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Abstract

Despite advances in data augmentation and transfer learning, convolutional neural networks 

(CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are 

highly sensitive to changes in resolution and contrast: even within the same MRI modality, 

performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation 

CNN robust against changes in contrast and resolution. SynthSeg is trained with synthetic data 

sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain 
randomisation strategy where we fully randomise the contrast and resolution of the synthetic 

training data. Consequently, SynthSeg can segment real scans from a wide range of target domains 

without retraining or fine-tuning, which enables straightforward analysis of huge amounts of 

heterogeneous clinical data. Because SynthSeg only requires segmentations to be trained (no 

images), it can learn from labels obtained by automated methods on diverse populations (e.g., 

ageing and diseased), thus achieving robustness to a wide range of morphological variability. We 

demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten resolutions, where 

1Data used in this article are partly from the Alzheimer’s Disease Neuroimaging Initiative database (http://adni.loni.usc.edu). 
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it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art domain 

adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg 

by applying it to cardiac MRI and CT scans.
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1. Introduction

1.1. Motivation

Segmentation of brain scans is of paramount importance in neuroimaging, as it enables 

volumetric and shape analyses (Hynd et al., 1991). Although manual delineation is 

considered the gold standard in segmentation, this procedure is tedious and costly, thus 

preventing the analysis of large datasets. Moreover, manual segmentation of brain scans 

requires expertise in neuroanatomy, which, even if available, suffers from severe inter- 

and intra-rater variability issues (Warfield et al., 2004). For these reasons, automated 

segmentation methods have been proposed as a fast and reproducible alternative solution.

Most recent automated segmentation methods rely on convolutional neural networks (CNNs) 

(Ronneberger et al., 2015; Milletari et al., 2016; Kamnitsas et al., 2017b). These are 

widespread in research, where the abundance of high quality scans (i.e., at high isotropic 

resolution and with good contrasts between tissues) enables CNNs to obtain accurate 3D 

segmentations that can then be used in subsequent analyses such as connectivity study 

(Müller et al., 2011).

However, supervised CNNs are far less employed in clinical settings, where physicians 

prefer 2D acquisitions with a sparse set of high-resolution slices, which enables faster 

inspection under time constraints. This leads to a huge variability in image orientation (axial, 

coronal, or sagittal), slice spacing, and in-plane resolution. Moreover, such 2D scans often 

use thick slices to increase the signal-to-noise ratio, thus introducing considerable partial 

voluming (PV). This effect arises when several tissue types are mixed within the same 

voxel, resulting in averaged intensities that are not necessarily representative of underlying 

tissues, often causing segmentation methods to underperform (Van Leemput et al., 2003). 

Additionally, imaging protocols also span a huge diversity in sequences and modalities, each 

studying different tissue properties, and the resulting variations in intensity distributions 

drastically decrease the accuracy of supervised CNNs (Chen et al., 2019).

Overall, the lack of tools that can cope with the large variability in MR data hinders the 

adoption of quantitative morphometry in the clinic. Moreover, it precludes the analysis 

of vast amounts of clinical scans, currently left unexplored in picture archiving and 

communication systems (PACS) in hospitals around the world. The ability to derive 

morphometric measurements from these scans would enable neuroimaging studies with 

sample sizes in the millions, and thus much higher statistical power than current research 

studies. Therefore, there is a clear need for a fast, accurate, and reproducible automated 
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method, for segmentation of brain scans of any contrast and resolution, and that can adapt to 

a wide range of populations.

1.2. Contributions

In this article, we present SynthSeg, the first neural network to segment brain scans of a 

wide range of contrasts and resolutions, without having to be retrained or fine-tuned (Fig. 1). 

Specifically, SynthSeg is trained with synthetic scans sampled on the fly from a generative 

model inspired by the Bayesian segmentation framework, and is thus never exposed to real 

scans during training. Our main contribution is the adoption of a domain randomisation 
strategy (Tobin et al., 2017), where all the parameters of the generative model (including 

orientation, contrast, resolution, artefacts) are fully randomised. This exposes the network to 

vastly different examples at each mini-batch, and thus forces it to learn domain-independent 

features. Moreover, we apply a random subset of common preprocessing operations to each 

example (e.g., skull stripping, bias field correction), such that SynthSeg can segment scans 

with or without preprocessing.

With this domain randomisation strategy, our method only needs to be trained once. This 

is a considerable improvement over supervised CNNs and domain adaptation strategies, 

which all need retraining or fine-tuning for each new contrast or resolution, thus hindering 

clinical applications. Moreover, training SynthSeg is greatly facilitated by the fact that it 

only requires a set of anatomical label maps to be trained (and no real images, since all 

training scans are synthetic). Furthermore, these maps can be obtained automatically (rather 

than manually), since the training scans are directly generated from their ground truths, and 

are thus perfectly aligned with them. This enables us to greatly improve the robustness of 

SynthSeg by including automated training maps from highly diverse populations.

Overall, SynthSeg yields almost the accuracy of supervised CNNs on their training domain, 

but unlike them, exhibits a remarkable generalisation ability. Indeed, SynthSeg consistently 

outperforms state-of-the-art domain adaptation strategies and Bayesian segmentation on all 

tested datasets. Moreover, we demonstrate the generalisability of SynthSeg by obtaining 

state-of-the-art results in cross-modality cardiac segmentation.

This work extends our recent articles on contrast-adaptiveness (Billot et al., 2020a) and PV 

simulation at a specific resolution (Billot et al., 2020b; Iglesias et al., 2021), by building, 

for the first time, robustness to both contrast and resolution without retraining. Our method 

is thoroughly evaluated in four new experiments. The code and trained model are available 

at https://github.com/BBillot/SynthSeg as well as in the widespread neuroimaging package 

FreeSurfer (Fischl, 2012).

2. Related works

Contrast-invariance in brain segmentation has traditionally been addressed with Bayesian 

segmentation. This technique is based on a generative model, which combines an anatomical 

prior (often a statistical atlas) and an intensity likelihood (typically a Gaussian Mixture 

Model, GMM). Scans are then segmented by “inverting” this model with Bayesian inference 

(Wells et al., 1996; Fischl et al., 2002). Contrast-robustness is achieved by using an 
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unsupervised likelihood model, with parameters estimated on each test scan (Van Leemput 

et al., 1999; Ashburner and Friston, 2005). However, Bayesian segmentation requires 

approximately 15 min per scan (Puonti et al., 2016), which precludes its use in time-

sensitive settings. Additionally, its accuracy is limited at low resolution (LR) by PV effects 

(Choi et al., 1991). Indeed, even if Bayesian methods can easily model PV (Van Leemput 

et al., 2003), inferring high resolution (HR) segmentations from LR scans quickly becomes 

intractable, as it requires marginalising over all possible configurations of HR labels within 

each LR supervoxel. While simplifications can be made (Van Leemput et al., 2003), PV-

aware Bayesian segmentation may still be infeasible in clinical settings.

