n =56 clones from six mice; middle-aged: 22.55 + 17.34 days, n = 47 clones in
five mice; two-tailed Mann-Whitney test, *P= 0.0361, U = 954). ¢, R self-renewal
durationis elongated in middle-aged lineages (young:17.80 +19.31days, n =56
clones from six mice; middle-aged: 34.02 + 32.26 days, n = 47 clones from five
mice; two-tailed Mann-Whitney test, *P = 0.0139, U=902).d, Dividing intervals
of Rcells. Left: average R dividing interval per clone (young:10.48 + 13.43 days,
n=6ldivisions from six mice; middle-aged: 25.68 + 30.21 days, n = 67 divisions
from five mice; two-tailed Mann-Whitney test, **P = 0.0049, U=1695). Right:R
dividinginterval in successive rounds of division (Div. 1: young 12.64 + 15.85 days,
n=27divisions from six mice; middle-aged 25.70 + 29.55 days, n = 25 divisions
from five mice; two-tailed Mann-Whitney test, NS, P= 0.2434, U=789; Div. 2:
young 6.42 + 6.67 days, n =19 divisions from six mice; middle-aged 25.11 + 32.54
days, n =29 divisions from five mice; two-tailed Mann-Whitney test, *P = 0.0138,
U=91;Div.3:young 7.17 + 2.56 days, n = 11 divisions from six mice; middle-aged
27.33 +33.04 days, n=11divisions from five mice; two-tailed Mann-Whitney test,
*P=0.0281, U=4.5). e, Representative images of an active R cellin middle-aged
mice undergoing two successive rounds of division with relatively long dividing
intervals (25 days). f, Dividing intervals of NR cells. Left: average NR dividing
interval per clone (young:1.38 + 1.83 days, n = 310 divisions from six mice;
middle-aged: 2.33 + 2.82 days, n = 261 divisions from five mice; two-tailed
Mann-Whitney test, ***P < 0.0001, U = 56841). Right: NR dividing interval in
successive divisions (Div. 1: young 1.37 + 2.03 days, n = 91 divisions from six

mice; middle-aged 2.41+ 2.76 days, n = 73 divisions from five mice; two-tailed

Mann-Whitney test, ***P < 0.0001, U=4669; Div. 3: young 1.50 + 1.83 days,
n=65divisions from six mice; middle-aged 2.59 + 3.32 days, n = 63 divisions
from five mice; two-tailed Mann-Whitney test, *P = 0.0249, U= 2667; Div. 5:
young 1.25 +1.31 days, n = 11 divisions from four mice; middle-aged 1.94 +1.27
days, n =8 divisions from three mice; two-tailed Mann-Whitney test, NS,
P=0.1120, U=27.5). g, Representative images of an active NR cellin middle-
aged mice undergoing two successive rounds of division with relatively long
dividingintervals. h, Long-term (LT) self-renewal of an R cell is defined as return
to quiescence after proliferation for >30 days. Resting R cells are defined as
those long-term self-renewing R cells that did not divide again after return to
quiescence. i, Pie charts showing proportions of long-term self-renewing R
cellsinactive lineages (young:19.64%, n =11; middle-aged: 42.55%, n = 20).j, Pie
charts showing proportions of resting R cells in active lineages (young: 8.92%,
n=5;middle-aged: 29.79%, n = 14).k, Pie charts showing proportions of resting
R cells according to their divisional history (young: Div.1,100%; middle-aged:
Div.1,53.80%, Div.2,30.80%, Div. 3,15.40%). 1, Representative images of a
resting R cellin the aged lineage after two rounds of activation. m, Comparison
of Rdividingintervals and persisting time of resting R cells, showing that the
persisting time of resting R cells is substantially longer than the R cell division
interval (young: Rdivisioninterval 10.48 + 13.73 days, n = 67 divisions from

six mice versus persisting time 55.86 + 21.59 days, n = 7 cells from six mice,
two-tailed Mann-Whitney test, ***P < 0.0001, U= 8.5; middle-aged: Rdivision
interval 25.68 + 29.98 days, n = 70 divisions from five mice versus persisting time
68.40 +27.20 days, n =15 cells from five mice, two-tailed Mann-Whitney test,
***Pp < 0.0001, U=144.5). Div., division. All data are presented as mean + s.e.m.
Scale bars, 10 pum. NS, P> 0.05, *P< 0.05,**P < 0.01, **P < 0.001, ***P < 0.0001.
For detailed statistics, see Supplementary Table 1Source Data.

time; by contrast, R cellsinmiddle-aged mice appear toreturnto longer
term quiescence and reenter the cell cycle at later points®*,