Supervised CNNs prevail in recent medical image segmentation (Milletari et al., 2016; 

Kamnitsas et al., 2017b), and are best represented by the UNet architecture (Ronneberger et 

al., 2015). While these networks obtain fast and accurate results on their training domain, 

they do not generalise well to unseen contrasts (Karani et al., 2018) and resolutions 

(Ghafoorian et al., 2017), an issue known as the “domain-gap” problem (Pan and Yang, 

2010). Therefore, such networks need to be retrained for any new combination of contrast 

and resolution, often requiring new costly labelled data. This problem can partly be 

ameliorated by training on multi-modality scans with modality dropout (Havaei et al., 2016), 

which results in a network able to individually segment each training modality, but that still 

cannot be applied to unseen domains.

Data augmentation improves the robustness of CNNs by applying simple spatial and 

intensity transforms to the training data (Zhang et al., 2020). While such transforms often 

relies on handcrafted (and thus suboptimal) parameters, recent semi-supervised methods, 

such as adversarial augmentation, explicitly optimise the augmentation parameters during 

training (Zhang et al., 2017; Chaitanya et al., 2019; Chen et al., 2022). Alternatively, 

contrastive learning methods have been proposed to leverage unsupervised data for 

improved generalisation ability (Chaitanya et al., 2020; You et al., 2022b). Overall, although 

these techniques improve generalisation in intra-modality applications (Zhao et al., 2019), 

they generally remain insufficient in cross-modality settings (Karani et al., 2018).

Domain adaptation explicitly seeks to bridge a given domain gap between a source domain 

with labelled data, and a specific target domain without labels. A first solution is to map 

both domains to a common latent space, where a classifier can be trained (Kamnitsas et al., 

2017a; Dou et al., 2019; Ganin et al., 2017; You et al., 2022a). In comparison, generative 

adaptation methods seek to match the source images to the target domain with image-to-

image translation methods (Sandfort et al., 2019; Huo et al., 2019; Zhang et al., 2018). Since 

these approaches are complementary, recent methods propose to operate in both feature and 

image space, which leads to state-to-the-art results in cross-modality segmentation (Chen 

et al., 2019; Hoffman et al., 2018). In contrast, state-of-the-art results in intra-modality 

adaptation are obtained with test-time adaptation methods (Karani et al., 2021; He et al., 

2021), which rely on light fine-tuning at test-time. More generally, even though domain 

adaptation alleviates the need for supervision in the target domain, it still needs retraining for 

each new domain.
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Synthetic training data can be used to increase robustness by introducing surrogate domain 

variations, either generated with physics-based models (Jog and Fischl, 2018), or adversarial 

generative networks (Frid-Adar et al., 2018; Chartsias et al., 2018), possibly conditioned 

on label maps for improved semantic content (Mahmood et al., 2020; Isola et al., 2017). 

These strategies enable to generate huge training datasets with perfect ground truth obtained 

by construction rather than human annotation (Richter et al., 2016). However, although 

generated images may look remarkably realistic, they still suffer from a “reality gap” (Jakobi 

et al., 1995). In addition, these methods still require retraining for every new domain, 

and thus do not solve the lack of generalisation of neural networks. To the best of our 

knowledge, no current learning method can segment medical scans of any contrast and/or 

resolution without retraining.

Domain randomisation is a recent strategy that relies on physics-based generative models, 

which, unlike learning-based methods, offer full control over the generation process. Instead 

of handcrafting (Jog and Fischl, 2018) or optimising (Chen et al., 2022) this kind of 

generative model to match a specific domain, Domain Randomisation (DR) proposes 

to considerably enlarge the distribution of the synthetic data by fully randomising the 

generation parameters (Tobin et al., 2017). This learning strategy is motivated by converging 

evidence that augmentation beyond realism leads to improved generalisation (Bengio et al., 

2011; Zhao et al., 2019). If pushed to the extreme, DR yields highly unrealistic samples, 

in which case real images are encompassed within the landscape of the synthetic training 

data (Tremblay et al., 2018). As a result, this approach seeks to bridge all domain gaps in a 

given semantic space, rather than solving this problem for each domain gap separately. So 

far, DR has been used to control robotic arms (Tobin et al., 2017), and for car detection in 

street views (Tremblay et al., 2018). Here we combine DR with a generative model inspired 

by Bayesian segmentation, in order to achieve, for the first time, segmentation of brain MRI 

scans of a wide range of contrasts and resolutions without retraining.

3. Methods

3.1. Generative model

SynthSeg relies on a generative model from which we sample synthetic scans to train a 

segmentation network (Billot et al., 2020a,b; Iglesias et al., 2021). Crucially, the training 

images are all generated on the fly with fully randomised parameters, such that the network 

is exposed to a different combination of contrast, resolution, morphology, artefacts, and 

noise at each mini-batch (Fig. 2). Here we describe the generative model, which is illustrated 

in Fig. 3 and exemplified in Supplement 1.

3.1.1. Label map selection and spatial augmentation—The proposed generative 

model assumes the availability of N training label maps Sn n = 1
N  defined over discrete spatial 

coordinates x, y, z  at high resolution rHR. Let all label maps take their values from a set of 

K labels: Sn x, y, z ∈ 1, …, K . We emphasise that these training label maps can be obtained 

manually, automatically (by segmenting brain scans with an automated method), or even can 

be a combination thereof – as long as they share the same labelling convention.
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The generative process starts by randomly selecting a segmentation Si from the training 

dataset (Fig. 3a). In order to increase the variability of the available segmentations, Si is 

deformed with a random spatial transform ϕ, which is the composition of an affine and a 

non-linear transform.

The affine transformation ϕaff is the composition of three rotations θx, θy, θz , three scalings 

sx, sy, sz , three shearings sℎx, sℎy, sℎz , and three translations tx, ty, tz , whose parameters are 

sampled from uniform distributions:

θx, θy, θz ∼ U arot, brot , (1)

sx, sy, sz ∼ U asc, bsc , (2)

sℎx, sℎy, sℎz ∼ U asℎ, bsℎ , (3)

tx, ty, tz ∼ U atr, btr , (4)

ϕaff = Aff θx, θy, θz, sx, sy, sz, sℎx, sℎy, sℎz, tx, ty, tz , (5)

where arot, brot, asc, bsc, asℎ, bsℎ, atr, btr are the predefined bounds of the uniform distributions, and 

Aff ⋅  refers to the composition of the aforementioned affine transforms.

The non-linear component ϕnonlin is a diffeomorphic transform obtained as follows. First, we 

sample a small vector field of size 10×10× 10 × 3 from a zero-mean Gaussian distribution of 

standard deviation σSVF drawn from U 0, bnonlin . This field is then upsampled to full image size 

with trilinear interpolation to obtain a stationary velocity field (SVF). Finally, we integrate 

this SVF with a scale-and-square approach (Arsigny et al., 2006) to yield a diffeomorphic 

deformation field that does not produce holes or foldings:

σSV F ∼ U 0, bnonlin , (6)

SVF′ ∼ N10 × 10 × 10 × 3 0, σSVF , (7)

SVF = Resample( SVF′; rHR , (8)

ϕnonlin = Integrate(SVF) . (9)

Finally, we obtain an augmented map L by applying ϕ to Si using nearest neighbour 

interpolation (Fig. 3b):

L = Si ∘ ϕ = Si ∘ ϕaff ∘ ϕnonlin . (10)
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3.1.2. Initial HR synthetic image—After deforming the input segmentation, we 

generate an initial synthetic scan G at HR by sampling a GMM conditioned on L (Fig. 

3c). For convenience, we regroup all the means and standard deviations of the GMM in 

MG = μk 1 ≤ k ≤ K and ΣG = σk 1 ≤ k ≤ K respectively. Crucially, in order to randomise the contrast 

of G, all the parameters in MG and ΣG are sampled at each mini-batch from uniform 

distributions of range aμ, bμ  and aσ, bσ , respectively. We highlight that ΣG jointly models 

tissue heterogeneities as well as the thermal noise of the scanner. G is then formed by 

independently sampling at each location x, y, z  the distribution indexed by L x, y, z :

μk ∼ U aμ, bμ , (11)

σk ∼ U aσ, bσ , (12)

G x, y, z ∼ N (μL x, y, z , σL x, y, z
2 ) . (13)

3.1.3. Bias field and intensity augmentation—We then simulate bias field artefacts 

to make SynthSeg robust to such effects. We sample a small volume of shape 43 from a 

zero-mean Gaussian distribution of random standard deviation σB. We then upsample this 

small volume to full image size, and take the voxel-wise exponential to obtain a smooth 

and non-negative field B. Finally, we multiply G by B to obtain a biased image GB(Fig. 3d), 

where the previous exponential ensures that division and multiplication by the same factor 

are equally likely (Van Leemput et al., 1999; Ashburner and Friston, 2005):

σB ∼ U 0, bB , (14)

B′ ∼ N4 × 4 × 4 0, σB
2 , (15)

B = Upsample B′ , (16)

GB x, y, z = G x, y, z × exp B x, y, z . (17)

Then, a final HR image IHR is produced by rescaling GB between 0 and 1, and applying 

a random Gamma transform (voxel-wise exponentiation) to further augment the intensity 

distribution of the synthetic scans. This transform enables us to skew the distribution 

while leaving intensities in the [0,1] interval. In practice, the exponent is sampled in the 

logarithmic domain from a zero-mean Gaussian distribution of standard deviation σγ. As a 

result, IHR is given by:

γ ∼ N 0, σγ
2 , (18)
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IHR(x, y, z) = G(x, y, z) − minx, y, zG
maxx, y, zG − minx, y, zG

exp(γ)
. (19)

3.1.4. Simulation of resolution variability—In order to make the network robust 

against changes in resolution, we now model differences in acquisition direction (i.e., axial, 

coronal, sagittal), slice spacing, and slice thickness. After randomly selecting a direction, 

the slice spacing rspac and slice thickness rtℎick are respectively drawn from U rHR, bres  and 

U rHR, rspac . Note that rtℎick is bound by rspac as slices very rarely overlap in practice.

Once all resolution parameters have been sampled, we first simulate slice thickness by 

blurring IHR into Iσ with a Gaussian kernel that approximates the real slice excitation profile. 

Specifically, its standard deviation σtℎick is designed to divide the power of the HR signal by 

10 at the cut-off frequency (Billot et al., 2020b). Moreover, σtℎick is multiplied by a random 

coefficient α to introduce small deviations from the nominal thickness, and to mitigate the 

Gaussian assumption.

Slice spacing is then modelled by downsampling Iσ to ILR at the prescribed low resolution 

rspac with trilinear interpolation (Fig. 3e) (Van Leemput et al., 2003). Finally, ILR is 

upsampled back to rHR (typically 1 mm), such that the CNN is trained to produce crisp 

HR segmentations, regardless of the simulated resolution. This process can be summarised 

as:

rspac ∼ U rHR, bres , (20)

rtℎick ∼ U rHR, rspac , (21)

α ∼ U aα, bα , (22)

σtℎick = 2αlog(10)(2π)−1rtℎick/rHR, (23)

Iσ = IHR * N 0, σtℎick , (24)

ILR = Resample Iσ; rspac , (25)

I = Resample ILR; rHR . (26)

3.1.5. Model output and segmentation target—At each training step, our method 

produces two volumes: an image I sampled from the generative model, and its segmentation 

target T . The latter is obtained by taking the deformed map L in (10), and resetting 

to background all the label values that we do not wish to segment (i.e., labels for the 
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background structures, which are of no interest to segment). Thus, T  has K′ ≤ K labels (Fig. 

3f).

We emphasise that the central contribution of this work lies in the adopted domain 

randomisation strategy. The values of the hyperparameters controlling the uniform priors 

(listed in Supplement 2) are tuned using a validation set, and are the object of a sensitivity 

analysis in Section 5.2.

3.2. Segmentation network and learning

Given the described generative model, a segmentation network is trained by sampling pairs 

I, T  on the fly. Here we employ a 3D UNet architecture (Ronneberger et al., 2015) that 

we used in previous works with synthetic scans (Billot et al., 2020a). Specifically, it consists 

of five levels, each separated by a batch normalisation layer (Ioffe and Szegedy, 2015) 

along with a max-pooling (contracting path), or upsampling operation (expanding path). All 

levels comprise two convolution layers with 3 × 3 × 3 kernels. Every convolutional layer is 

associated with an Exponential Linear Unit activation (Clevert et al., 2016), except for the 

last one, which uses a softmax. While the first layer counts 24 feature maps, this number 

is doubled after each max-pooling, and halved after each upsampling. Following the UNet 

architecture, we use skip connections across the contracting and expanding paths. Note that 

the network architecture is not a focus of this work: while we employ a UNet (Ronneberger 

et al., 2015) (the most widespread network for medical images), it could in principle be 

replaced with any other segmentation architecture.