Cell death of neural progeny in middle-aged mice

Giventhat the division capacity of active R cells remained rather stable
inmiddle-aged mice, we next analyzed cell death of R cell progeny with
the aim of identifying the cause of the reduction in clone size in mice
withadvancingage. Consistent with previous reports***, we found two
waves of cell death at both ages: an early phase, defined as cell death
within 7 days after cell birth, and a late phase beyond 7 days (Fig. 3a).
Average cell death was substantially increased in lineages observedin
middle-aged mice (Fig. 3b), owing to a selective increase in early cell
deathrate (Fig. 3¢,d). Indeed, enhanced cell death of early progeny
caused areduction in the total number of neurogenic cell divisions
inindividual clones, thereby mediating the final reduction of clone
size with advancing age (Fig. 3e). This was supported by the finding
thatthe distribution of early cell death according to divisional history

was comparable betweenyoung and middle-aged lineages, indicating
increased loss of NR cells by early cell death (Extended Data Fig. 31).
Intraclonal variability of early cell death among individual sublineages
(Fig. 3f-i) and substantial spatial overlap of dying and surviving cells
appeared tobe comparable between 2MO and 12-14MO mice (Fig. 3j,k)
(ref.*).In contrast to previous reports using static analyses combined
with modeling approaches'®, death of dormant R cells was extremely
rare in both age groups (0 of 80 and 1 of 161 recorded dormant R cells
died in young and middle-aged mice, respectively). Taken together,
thesefindingsindicate that early death of R cell progeny mediatesthe
reductionin clone size of active stem cells with advancing age.

Maturation of newborn neuronsin middle-aged
mice

To study whether migratory behavior was affected in middle-aged
mice, we measured the speed and total migration of individual new-
borngranule cells (Fig. 4a,b and Supplementary Video 3). Neither the

Fig.3|Survival of early neural progeny is reduced at middle age. a, Schematic
of two typical waves of cell death occurring before and after 7 days after birth.

b, Both waves were observed in both young (left) and middle-aged (right) mice
(young: n =456 events in six mice; middle-aged: n = 360 events in five mice). The
relative percentages of early and late cell death in young and middle-aged mice are
embedded inthe corresponding histogram (young: early 56.14% and late 43.86%;
middle-aged: early 73.33% and late 26.67%). ¢, Comparison of total cell death rates
atboth ages. Aged lineages displayed higher total death rate compared with their
younger counterparts (young: 57.03 + 31.73%, n = 56 clones, 456 events in six mice;
middle-aged: 71.40 + 28.64%, n =47 clones, 360 events in five mice; two-tailed
Mann-Whitney test, *P=0.0106, U = 932.5).d, Representative images of cell death
events. Upper: example of early cell death 1 day after birth. Upper-middle and
right: dying cells are labeled with an arrowhead. Lower: an example of late cell
death 14 days after birth. The dying cell labeled by an arrowhead survived for 14
days until death. e, Comparison of early and late cell death rates at both ages. Early
cell death rate was elevated in the middle-aged lineages (young: 36.55 + 24.77%,
n=256eventsin six mice; middle-aged: 53.92 + 30.50%, n = 264 events in five
mice; two-tailed Mann-Whitney test, **P = 0.0016, U = 845.5), whereas late cell
death rate was comparable between the two ages (young: 20.48 +18.88%, n =200
events in six mice; middle-aged: 17.48 + 22.36%, n = 96 events in five mice; two-
tailed Mann-Whitney test, NS, P=0.2366, U = 1141). f, Schematic showing the

quantification of number of cell divisions for Rand NR cells. g, Total number of
celldivisionsin the active clones was reduced in the middle-aged lineages (total
division: young13.61 + 8.60 divisions, n = 371 divisions in six mice; middle-aged
9.57 + 6.43 divisions, n = 328 divisions in five mice; two-tailed Mann-Whitney test,
*P=0.0221, U=972; Rdivision: young 3.39 + 2.07 divisions, n = 61 divisions in six
mice; middle-aged 2.09 +1.00 divisions, n = 67 divisions in five mice; two-tailed
Mann-Whitney test, NS, P=0.5613, U=1178; NR division: young 11.00 + 6.86
divisions, n =310 divisions in six mice; middle-aged 8.38 + 5.57 divisions, n = 261
divisionsin five mice; two-tailed Mann-Whitney test, *P=0.0363, U=775).

h, Pictogramillustrating the comparison of cell death frequencies in subtree 1
and subtree 2 in comparison with the whole lineage. i, Differences in cell death
frequencies in subtree 1and subtree 2 displayed similar patterns between young
and aged lineages. Differences in cell death between the two subtrees >23%
(young) or 27% (middle-aged) are highlighted inred. j, Surviving and dying cells
could mutually be exclusive with or overlap with each other. k, Representative
images showing spatial overlap of surviving (shown by arrow in the blue circle)
and dying (shown by open arrowhead in the red circle) cells. All data are shown as
mean +s.e.m. Scale bars, 10 um. diff., difference. NS, P> 0.05, *P< 0.05, **P< 0.01,
***P< 0.001, ***P < 0.0001. For detailed statistics, see Supplementary Table 1
Source Data.
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migratory distances nor the migratory speed of newborngranule cells
showed significant differences between newborn neuronal daughter
cellsrecorded in2MO and 12-14MO mice (Fig. 4c,d, and Extended Data
Fig. 4a,b). Further, the total duration of migration was comparable
between the two age groups (Fig. 4e).

Snapshot-based analyses of newborn granule cells have suggested
that the rate of neuronal maturation on a population level decreases
with advancing age®**. Intravital imaging allows neuronal maturation
to be followed at the single-cell level with high temporal resolution to
study the effects of advancing age on granule cell maturation. Notably,
newborn granule cells showed heterogeneous changes withadvanced
age. Whereas we did not observe altered kinetics of cell soma growth
(Fig. 4f,g and Extended Data Fig. 4c,d), we found delayed maturation

of newborn granule cells in middle-aged mice in terms of the total
length of extending dendrites and the number of dendritic branches
within the first 4 weeks after birth (Fig. 4h,j, Extended Data Fig. 4e
and Supplementary Video 4), consistent with previous reports®**.
These results indicate heterogeneity of age-related changes in the
maturation of postmitotic neuronal progeny with age and suggest that
maturation is not globally delayed with advancing age; rather, den-
driticgrowth and relatively late-occurring morphological complexity
are affected.