We use the soft Dice loss for training (Milletari et al., 2016):

Loss(Y , T ) = 1 − ∑
k = 1

K′ 2 × ∑x, y, z Y k(x, y, z)Tk(x, y, z)
∑x, y, z Y k(x, y, z)2 + Tk(x, y, z)2 , (27)

where Y k is the soft prediction for label k ∈ 1, …, K′ , and Tk is its associated ground truth 

in one-hot encoding. We use the Adam optimiser (Kingma and Ba, 2017) for 300,000 steps 

with a learning rate of 10−4, and a batch size of 1. The network is trained twice, and 

the weights are saved every 10,000 steps. The retained model is then selected relatively 

to a validation set. In practice, the generative model and the segmentation network are 

concatenated within a single model, which is entirely implemented on the GPU in Keras 

(Chollet, 2015) with a Tensorflow backend (Abadi et al., 2016). In total, training takes 

around seven days on a Nvidia Quadro RTX 6000 GPU.

3.3. Inference

At test time, the input is resampled to rHR with trilinear interpolation (such that the output 

of the CNN is at HR), and its intensities are rescaled between 0 and 1 with min–max 

normalisation (using the 1st and 99th percentiles). Preprocessed scans are then fed to the 

network to obtain soft predictions maps for each label. In practice, we also perform test-time 

augmentation (Moshkov et al., 2020), which slightly improved results on the validation set. 

Specifically, we segment two versions of each test scan: the original one, and a right-left 

flipped version of it. The soft predictions of the flipped input are then flipped back to native 
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space (while ensuring that right-left labels end up on the correct side), and averaged with 

the predictions of the original scan. Once test-time augmentation has been performed, final 

segmentations are obtained by keeping the biggest connected component for each label. 

On average, inference takes ten seconds on a Nvidia TitanXP GPU (12 GB), including 

preprocessing, prediction, and postprocessing.

4. General experimental setup

4.1. Brain scans and ground truths

Our experiments employ eight datasets comprising 5000 scans of six different modalities 

and ten resolutions. The splits between training, validation, and testing are given in Table 1.

T1-39: 39 T1-weighted (T1) scans with manual labels for 30 structures (Fischl et al., 2002). 

They were acquired with an MP-RAGE sequence at 1 mm isotropic resolution.

HCP: 500 T1 scans of young subjects from the Human Connectome Project (Van Essen et 

al., 2012), acquired at 0.7 mm resolution, and that we resample at 1 mm isotropic resolution.

ADNI: 1500 T1 scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI.2) 

All scans are acquired at 1 mm isotropic resolution from a wide array of scanners and 

protocols. In contrast to HCP, this dataset comprises ageing subjects, some diagnosed with 

mild cognitive impairment (MCI) or Alzheimer’s Disease (AD). As such, many subjects 

present strong atrophy patterns and white matter lesions.

T1mix: 1000 T1 scans at 1 mm isotropic resolution from seven datasets: ABIDE (Di 

Martino et al., 2014), ADHD200 (The ADHD-200 Consortium, 2012), GSP (Holmes et 

al., 2015), HABS (Dagley et al., 2017), MCIC (Gollub et al., 2013), OASIS (Marcus et 

al., 2007), and PPMI (Marek et al., 2011). We use this heterogeneous dataset to assess 

robustness against intra-modality contrast variations due to different acquisition protocols.

FSM: 18 subjects with T1 and two other MRI contrasts: T2-weighted (T2) and a sequence 

used for deep brain stimulation (DBS) (Iglesias et al., 2018). All scans are at 1 mm 

resolution.

MSp: 8 subjects with T1 and proton density (PD) acquisitions at 1 mm isotropic resolution 

(Fischl et al., 2004). These scans were skull stripped prior to availability, and are manually 

delineated for the same labels as T1-39.

FLAIR: 2393 fluid-attenuated inversion recovery (FLAIR) scans at 1 × 1 × 5 mm axial 

resolution. These subjects are from another subset of the ADNI database, and hence also 

present morphological patterns related to ageing and AD. This dataset enables assessment on 

2The ADNI was launched in 2003 by the National Institute on Ageing, the National Institute of Biomedical Imaging and 
Bioengineering, the Food and Drug Administration, pharmaceutical companies and non-profit organisations, as a 5-year public–private 
partnership. The goal of ADNI is to test if MRI, PET, other biological markers, and clinical and neuropsychological assessment can 
analyse the progression of MCI and early AD, develop new treatments, monitor their effectiveness, and decrease the time and cost of 
clinical trials.
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scans that are representative of clinical acquisitions with real-life slice selection profiles (as 

opposed to simulated LR, see below). Matching 1 mm T1 scans are also available, but they 

are not used for testing.

CT: 6 computed tomography (CT) scans at 1 × 1 × 3 mm axial resolution (West et al., 

1997), with the aim of assessing SynthSeg on imaging modalities other than MRI. As for the 

FLAIR dataset, matching 1 mm T1 scans are also available.

In order to evaluate SynthSeg on more resolutions, we artificially downsample all modalities 

from the T1-39, FSM, and MSp datasets (all at 1 mm isotropic resolution) to nine different 

LR: 3, 5 and 7 mm spacing in axial, coronal, and sagittal directions. These simulations 

do not use real-life slice selection profiles, but are nonetheless very informative since they 

enable to study the segmentation accuracy as a function of resolution.

Except for T1-39 and MSp, which are available with manual labels, segmentation ground 

truths are obtained by running FreeSurfer (Fischl, 2012) on the T1 scans of each dataset, 

and undergo a thorough visual quality control to ensure anatomical correctness. FreeSurfer 

has been shown to be very robust across numerous independent T1 datasets and yields Dice 

scores in the range of 0.85–0.88 (Fischl et al., 2002; Tae et al., 2008). Therefore, its use 

as silver standard enables reliable assessment of Dice below 0.85; any scores above that 

level are considered equally good. Crucially, using FreeSurfer segmentations enables us to 

evaluate SynthSeg on vast amounts of scans with very diverse contrasts and resolutions, 

which would have been infeasible with manual tracings only.

4.2. Training segmentations and population robustness

As indicated in Table 1, the training set for SynthSeg comprises 20 label maps from T1-39, 

500 from HCP, and 500 from ADNI. Mixing these label maps considerably increases the 

morphological variety of the synthetic scans (far beyond the capacity of the proposed spatial 

augmentation alone), and thus enlarges the robustness of SynthSeg to a wide range of 

populations. We emphasise that using automated label maps for training is possible because 

synthetic images are by design perfectly aligned with their segmentations. We highlight that 

the training data does not include any real scan.

Because SynthSeg requires modelling all tissue types in the images, we complement the 

training segmentations with extra-cerebral labels (Supplement 3) obtained with a Bayesian 

segmentation approach (Puonti et al., 2020). Note that these new labels are dropped with 

50% chances during generation, to make SynthSeg compatible with skull stripped images. 