Previous studies largely relied on static pulse-chase lineage tracing
assays to recover lineage information of neurogenic cells in the aging
hippocampus, yielding ambiguous and uncertain results owing to
limited temporal resolution and the inability to resolve the dynamics
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of individual lineages®*****. Using chronic intravital imaging, we here
define changes that occur with advancing age in hippocampal stem
cells and their progeny in middle-aged mice (12-14MO), a time in the
lifespan where neurogenesis has already dramatically declined'. We
show that (1) NSCs show reduced proliferative activity with age, causing

Days postdivision

reduced numbers of R cells to become active; (2) with advancing age,
a fraction of R cells shows extended self-renewal duration; (3) the
age-associated reduction in clonal output of R cells is largely due to
increased early cell death, whereas the cell division capacity of progeni-
torsisnot substantially altered with age; and (4) advancing age causes
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Fig. 4 |Heterogeneous behaviors of postmitotic progeny at middle age.

a, The accumulative migratory distance is defined as the sum of each migratory
distance, whereas the direct migratory displacement is defined as the distance
between the starting and the last position of newly born granule cells.

b, Representative images showing migratory trajectories of two granule cells
(shown by arrows with solid lines and arrows with dashed lines, respectively)
inmiddle-aged mice. c-e, Quantitation of the accumulative distance (young:
40.98 +30.57 pm, n =40 neurons in three mice; middle-aged: 40.36 + 30.47 pm,
n=40neuronsin five mice; two-tailed unpaired t test with Welch’s correction, NS,
P=9198, t=0.1009, d.f. =98) (c), mean migratory speed (young: 5.76 + 6.02 pm
per day, n=40 neurons in three mice; middle-aged: 6.02 + 5.61 um per day, n = 40
neurons in five mice; two-tailed unpaired ¢ test with Welch’s correction, NS,
P=0.7923,t=0.2640, d.f. = 90.48) (d) and time of migration (young: 9.68 + 5.66
days, n =40 neuronsin three mice; middle-aged: 8.86 + 5.08 days, n = 40 neurons
infive mice; two-tailed unpaired ¢ test with Welch’s correction, NS, P= 0.4477,
t=0.7623,d.f.= 96.89) (e) between young and middle-aged newly born granule
cells. f, Growingkinetics of granule cell soma, measured as the time when newly

borngranule cells reach the maximum size of the soma. g, Quantitative analysis
of the time reaching the maximum size of the soma between young and middle-
aged newly borngranule cells (young: 27.69 +12.48 days, n = 40 neurons in three
mice; middle-aged: 31.36 + 13.52 days, n = 40 neurons in five mice; two-tailed
unpaired ¢ test with Welch'’s correction, NS, P=0.2119, ¢t =1.259, d.f. = 76.77).

h, Graphicalillustration of the measurement of the maturation process of newly
borngranule cells in terms of total length of dendrites, length of the primary
dendrite, length of the longest branch and number of branches. i, Representative
images of the measurement of dendrites of newly born granule cells in young and
middle-aged mice.j, Quantitation of the total length of dendrites (young, n=11
neurons in two mice; middle-aged, n =13 neurons in five mice; two-way ANOVA,
**P=0.0001, F(1.856,42.69) = 11.89) and number of branches (young, n=11
neurons in two mice; middle-aged, n = 13 neurons in five mice; two-way ANOVA,
***P=0.0004, F(1.958, 45.03) = 9.408) of newly born granule cells in the first 28
days after birth. All dataare presented as mean + s.e.m. Scale bars, 20 pm.

Max., maximum. NS, P> 0.05, *P< 0.05,**P < 0.01,**P < 0.001, ****P < 0.0001.

For detailed statistics, see Supplementary Table 1Source Data.

maturational delays of individual newborn neurons (Extended Data
Fig.5). However, future work will need to extend intravital recordings
of NSCs and their progeny in aged mice (=24MO), which is currently
technically not feasible, to identify potential additional alterations
in neurogenic lineage characteristics in aged mice compared with
young and middle-aged mice. Furthermore, repetitive anesthesia,
as used here for imaging sessions, may affect the behavior of NSCs in
young and middle-aged mice; future work could use awake mice that
are habituated to head fixation, even though such an approach may
reduce image quality owing to motion artefacts.

Together with previous work suggesting that a substantial number
of NSCdivisions are consumptive early in adulthood, most likely being
responsible for the diminished NSC poolin middle-aged mice***?*%%2,
the data presented here identify early cell death as a key mechanism
that causes reduced clonal output of R cells with advancing age. Fur-
ther, our data suggest that neurogenic cell divisions of Glil-targeted
NSCs become less consumptive and that R cells in middle-aged mice
much more frequently return to aresting state, afinding thatisinline
with previous static, snapshot-based data®. Thus, future attempts to
enhance neurogenesisin mice with age-related decline of neurogenesis
should not only aim to alter the cellular fate or division capacity of
neurogenic precursors but also attempt to reduce early cell death of
stem cell progeny®*2°. Indeed, the molecular mechanisms underlying
the early wave of cell death upon stem cell activation remain largely
unknown. Analysis of the transcriptomes of dying cells*, use of other
single-cell RNA sequencing-based techniques including spatial tran-
scriptomics® and protein-based analyses of the aging niche® will be
required to understand the molecular mechanisms that ultimately
cause the age-related decline in neurogenesis. The data shown here
define the cellular principles associated with reduced neurogenesis
in the mouse hippocampus with advancing age using chronic
intravital imaging.