Moreover, we randomly “paste” lesion labels from FreeSurfer with 50% probability, to build 

robustness against white matter lesions (Supplement 4). Finally, we further increase the 

variability of the training data by randomly left/right flipping segmentations and cropping 

them to 1603 volumes.

4.3. Competing methods

We compare SynthSeg against five other approaches:
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T1 baseline (Zhang et al., 2020): A supervised network trained on real T1 scans 

( Table 1). This baseline seeks to assess the performance of supervised CNNs on their 

source domain, as well as their generalisation to intra-modality (T1) contrast variations. For 

comparison purposes, we use the same UNet architecture and augmentation scheme (i.e., 

spatial deformation, intensity augmentation, bias field corruption) as for SynthSeg.

nnUNet (Isensee et al., 2021)3: A state-of-the-art supervised approach, very similar 

to the T1 baseline, except that the architecture, augmentation, pre- and postprocessing are 

automated with respect to the (real) T1 input data.

Test-time adaptation (TTA) (Karani et al., 2021)4: A state-of-the-art domain 

adaptation method relying on fine-tuning. Briefly, this strategy uses three CNN modules: 

an image normaliser (five convolutional layers), a segmentation UNet, and a denoising auto-

encoder (DAE). At first, the normaliser and the UNet are jointly trained on supervised data 

of a source domain, while the DAE is trained separately to correct erroneous segmentations. 

At test time, the UNet and DAE are frozen, and the normaliser is fine-tuned on scans from 

different target domains by using the denoised predictions of the UNet as ground truth.

SIFA (Chen et al., 2019)5: A state-of-the-art unsupervised domain adaptation strategy, 

where image-to-image translation and segmentation modules are jointly trained (with shared 

layers). SIFA seeks to align each target domain to the source data in both feature and image 

spaces for improved adaptation.

SAMSEG (Puonti et al., 2016): A state-of-the-art Bayesian segmentation framework 

with unsupervised likelihood. As such, SAMSEG is contrast-adaptive, and can segment at 

any resolution, albeit not accounting for PV effects. SAMSEG does not need to be trained as 

it solves an optimisation problem for test each scan. Here we use the version distributed with 

FreeSurfer 7.0, which runs in approximately 15 min.

The predictions of all methods are postprocessed as in Section 3.3, except for nnUNet, 

which uses its own postprocessing. We use the default implementation for all competing 

methods, except for a few minor points that are listed in Supplement 5. All learning-

based methods are trained twice, and models are chosen relatively to the validation set. 

Segmentations are assessed by computing (hard) Dice scores and the 95th percentile of the 

surface distance (SD95, in millimetres).

5. Experiments and results

Here we present four experiments that evaluates the accuracy and generalisation of 

SynthSeg. First, we compare it against all competing methods on every dataset. Then, we 

conduct an ablation study on the proposed method. The third experiment validates SynthSeg 

in a proof-of-concept neuroimaging group study. Finally, we demonstrate the generalisability 

of our method by extending it to cardiac MRI and CT.

3 https://github.com/MIC-DKFZ/nnUNet 
4 https://github.com/neerakara/test-time-adaptable-neural-networks-for-domain-generalization 
5 https://github.com/cchen-cc/SIFA 
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5.1. Robustness against contrast and resolution

In this experiment, we assess the generalisation ability of SynthSeg by comparing it against 

all competing methods for every dataset at native resolution (Fig. 4, Table 2).

Remarkably, despite SynthSeg has never been exposed to a real image during training, it 

reaches almost the same level of accuracy as supervised networks (T1 baseline and nnUNet) 

on their training domain (0.88 against 0.91 Dice scores on T1-39). Moreover, SynthSeg 

generalises better than supervised networks against intra-modality contrast variations, both 

in terms of mean (average difference of 2.5 Dice points with the T1 baseline for T1 datasets 

other than T1-39) and robustness (much higher lower-quartiles for SynthSeg). Crucially, the 

employed DR strategy yields very good generalisation, as SynthSeg sustains a remarkable 

accuracy across all tested contrasts and resolutions, which is infeasible with supervised 

networks alone. Indeed, SynthSeg outputs high-quality segmentations for all domains, even 

for FLAIR and CT scans at LR (Fig. 6). Quantitatively, SynthSeg produces the best scores 

for all nine target domains, six of which with statistical significance for Dice and nine for 

SD95 ( Table 2). This flexibility is exemplified in Fig. 5, where SynthSeg produces features 

that are almost identical for a 1 mm T1 and a 5 mm axial T2 of the same subject, the latter 

being effectively super-resolved to 1 mm.

Although the tested domain adaptation approaches (TTA, SIFA) considerably increase the 

generalisation of supervised networks, they are still outperformed by SynthSeg for all 

contrasts and resolutions. This is a remarkable result since, as opposed to domain adaptation 

strategies, SynthSeg does not require any retraining. We note that fine-tuning the TTA 

framework makes it more robust than supervised methods for intra-modality applications 

(noticeably higher lower-quartiles), but its results can substantially fluctuate for larger 

domain gaps (e.g., on FSM-DBS, FLAIR, and CT). This is partly corrected by SIFA 

(improvement of 14.92 mm in SD95 for CT), which is better suited for larger domain 

gaps (Karani et al., 2021), albeit some abrupt variations (e.g., MSp-PD). In comparison, 

SAMSEG yields much more constant results across MR contrasts at 1 mm resolution 

(average Dice score of 0.83). However, because it does not model PV, its accuracy greatly 

declines at low resolution: Dice scores decrease to 0.71 on the 3 mm CT dataset (5 points 

below SynthSeg), and to 0.64 on the 5 mm FLAIR dataset (14 points below SynthSeg).