Methods

Transgenic animals and TAM administration

All animals were group-housed on a 12-h light/dark cycle with ad libi-
tum access to food and water. The Glil-Cre®®"::Rosa26-LSL-tdTomato
mouse line (Glil-Cre*"Ail4*") was generated by crossing Glil-Cret<™
mice (Gli1™3€re/ERT2Al; the Jackson Laboratory, 007913) and the CAG
tdTomato (Ail4;B6.Cg-Gt(ROSA)ssortmi#(CAG tdTomatollize. tha Jackson Labo-
ratory, 007914) reporter line as described previously’. The Nestin-EGFP
(B6.Cg-Tg(Nes-EGFP)IYamm/Rbrc) mouse line was as described previ-
ously®. Forintravitalimaging of young (2MO) mice, datawere collected
from previous work®. For intravitalimaging of middle-aged (12-14MO),
Glil-Cre™™ mice of mixed sex were used. A single intraperitoneal (i.p.)
injection of TAM, 70-80 mg per kg body weight (Sigma), allowing
for sparse labeling of R cells in 2MO mice was as used before’. Given

the reduced numbers of NSCs in middle-aged mice, we increased the
dose of TAM to 180 mg per kg body weight, resulting in an average
number of 436 recombined cells in the subgranular zones of these
mice (n =4) at2days postinjection (dpi) (Extended DataFig.1a,b). The
majority of TOM* cells were R cells, based on their morphology and the
expression of stem cell markers (GFAP and Sox2) and lack of astrocytic
marker S100b (Extended Data Fig. 1a,b), representing up to 22% of all
NSCs in the middle-aged mouse DG (Extended Data Fig. 1c). The frac-
tions of R cells and newborn neurons at different time points after
TAMinjection are shownin Extended DataFig.1d,e. All animal experi-
ments were approved by the Cantonal Commission for Animal Experi-
mentation of the Canton of Zurich, Switzerland, in accordance with
national and cantonal regulations and performed in accordance with
the guidelines.

Chronicintravital hippocampal imaging window implantation
Theimplantation of the hippocampal imaging window was carried out
in mice aged 12-14 months as explained in previous reports*”. Briefly,
mice were deeply anesthetized with isoflurane (2% for induction and
1.5% for maintenance) and provided with analgesia (buprenorphine).
The skin was opened, and the cranial bone was exposed and locally
removed above the dorsal DG (- 2.0 mm posteriorly and -1.5 mma later-
ally fromthe bregma, 3 mmin diameter). The cortical tissue above the
level of the corpus callosum (3 mm in diameter and 1.5 mm in depth)
was then removed sequentially using a biopsy punch (Miltex) and a
blunt 22-gauge needle for aspiration. The hippocampal imaging win-
dow (stainless steel cannula, 3 mm in diameter and 1.5 mm in height,
covered by a glass coverslip; Warner Instruments) was inserted and
stabilized in place using a stereotactic arm and stably fixed to the
cranial bone with ultraviolet-cured dental cement (Ivoclar Vivadent)
when bleeding stopped.

Intravital two-photon imaging of hippocampal NSCs

Chronic intravital two-photon imaging was performed from 2 to 3
weeks after hippocampal window surgery and 2 days after TAM admin-
istration, as described previously*”. Briefly, an aluminum headpost was
added onto the contralateral side of the mouse head using ultraviolet-
cured dental cement (Ivoclar Vivadent) to stabilize the mice during
imaging experiments. Mice were deeply anesthetized with isoflurane
(2% for induction and 1.5% for maintenance), while their body tem-
perature was monitored and maintained using a heating pad at 37 °C.
The imaging experiments were performed on a custom-built two-
photon microscope (Movable Objective Microscope; Sutter Instru-
ment) using along-working-distance objective (waterimmersion, 16x
magnificationand 0.8 NA; Nikon), equipped with a Pockels cell (model
350/80 with controller model 302RM; Conoptics) and galvanometric
scan mirrors (model 6210; Cambridge Technology), controlled by
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Helioscan software (https://github.com/HelioScan/HelioScan). The
excitation of tdTomato was performed with a fiber oscillator laser at
1,070 nm (Fidelity-2; Coherent) or an ytterbium-doped laser system at
1,045 nmwith 200 fs pulse width (High-Q lasers; FemtoTrain) to excite
tdTomato-labeled cellsin the DG. Emission signals were detected using
aphotomultiplier tube (Hamamatsu) after passing a red emission filter
(610/75 nm; AHF). The lower part of the rim of the imaging cannula
was used as the coordinate landmark to enable revisiting of the same
imaging field of view (hereafter referred to as a SPOT) in subsequent
imaging sessions and to perform clonal tracking (zero position: x =0,
y=0and z=0). SPOTs containing identified R cells were selected for
the subsequentimaging sessions, and around ten SPOTs were obtained
for each animal. Individual SPOTs were selected based on two crite-
ria: (1) containing an unambiguously identified single R cell; and (2)
ensuring a positioning allowing for a total duration of imaging per
mouse of less than 1 h per session. Each SPOT was imaged repeatedly
by acquisition of a z-stack (512 x 512-pixel resolution, 2x zoom and
5 um step-size), carefully considering and checking for all cells of the
clone. All SPOTs were checked daily and scanned unless no changes
occurred. The duration of theimaging session was minimized (<45 min
per day). The following experimental settings remained identical for
2MO?’ and 12-14MO mice: hippocampal window surgery, identifica-
tion of R-cell-containing SPOTs, microscopy hardware and software
settings, and data analyses. The numbers of z-stacks are detailed in
Supplementary Table 2.