To further validate the flexibility of the proposed approach to different resolutions, we test 

SynthSeg on all artificially downsampled data (Table 1), and we compare it against T1 

baselines retrained at each resolution, as well as SAMSEG. The results show that SynthSeg 

maintains a very good accuracy for all tested resolutions (Fig. 7). Despite the considerable 

loss of information at LR and heavy PV effects, SynthSeg only loses 3.8 Dice points 

between 1 mm and 7 mm slice spacing on average, mainly due to thin structures like 

the cortex (Fig. 8). Meanwhile, SAMSEG is strongly affected by PV, and loses 7.6 Dice 

points across the same range. As before, the T1 baselines obtain remarkable results on 

scans similar to their training data, but generalise poorly to unseen domains (i.e., FSM-T1 

and MSp-T1), where SynthSeg is clearly superior. Moreover, the gap between them on the 

training data progressively narrows with decreasing resolution, until it almost vanishes at 7 

mm, thus making SynthSeg particularly useful for LR scans.
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5.2. Ablations on DR and training label maps

We now validate several aspects of our method, starting with the DR strategy. We first focus 

on the intensity profiles of the synthetic scans by training four variants: (i) SynthSeg-R, 

which is resolution-specific; (ii) SynthSeg-RC, which we retrain for every new combination 

of contrast and resolution by using domain-specific Gaussian priors for the GMM and 

resolution parameters (Billot et al., 2020b, 2021), (iii) a variant using slightly tighter GMM 

uniform priors (μ ∈ 10,240 , σ ∈ 1,25 , instead of μ ∈ 0,255 , σ ∈ 0,35 ); and (iv) a variant 

with even tighter priors (μ ∈ 50,200 , σ ∈ 1,15 ). SynthSeg-R and SynthSeg-RC assess the 

effect of constraining the synthetic intensity profiles to look more realistic, whereas the 

two last variants study the sensitivity of the chosen GMM uniform priors. Finally, we train 

three more networks by ablating the lesion simulation, bias field, and spatial augmentation, 

respectively.

Fig. 9 shows that, crucially, narrowing the distributions of the generated scans in SynthSeg-

R and SynthSeg-RC to simulate a specific contrast and/or resolution, leads to a consistent 

decrease in accuracy: despite retraining them on each target domain, they are on average 

lower than SynthSeg by 1.4 and 2.6 Dice points respectively. Interestingly, the variant 

with slightly tighter GMM priors obtains scores almost identical to the reference SynthSeg, 

whereas further restricting these priors (at the risk of excluding intensities encountered in 

real scans) leads to poorer performance (2.1 fewer Dice points on average). Finally, the 

bias and deformation ablations highlight the impact of those two augmentations (loss of 3.7 

and 4.3 Dice points, respectively), whereas ablating the lesion simulation mainly affects the 

ADNI and FLAIR datasets, where the ageing subjects are more likely to present lesions 

(average loss of 3.9 Dice points).

In a second set of experiments, we evaluate the effect of using different numbers of 

segmentations during training. Hence, we retrain SynthSeg on increasing numbers of label 

maps randomly selected from T1-39 (N ∈ 1,5, 10,15,20 , see Supplement 6). Moreover, we 

include the version of SynthSeg trained on all available maps, to quantify the effect of 

adding automated segmentations from diverse populations. All networks are evaluated on 

six representative datasets (Fig. 10). The results reveal that using only one training map 

already attains decent Dice scores (between 0.68 and 0.80 for all datasets). As expected, 

the accuracy increases when adding more maps, and Dice scores plateau at N = 5 (except 

for MSp-PD, which levels off at N = 10). Interestingly, Fig. 10 also shows that SynthSeg 

requires fewer training examples than the T1 baseline to converge towards its maximum 

accuracy.

Meanwhile, adding a large amount of training automated maps enables us to improve 

robustness to morphological variability, especially for the ADNI and FLAIR datasets with 

ageing and diseased subjects (Dice scores increase by 1.9 and 2.0 points respectively). To 

confirm this trend, we study the 3% of ADNI subjects with the largest ventricular volumes 

(relatively to the intracranial volume, ICV), whose morphology substantially deviates from 

the 20 manual training maps. For these ADNI cases (30 in total), the average Dice score 

increases by 4.7 Dice points for the network trained on all label maps compared with the 
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one trained on manual maps only. This result further demonstrates the gain in robustness 

obtained by adding automated label maps to the training set of SynthSeg (Fig. 11).

5.3. Alzheimer’s disease volumetric study

In this experiment, we evaluate SynthSeg in a proof-of-concept volumetric group study, 

where we assess its ability to detect hippocampal atrophy related to AD (Chupin et al., 

2009). Specifically, we study whether SynthSeg can detect similar atrophy patterns for 

subjects who have been imaged with different protocols. As such, we run SynthSeg on a 

separate set of 100 ADNI subjects (50 controls, 50 AD), all with 1 mm isotropic T1 scans as 

well as FLAIR acquisitions at 5 mm axial resolution.

We measure atrophy with effect sizes in predicted volumes between controls and diseased 

populations. Effect sizes are computed with Cohen’s d (Cohen, 1988):

d = μC − μAD

s , s = nC − 1 sC
2 + nAD − 1 sAD

2

nC + nAD − 2 , (28)

where μC, sC
2 and μAD, sAD

2  are the means and variances of the volumes for the two groups, 

and nC and nAD are their sizes. Hippocampal volumes are computed by summing the 

corresponding soft predictions, thus accounting for segmentation uncertainties. All measured 

volumes are corrected for age, gender, and ICV (estimated with FreeSurfer) using a linear 

model.

In addition to SynthSeg, we evaluate the performance of SAMSEG, and all Cohen’d are 

compared to a silver standard obtained by running FreeSurfer on the T1 scans (Fischl, 2012). 

The results, reported in Table 3, reveal that both methods yield a Cohen’s d close to the 

ground truth for the HR T1 scans. We emphasise that, while segmenting the hippocampus 

in 1 mm T1 scans is of modest complexity, this task is much more difficult for 5 mm axial 

FLAIR scans, since the hippocampus only appears in two to three slices, and with heavy 

PV. As such, the accuracy of SAMSEG greatly degrades on FLAIR scans, where it obtains 

less than half the expected effect size. In contrast, SynthSeg sustains a high accuracy on 

the FLAIR scans, producing a Cohen’s d much closer to the reference value, which was 

obtained at HR.

5.4. Extension to cardiac segmentation

In this last experiment, we demonstrate the generalisability of SynthSeg by applying it to 

cardiac segmentation. With this purpose, we employ two new datasets: MMWHS (Zhuang 

et al., 2019), and LASC13 (Tobon-Gomez et al., 2015). MMWHS includes 20 MRI scans 

with in-plane resolutions from 0.78 to 1.21 mm, and slice spacings between 0.9 and 1.6 

mm. MMWHS also contains 20 CT scans of non-overlapping subjects at high resolution 

(0.28–0.58 mm in-plane, 0.45–0.62 mm slice spacing). All these scans are available with 

manual labels for seven regions (see Table 4). On the other hand, LASC13 includes 10 

MRI heart scans at 1.25 × 1.25× 1.37 mm axial resolution, with manual labels for the left 

atrium only. We form the training set for SynthSeg by randomly drawing 13 label maps 

from MMWHS MRI. For consistency, these training segmentations are all resampled at a 
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common 1 mm isotropic resolution. Finally, the validation set consists of two more scans 

from MMWHS, while all the remaining scans are used for testing.

Nevertheless, the training labels maps only model the target regions to segment, whereas 

SynthSeg requires labels for all the tissues present in the test images. Therefore, we enhance 

the training segmentations by subdividing all their labels (background and foreground) into 

finer subregions. This is achieved by clustering the intensities of the associated image with 

the Expectation Maximisation algorithm (Dempster et al., 1977). First, each foreground 

label is divided into two regions to model blood pools. Then, the background region is split 

into a random number of N regions N ∈ 3,10 , which aim at representing the surrounding 

structures with different levels of granularity (Supplement 6). All these label maps are 

precomputed to alleviate computing resources during training. We also emphasise that all 

sub-labels are merged back with their initial label for the loss computation during training. 

The network is trained twice as described in Section 3.2 with hyperparameters values 

obtained relatively to the validation set (see values in Supplement 8). Inference is then 

performed as in Section 3.3, except for the test-time flipping augmentation that is now 

disabled.

The results are reported in Table 4, and show that SynthSeg segments all seven regions 

with very high precision (all Dice scores are above 0.8). Moreover, it maintains a very good 

accuracy across all tested datasets, with mean Dice scores of 0.84 and 0.88 for MMWHS 

MRI and CT respectively. Interestingly, these scores are similar to the state-of-the-art results 

in cross-modality cardiac segmentation obtained by Chen et al. (2019) (Dice score of 0.82), 

despite not being directly comparable due to differences in resolution (2 mm for Chen et 

al. (2019), 1 mm for SynthSeg). Overall, segmenting all datasets at such a level of accuracy 

(Fig. 12) is remarkable for SynthSeg, since, as opposed to Chen et al. (2019), it is not 

retrained on any of them.

6. Discussion

We have proposed a method for segmentation of brain MRI scans that is robust against 

changes in resolution and contrast (including CT) without retraining or fine-tuning. Our 

main contribution lies in the adopted domain randomisation strategy, where a segmentation 

network is trained with synthetic scans of fully randomised contrast and resolution. By 

producing highly diverse samples that make no attempt at realism, this approach forces the 

network to learn domain-independent features.

The impact of the DR strategy is demonstrated by the domain-constrained SynthSeg 

variants, for which training contrast and resolution-specific networks yields poorer 

performance (Section 5.2). We believe this outcome is likely a combination of two 

phenomena. First, randomising the generation parameters enables us to mitigate the 

assumptions made when designing the model (e.g., Gaussian intensity distribution for 

each region, slice selection profile, etc.). Second, this result is consistent with converging 

evidence that augmenting the data beyond realism often leads to better generalisation (Tobin 

et al., 2017; Chaitanya et al., 2019; Bengio et al., 2011).
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Additionally, SynthSeg enables to greatly alleviate the labelling labour for training purposes. 

First, it is only trained once and only requires a single set of anatomical segmentations (no 

real images), as opposed to supervised methods, which need paired images and labels for 

every new domain. Second, our results show that SynthSeg typically requires less training 

examples than supervised CNNs to converge to its maximum performance (Section 5.2). 

And third, parts of the training dataset can be acquired at almost no cost, by including 

label maps obtained by segmenting real brain scans with automated methods, and visually 

checking the results to ensure reasonable quality and anatomical plausibility. We highlight 

that while automated segmentations are generally not used for training (since they are 

prone to errors), this is made possible here by the fact that synthetic scans are, by 

design, perfectly aligned with their ground truths. We also emphasise that using automated 

segmentations to train SynthSeg is not only possible, but recommended, as the inclusion 

of such segmentations greatly improves robustness against highly different morphologies 

caused by anatomical variability (e.g., ageing subjects).

Nevertheless, the employed Gaussian model imposes that the training label maps encompass 

tracings of all tissues present in the test scans. However, this is not a limitation in practice, 

since automated labels can be obtained for missing structures by simple intensity clustering. 

This strategy enabled us to obtain state-of-the-art results for cardiac segmentation, where the 

original label maps did not describe the complex distribution of finer structures (blood pools 

in cardiac chambers) and surrounding tissues (vessels, bronchi, bones, etc.). Moreover, our 

results show that SynthSeg can handle deviations from the Gaussian model within a given 

structure if they are mild (like the thalamus in brain MRI), or far away from the regions to 

segment (like the neck in brain MRI).

A limitation of this work is the high proportion of automated label maps used for 

evaluation. This choice was initially motivated by the wish to evaluate SynthSeg on a 

wide variety of contrasts and resolutions, which would have been infeasible with manual 

labels only. Nonetheless, we emphasise that a lot of testing datasets still use manual 

segmentations (T1-39, and MSp for brain segmentation; MMWHS and LASC13 for the 

heart experiment), and that the remaining datasets have all undergone thorough visual 

quality control. Importantly, SynthSeg has shown the same remarkable generalisation ability 

when evaluated with manual or automated ground truths. Finally, the conclusions of this 

paper are further reinforced by the indirect evaluation performed in Section 5.3, which 

demonstrates the accuracy and clinical utility of SynthSeg.

Thanks to its unprecedented generalisation ability, SynthSeg yields direct applications in 

the analysis of clinical scans, for which no general segmentation routines are available due 

to their highly variable acquisition procedures (sequence, resolution, hardware). Indeed, 

current methods deployed in the clinic include running FreeSurfer on companion 1 mm 

T1 scans and/or using such labels to train a supervised network (possibly with domain 

adaptation) to segment other sequences. However, these methods preclude the analysis of the 

majority of clinical datasets, where 1 mm T1 scans are rarely available. Moreover, training 

neural networks in the clinic is difficult in practice, since it requires corresponding expertise. 

In contrast, SynthSeg achieves comparable results to supervised CNNs on their training 
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domain (especially at LR), and can be deployed much more easily since it does not need to 

be retrained.

7. Conclusion

In this article, we have presented SynthSeg, a learning strategy for segmentation of brain 

MRI and CT scans, where robustness against a wide range of contrasts and resolutions is 

achieved without any retraining or fine-tuning. First, we have demonstrated SynthSeg on 

5000 scans spanning eight datasets, six modalities and 10 resolutions, where it maintains a 

uniform accuracy and almost attains the performance of supervised CNNs on their training 

domain. SynthSeg obtains slightly better scores than state-of-the-art domain adaptation 

methods for small domain gaps, while considerably outperforming them for larger domain 

shifts. Additionally, the proposed method is consistently more accurate than Bayesian 

segmentation, while being robust against PV effects and running much faster. SynthSeg 

can reliably be used in clinical neuroimaging studies, as it precisely detects AD atrophy 

patterns on HR and LR scans alike. Finally, by obtaining state-of-the-art results in cardiac 

cross-modality segmentation, we have shown that SynthSeg has the potential to be applied to 

other medical imaging problems.