Identification and coding of lineages after processing raw
imaging data

Thedetailed processing and coding ofimaging data were as described
previously*’. Briefly, all time points and zplanes of chronically recorded
SPOTs were compiled into a single Image5D file using a custom script.
Thekey informationin terms of morphology, dynamic morphological
changes, cell division, migration and cell death fromall zlevels was taken
intoaccounttoidentify cell types, cellular behavior and lineage relation-
ships. The function ‘ROl manager’in FIJI (v.2.9.2) was used to code each
individual cell at every time point throughout the compiled imaging
filetoserveasinput for further processinginR. The coding parameters
included: CellID, CellType, Uncertainty CellType, Timepoint, MotherID,
Uncertainty MotherCell, SisterID, Uncertainty SisterCell and CellDeath.
Only lineages starting with one R cell or one R cell with one daughter
cell were included, as the first division of an R cell is critical for NSC
behaviors. Each lineage was annotated with a code by two researchers
independently and required agreement from both researchers.

Lineage tree coding and analyses

The region of interest (ROI) results generated in the previous step

were further processed in R (v.3.6.3) to assemble the lineage tree and

for detailed data analysis using custom scripts as described previ-
ously*’. Fifty-six active clones from young mice were taken from our
previous work’. Two independent researchers went through all the
coding to ensure the coding of the entire dataset was done under the
same standard. In total, the dataset consisted of 103 (56 young and

47 aged) active clones.

Multiple parameters were used to describe the behavior of the
active clones*’. The values of all parameters were analyzed using the R
scriptandthendouble-checked and corrected manually, except the acti-
vationrate of allimaged clones. The following parameters were used.
» Final cellnumber: the number of cells in the active clone at the

last time point of the imaging experiment (Fig. 1l and Extended
DataFig. 2).

« Final cell composition: the composition of cell types in the
active clone at the last time point of the imaging experiment
(Extended Data Fig. 3f).

» Numbers of total, R and NR successive divisions: the maximum
numbers of rounds of successive divisions in the same active clone

(both R and NR cells were considered). Only CERTAIN (see below)
Rand NR cells were considered (Extended Data Figs. 2 and 3b).

e Activity duration of the clone: the time (d) from the first R
division to the last division of any progenitor cell (R or NR)
in the clone. If the clone only divided once, the activity
duration was 0. Only CERTAIN R and NR cells were considered
(Fig.2a,b).

« Rself-renewal duration: the time (d) from the first R division
until the last time point at which the R cell was observed. If the R
cell disappeared after the first division, the self-renewal time was
0. Only CERTAIN R cells were considered (Fig. 2a,c).

« Timebetween R and NR divisions: the time (d) between eachR
and NR divisions in the clone. For R cells, the first R root cell was
excluded (which we defined as the time until the first division of
the R cell) and all certain R cells were considered. If the R or NR
cell was depleted after the first division, the time between R or
NR divisions was 0. Only CERTAIN R and NR cells were consid-
ered (Fig. 2d,f and Extended Data Fig. 2).

» Time until the first observed division of the R cell: the time (d)
from the beginning of TAM induction to the first R cell division
observed. If the clone was observed with two cells at the first
imaging session, a value of 1 was assigned (Extended Data
Figs.2 and 3a).

* Numbers of total, R and NR cell divisions: the total numbers of
cell divisions in the clone. Only CERTAIN R and NR cells were
considered (Extended Data Figs. 2 and 3b).

e Cell death: defined either by the disappearance of cells or debris
of cell body being observed. The data were recorded as both
numbers and percentages. The percentage of cell death was
defined as the ratio of the number of dying cells to the number
of total cell divisions. Early cell death was defined when cell
death occurred within 7 days after birth. Late cell death was
defined when cell death occurred beyond 7 days after birth.

For cell death in subtrees, only cases where the main tree of the
clone generated at least four terminal cells were considered. For
early cell death according to divisional history, the rank of cell
division of dying cells was extracted (Fig. 3 and Extended Data
Figs. 2 and 3g). Given the size of the imaging field of view and
the maximum recorded migratory speed of neural progeny per
day (Fig. 4d and Extended Data Fig. 4b), together with the daily
frequency of imaging, loss of cells due to migration out of the
imaging field was extremely unlikely.

The criterion of certainty (CERTAIN or UNCERTAIN) of R and NR
cells was based on whether two investigators (Y.W. and S.B.) reported
nonambiguous or ambiguous cellular phenotypes during their inde-
pendent coding of cells. If coding resulted in an ambiguous cellular
phenotype, the phenotype was labeled as UNCERTAIN. CERTAINR cells
were unambiguously identified by two investigators as R cells by the
clear extension of asingle, radial process extending from cell bodies in
the subgranular zone of the DG (examples are shownin Supplementary
Videos 1-2). For the analysis of the modes of R and NR cell divisions,
the definition of cell divisionmodesis shownin Extended DataFig. 3c.
Only CERTAIN Rand NR mother and daughter cells and certain transi-
tions were considered. If a cellunderwent cell death, the cell fate at the
last time point before cell death was taken. Lineage tree visualization
was performed using the igraph package (v.1.2.6) of R. The pheatmap
package (v.1.0.12) of Rwas used for heat map visualization. Quantifica-
tion graphs were visualized using GraphPad Prism (v.9.1.1).

Analysis of neuronal migration and maturation

For the analysis of migratory behavior of newborn granule cells, con-
tinuous maximum projection files fromindividualimaging SPOTs were
first aligned using the StackReg plugin function and then manually
corrected for x/y-shifts in ImageJ. For the young group, neurons from

Nature Aging | Volume 3 | April 2023 | 380-390

388


http://www.nature.com/nataging
https://github.com/HelioScan/HelioScan

Letter

https://doi.org/10.1038/s43587-023-00370-9

seven SPOTs obtained from three animals (n = 40) were selected, and
forthe middle-aged group, neurons from seven SPOTs from five animals
(n=40)wereselected. To trace individual newborn granule cells over
time, cells were identified using the ROl codings of individual lineages,
the Image5D files and corresponding lineage trees (as described above).
Tracking of newborn granule cells over time was performed using the
Manual tracking plugin function in ImageJ. For measurement of the
direct displacement, a vector from the position of birth of anewborn
granule cell (the last position of its mother cell) to its final destination
at the last time point of imaging was drawn and measured. The soma
size of an individual granule cell from this dataset was measured on
collapsed maximum projections manually in ImageJ. The somasize of
another granule cell in the same SPOT, which was considered a ‘leaky’
granule cell and was stable during the whole imaging session, was
also measured and used as an ‘anchor cell’ for normalization. ‘Leaky’
granule cells were defined as small numbers of cells with granule cell
morphology that were already TOM-positive at 2 dpiinboth age groups
(27.2+9.8 cellsinthe young, n=4;and 83.9 + 14.1 cellsin middle-aged
mice, n =4) and were negative for the expression of DCX, indicative of
leaky expression of the TOM reporter in mature, preexisting granule
cells (Extended DataFig.4c,d). The maturation processes of newborn
granule cells over time were traced with the Simple Neurite Tracer
plugin function in ImageJ. Tracing was performed on the neuronal
morphology visible from the two-photon dataset of three SPOTs for the
young group (n =2) and eight SPOTs for the aged group (n =5) based
on the signal intensity of cells labeled as sufficient for the tracing of
morphology. The following parameters were used: the length of total
dendrites, the length of the longest branch, the length of the primary
dendrite, and the number of dendritic branches.

Tissue processing, immunostaining and confocal imaging
Mice were first anesthetized viai.p. injection of alethal dose of pento-
barbital and then transcardially perfused with cold saline, followed by
4% paraformaldehyde postfixed overnight at 4 °C. Brains were trans-
ferred to 30% sucrose solution for cryoprotection before being cut at
athickness of 40 pm (coronally) or 60 um (horizontally) on a sliding
microtome (Leica SM2010R). Every sixth coronal section (along the
entire DG) and all horizontal sections were used forimmunostaining.
Sections were first washed in Tris-buffered saline (TBS) and blocked
in staining buffer (3% donkey serum and 0.5% Triton X-100 in TBS) for
1hatroomtemperature. Then, sections were incubated with primary
antibodies against GFP (1:500, goat; Rockland), Ki67 (1:500, rat; Thermo
Fisher Scientific), DCX (1:500, guinea pig; Millipore), SOX2 (1:500, rab-
bit; Millipore), SOX2 (1:200, rat; Thermo Fisher Scientific), GFAP (1:500,
chicken; Aves), S100B (1:500, rabbit; Abcam) and tdTomato (1:500,
goat; Sicgen) for two nights in staining buffer at 4 °C. After washing
in TBS, sections were incubated with secondary antibodies against
the respective species (Alexa Fluro 488, Cy3 and Cy5, 1:250) and DAPI
(1 pg ml™, Thermo) in staining buffer for 2 hat room temperature. After
washing, sections were mounted with Immun-Mount (Thermo) and
stored at 4 °C until imaging. Images were taken using confocal laser
scanning microscopes (Zeiss LSM800 with ZEN 2.3 software). Antibod-
ies are specified with detailsin the reporting summary.

Statistics and reproducibility

Allresultsingraphs are presented as mean + s.e.m. unless specified oth-
erwise. Statistical analyses were performed in GraphPad Prism (v.9.1.1)
orR(v.3.6.3). For pairwise comparisons between two groups, two-tailed
unpaired ¢ test with Welsh’s correction or two-tailed Mann-Whitney
test was performed. For multiple time point comparisons between
two groups, two-way analysis of variance (ANOVA) was performed.
For comparisons of global trends between two groups, Kolmogorov-
Smirnov test was performed. For comparison of cluster composition,
chi-square or Fisher’s exact test were performed. For statistical sig-
nificance was determined based on P-value (not significant, P> 0.05;

*P<0.05; *P<0.01; **P< 0.001; ***P < 0.0001). Particular tests and
statistical significance for individual comparisons shown in figures
are detailed in the Supplementary Table 1.