While this article focuses on the use of domain randomisation to build robustness against 

changes in contrast and resolution, future work will seek to further improve the accuracy of 

the proposed method. As such, we will explore the use of adversarial networks to enhance 

the quality of the synthetic scans. Then, we plan to investigate the use of CNNs to “denoise” 

output segmentations for improved robustness, and we will examine other architectures to 

replace the UNet employed in this work. Finally, while the ablation of the lesion simulation 

in Section 5.2 is a first evidence of the robustness of SynthSeg to the presence of lesions, 

future work will seek to precisely quantify the performance of SynthSeg when exposed to 

various types of lesions, tumours, and pathologies.

The trained model is distributed with FreeSurfer. Relying on a single model will greatly 

facilitate the use of SynthSeg by researchers, since it eliminates the need for retraining, 

and thus the associated requirements in terms of hardware and deep learning expertise. By 

producing robust and reproducible segmentations of nearly any brain scan, SynthSeg will 

enable quantitative analyses of huge amounts of existing clinical data, which could greatly 

improve the characterisation and diagnosis of neurological disorders.
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Fig. 1. 
(a) Representative samples of the synthetic 3D scans used to train SynthSeg for brain 

segmentation, and contours of the corresponding ground truth. (b) Test-time segmentations 

for a variety of contrasts and resolutions, on subjects spanning a wide age range, some 

presenting large atrophy and white matter lesions (green arrows). All segmentations are 

obtained with the same network, without retraining or fine-tuning.
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Fig. 2. 
Overview of a training step. At each mini-batch, we randomly select a 3D label map from a 

training set Sn  and sample a pair I, T  from the generative model. The obtained image is 

then run through the network, and its prediction Y  is used to compute the average soft Dice 

loss, that is backpropagated to update the weights of the network.
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Fig. 3. 
Intermediate steps of the generative model: (a) we randomly select an input label map from 

the training set, which we (b) spatially augment in 3D. (c) A first synthetic image is obtained 

by sampling a GMM at HR with randomised parameters. (d) The result is then corrupted 

with a bias field and further intensity augmentation. (e) Slice spacing and thickness are 

simulated by successively blurring and downsampling at random LR. (f) The training inputs 

are obtained by resampling the image to HR, and removing the labels we do not wish to 

segment (e.g., extra-cerebral regions).
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Fig. 4. 
Box plots showing Dice scores obtained by all methods for every dataset. For each box, the 

central mark is the median; edges are the first and third quartiles; and outliers are marked 

with ⧫.
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Fig. 5. 
Representative features of the last layer of the network for two scans of different contrast 

and resolution for the same subject. While the T1 baseline only produces noise outside 

its training domain, SynthSeg learns a consistent representation across contrasts and 

resolutions.
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Fig. 6. 
Sample segmentations from the first experiment. Major segmentation mistakes are indicated 

with yellow arrows. SynthSeg produces very accurate segmentations for all contrasts and 

resolutions. The T1 baseline makes small errors outside its training domain and cannot be 

applied to other modalities. While the TTA approach yields very good segmentations for 

T1mix, its results degrade for larger domain gaps, where it is outperformed by SIFA. Finally, 

SAMSEG yields coherent results for scans at 1 mm resolution, but is heavily affected by PV 

effects at low resolution.
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Fig. 7. 
Dice scores for data downsampled at 3, 5, or 7 mm in either axial, coronal, or sagittal 

direction (results are averaged across directions).
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Fig. 8. 
Examples of segmentations obtained by SynthSeg for two scans artificially downsampled 

at decreasing LR. SynthSeg presents an impressive generalisation ability to all resolutions, 

despite heavy PV effects and important loss of information at LR. However, we observe a 

slight decrease in accuracy for thin and convoluted structures such as the cerebral cortex 

(red) or the white cerebellar matter (dark yellow).
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Fig. 9. 
Mean Dice scores obtained for SynthSeg and ablated variants.
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Fig. 10. 
Dice vs. number of training label maps for SynthSeg (circles) on representative datasets. 

The last points are obtained by training on all available labels maps (20 manual plus 1000 

automated). We also report scores obtained on T1mix by the T1 baseline (triangles).
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Fig. 11. 
Close-up on the hippocampus for an ADNI testing subject with atrophy patterns that 

are not present in the manual training segmentations. Hence, training SynthSeg on these 

manual maps only leads to limited accuracy (red arrows). However, adding a large number 

of automated maps from different populations to the training set enables us to improve 

robustness against morphological variability (green arrow).
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Fig. 12. 
Representative cardiac segmentations obtained by SynthSeg on three datasets, without 

retraining on any of them, and without using real images during training. LASC13 only 

has ground truth for LA (pink).

Billot et al. Page 35

Med Image Anal. Author manuscript; available in PMC 2023 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Billot et al. Page 36

Table 1

Summary of the employed brain datasets. The 10 test resolutions are 1 mm3 and 3/5/7 mm in either axial, 

coronal, or sagittal direction. SynthSeg is trained solely on label maps (no intensity images).

Dataset Subjects Modality Resolution

Training

T1-39 20 SynthSeg: Label maps Baselines: T1 1 mm isotropic

HCP 500 SynthSeg: Label maps Baselines: T1 1 mm isotropic

ADNI 500 SynthSeg: Label maps Baselines: T1 1 mm isotropic

Validation

T1-39 4 T1 all tested resolutions

FSM 3 T2, DBS all tested resolutions

Testing

T1-39 15 T1 all tested resolutions

ADNI 1,000 T1 1 mm isotropic

T1mix 1,000 T1 1 mm isotropic

FSM 15 T1, T2, DBS all tested resolutions

MSp 8 T1, PD all tested resolutions

FLAIR 2,393 FLAIR 5 mm axial

CT 6 CT 3 mm axial
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Table 3

Effect size (Cohen’s d) obtained by FreeSurfer (Ground Truth, GT), SAMSEG and SynthSeg for hippocampal 

volumes between controls and AD patients for different types of scans.

Contrast Resolution FreeSurfer (GT) SAMSEG SynthSeg

T1 1 mm3

1.38
1.46 1.40

FLAIR 5 mm axial 0.53 1.24
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Table 4

Dice scores for seven cardiac regions: left atrium (LA), right atrium (RA), left ventricle (LV), right ventricle 

(RV), myocardium (MYO), ascending aorta (AA), and pulmonary artery (PA). LASC13 only has ground truth 

for LA.

LA LV RA RV MYO AA PA

MMHS MRI 0.91 0.89 0.9 0.84 0.81 0.86 0.86

MMWHS CT 0.92 0.89 0.86 0.88 0.85 0.94 0.84

LASC13 0.9 – – – – – –
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