No statistical methods were used to predetermine sample sizes;
these were derived from previous publications**. Only CERTAIN cell
phenotypes and transitions were included in subsequent analyses
as detailed above (Methods). The experiments were not randomized
owing to the two different age cohorts. The investigators were not
blinded to allocation during intravital imaging acquisition but were
blinded during the outcome assessment and analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Datagenerated and analyzed during this study are included in the pub-
lished article (and its supplementary information and source files) or
available fromthe corresponding author on reasonable request. Data
forlineage analysis are available at https://github.com/JessbergerLab/
AgingNeurogenesis_Imaging.

Code availability

Custom code (HippoLinTools) used to analyze the cellular behavior
is available at https://github.com/JessbergerLab/AgingNeurogen-
esis_Imaging. Custom code was developed by M. Betizeau.
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difference in the total number of Glil-targeted NSCs (tdTOM" R cells, imaged:
361.7 £104.7 cells; control: 376.0 + 116.1 cells; two-tailed unpaired t-test, NS,
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All datawere presented as mean + SEM. Scale bars, 10 pm. NS p > 0.05,

*p <0.05, *p < 0.01, **p < 0.001, ***p < 0.0001. For detailed statistics,

see Supplementary Table 1.
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Extended Data Fig. 3 | See next page for caption.

Nature Aging


http://www.nature.com/nataging

Letter

https://doi.org/10.1038/s43587-023-00370-9

Extended Data Fig. 3| Proliferative capacity and modes of cell division are
largely preserved at middle-age. a, Time until the first division of Glil-targeted
R cell between young and middle-aged lineages (young: 26.98 + 24.70 days, n = 56
clones/6 mice; middle-age: 24.98 + 20.79 days, n = 43 clones/5 mice; two-tailed
Mann-Whitney test, NS, p = 0.1303, U=1303). b, The activity duration of clones
without long-term self-renewal R cells is elongated in the middle-aged lineages
(young:12.40 + 8.29 days, n =45 clones/6 mice; middle-age: 21.15 + 11.64 days,

n =26 clones/5 mice; two-tailed Mann-Whitney test, *p = 0.0013, U= 321). ¢, The
R self-renewal duration of R cells that are not long-term self-renewal shows no
difference between young and middle-age lineages (young:10.11 + 8.40 days,

n =45 clones/6 mice; middle-age: 11.88 +10.49 days, n = 26 clones/5 mice; two-
tailed Mann-Whitney test, NS, p = 0.6358, U = 545). d-e, The dividing intervals
of Rcells that are not long-term self-renewal and NR cells that are derived

from not long-term self-renewal R cells. Average R dividing interval per clone
(young:7.63 + 8.09 days, n = 56 divisions/6 mice; middle-age: 8.91+ 7.60 days,

n =29 divisions/5 mice; two-tailed Mann-Whitney test, NS, p = 0.5001, U=712)
(d). Average NR dividing interval per clone (young: 1.36 + 1.91days, n =260
divisions/6 mice; middle-age: 2.28 + 2.71 days, n = 172 divisions/5 mice; two-tailed
Mann-Whitney test, ***p < 0.0001, U =20759) (e). f, Schematicillustration
summaries that the elongation of dividing intervals of R cells mainly results from
theincreased proportion of long-term self-renewal R cells wheras the elongation
of dividing intervals of NR cells is independent to the long-term self-renewal state
of parentR cells. g, The successive rounds of division between two ages (Total
division, young:4.40 +1.92 rounds, n = 56 clones/6 mice; middle-age: 4.45 +1.79
rounds, n =43 clones/5 mice; two-tailed Mann-Whitney test, NS, p = 0.9054,
U=1154; Rdivision, young: 2.04 + 0.93 rounds, middle-age: 2.19 + 1.01rounds,
two-tailed Mann-Whitney test, NS, p = 0.9676, U =1254; NR division, 3.29 +1.53
rounds, middle-age: 3.74 +1.27 rounds, two-tailed Mann-Whitney test, NS,
p=0.2895, U=800). h, The classification of cell division modes. The symmetric
divisionis defined as two daughter cells keep the same identity as the mother cell
which canbe either self-renewal division when one mother cell generates two
daughters with the same identity or differentiation division when one mother
cell generates two daughters with different identities. The asymmetric division
is defined as two daughter cells have different identities which can be either
self-renewal division when one daughter keeps the same identity as the mother
cell or differentiation division when one mother cell generates two daughters
with differentidentity. i, The division modes of Rand NR cells are largely

preserved during aging. (Upper) Heatmaps represent the frequencies of modes
of Rdivision (young: n = 61of all divisions, n = 27 of Divl divisions, n =19 of Div2
divisions, n =11 of Div3 divisions; middle-age: n = 67 of all divisions, n = 25 of Divl
divisions, n =29 of Div2 divisions, n = 11 of Div3 divisions). (Lower) Heatmaps
represent the frequencies of modes of NR division (young: n = 310 of all divisions,
n=91of Divldivisions, n = 65 of Div3 divisions, n =11 of Div5 divisions; middle-
age: n=261of all divisions, n = 73 of Divl divisions, n = 63 of Div3 divisions,
n=8of Div5divisions). j, Quantification of consumptive division of Rand NR
cells that are differentiating between young and middle-aged lineages. (Left)
Percentage of differentiated division of R cells (neither of two progeny cells
isRcell) in both ages (All division, young: 34.18 + 4.92%, 61 divisions/6 mice;
middle-age: 38.66 +13.62%, 67 divisions/5 mice; two-tailed Mann-Whitney test,
NS, p=0.5671, U=11.5; Div1, young: 4.75 + 5.46%, 27 divisions/6 mice; middle-
age:22.19 +25.70%, 25 divisions/5 mice; two-tailed Mann-Whitney test, NS,
p=0.0563,U=4.5;Div 2, young:36.14 + 9.26%,19 divisions/6 mice; middle-age:
57.58 +31.16%, 29 divisions/5 mice; two-tailed Mann-Whitney test, NS, p = 0.4004,
U=10;Div3,young:43.31+ 9.20%, 11 divisions/6 mice; middle-age: 54.17 + 41.67%,
11 divisions/5 mice; two-tailed Mann-Whitney test, NS, p = 0.4000, U =7.5).
(Right) Percentage of differentiated division of NR cells (neither of two progeny
cellsis NR cell) in both ages (All division, young: 57.20 + 6.93%, 310 divisions/6
mice; middle-age: 55.20 + 5.30%, 261 divisions/5 mice; two-tailed Mann-Whitney
test, NS, p=0.5368, U=11; Div1, young: 33.58 + 6.47%, 91 divisions/6 mice;
middle-age: 37.85 + 7.48%, 73 divisions/5 mice; two-tailed Mann-Whitney test, NS,
p=0.4589, U=10.5; Div 3, young: 67.76 +11.54%, 65 divisions/6 mice; middle-

age: 57.45+13.96%, 63 divisions/5 mice; two-tailed Mann-Whitney test, NS,
p=0.0823, U=5;Div 5, young: 73.53 + 15.24%, 11 divisions/4 mice; middle-age:
86.75 +12.33%, 8 divisions/3 mice; two-tailed Mann-Whitney test, NS, p = 0.2063,
U=4.5).k, Quantification of the final composition of active clones. Young: 6.30%
Rcells, 1.50% NR cells, 91.50% neurons and 0.70% astrocytes, n = 282 cells/6 mice;
middle-age:19.19% R cells, 1.01% NR cells and 79.80% neurons, no astrocyte, n = 99
cells/5mice. 1, The distribution of early cell death according to their divisional
history (young: Div112.2%, Div2 33.5%, Div3 28.7%, Div4 16.5%, Div5 9.1%;
middle-age: Div118.7%, Div2 34.6%, Div3 27.2%, Div4 14.1%, Div5 5.4%) with no
statistical difference (Chi-square test, NS, p = 0.1840, Chi-square = 6.211, df = 4).
Div, division, NS, not significant and NR cells, non-radial cells. All data are shown
asmean + SEM. Scale bars, 10 pm. NS p > 0.05, *p < 0.05, *p < 0.01, **p < 0.001,
****p < 0.0001. For detailed statistics, see Supplementary Table 1.
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Extended Data Fig. 4 | Migration of newborn neurons in mice at middle-

age shows similar patterns compared to young mice. a-b, Quantitation
shows no significant difference in terms of the direct migratory displacement
(young:20.39 +21.28 um, n = 40 neurons/3 mice; middle-age: 23.27 +19.68 um,
n =40 neurons/5 mice; two-tailed unpaired t-test, NS, p = 0.4848, t = 0.7013,
df=97.41) (a) and maximum migratory speed (young: 14.28 + 10.05 pm/day,

n =40 neurons/3 mice; middle-age: 17.25 + 15.13 pm/day, n = 40 neurons/5 mice;
two-tailed unpaired t-test, NS, p = 0.2504, t = 1.157, df =85.19) (b) of newly born
granule cells between two aged. ¢, Representative immunofluorescence images
showing leaky granule cells presenting in the subgranular zone shortly after TAM
induction (2dpi) in both young and middle-aged mice that are lack of newly born
neuronal marker (Dcx). d, Representative images showing the measurement of

T T T T T T
3 5 7 9 1 13 20 27

Days post Division

the somasize of newly born granule cells (black dashed circle). The value was
normalized by the value of another mature granule cell (white dashed circle) in
the same spot. e, Representative images showing migratory trajectories of one
granule cell in the young mice. Leaky granule cells can be observed in the same
image. f-g, Quantitation shows no significant difference in terms of the length
of primary dendrite (young, n =11 neurons/2 mice; middle-age, n =13 neurons/5
mice; two-way ANOVA, NS, p = 0.2391, F(3.137,72.16) =1.433) (f) and the length of
the longest branch (young, n = 11 neurons/2 mice; middle-age, n =13 neurons/5
mice; two-way ANOVA, NS, p = 0.1850, F(8,198) = 8.432) (g) in two ages. All data
are shown as mean = SEM. Scale bars, 20 um. NS p > 0.05, *p < 0.05, **p < 0.01,
***p <0.001, ***p < 0.0001. For detailed statistics, see Supplementary Table 1.
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Extended Data Fig. 5| Summary of age-related changes of mouse hippocampal NSCs identified through intravital imaging. We summarized the age-related
changes of adult mouse hippocampal NSCs from the activation of R cells and proliferation of NSCs to the survival and maturation of their neuronal progeny.
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