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Potential targets and mechanisms of 
photobiomodulation for spinal cord injury

Abstract  
As a classic noninvasive physiotherapy, photobiomodulation, also known as low-level laser therapy, is widely used for the treatment of many diseases and has 
anti-inflammatory and tissue repair effects. Photobiomodulation has been shown to promote spinal cord injury repair. In our previous study, we found that 
810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery. However, the mechanism underlying 
this inhibitory effect is not clear. In recent years, transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases. 
Therefore, in this study, we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy. Our sequencing 
results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization. We analyzed these genes using gene 
ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Networks of protein-protein interactions and competing RNA endogenous 
networks were constructed. We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p, and that miR-
330-5p binding to STAT3 inhibited STAT3 expression. Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression. 
Finally, we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide 
synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice. These findings suggest that STAT3 may be a potential target of 
photobiomodulation, and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.
Key Words: competing endogenous RNA; inflammatory pathway; low-level laser therapy; macrophage; miR-330-5p; neurological function; photobiomodulation; 
RNA-seq; spinal cord injury; STAT3
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Introduction 
Spinal cord injury (SCI), as a neurological disease, can be caused by external 
factors, such as trauma, car accidents, or falling from heights, and often leads 
to the loss of motor, sensory, and autonomic nervous function (Tashiro et 
al., 2021; Assunção Silva et al., 2022; Griffey and Yamamoto, 2022). Bone 
marrow-derived macrophages (BMDMs) are the most important inflammatory 
cells in secondary SCI and are recruited to the injury area after injury. M1 
polarization of BMDMs aggravates the inflammatory response, promotes 
neuronal apoptosis, and worsens the progression of SCI. Therefore, it is 
important to understand how to effectively control M1 polarization following 
SCI (Ren and Young, 2013). 

Photobiomodulation (PBM), also known as low-level laser therapy, is a widely 
used noninvasive physiotherapy with minimal side effects that reduces 
inflammation, repairs scars, and promotes bone repair (Sarvestani et al., 2017; 
Song et al., 2017). PBM has been reported to have a good repair function for 
SCI (Song et al., 2017; Yang et al., 2021). We previously demonstrated the 
safety of 810 nm low-level laser irradiation in pigs, showed that 810 nm laser 
therapy regulated BMDM polarization in mice, and preliminarily explored the 
possible mechanism of PBM (Zhang et al., 2020; Zheng et al., 2021; Zuo et al., 
2022). For example, PBM stimulated the release of various neurotrophic factors 

by activating the protein kinase A/cAMP response element binding pathway 
in macrophages, and inhibition of the Notch1-hypoxia-inducible factor-1α/
nuclear factor-κB signaling pathway attenuated macrophage M1 polarization 
(Zhang et al., 2020; Ma et al., 2022). However, the specific mechanism of PBM 
regulation of BMDM polarization needs to be further studied.

In many diseases, transcriptome sequencing can be used to analyze the 
differential genes and signaling pathways in disease occurrence and 
progression, which is of great value for elucidating the disease pathogenesis 
and clarifying target genes causing a disease (Cao et al., 2021; Pan et 
al., 2021). However, no previous studies have performed transcriptome 
sequencing to analyze the potential targets and possible mechanism of 
PBM regulation of M1 polarization to promote SCI repair. Therefore, in this 
study, we used transcriptome sequencing to investigate the differential gene 
expression profile and possible signaling pathways by which PBM regulates 
M1 macrophage polarization to promote SCI repair, which will help explain 
the possible mechanism of PBM. 
 
Methods   
Animals
Because the incidence of SCI is much higher in men than in women (Wu et 
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al., 2022), and female mice had a lower inflammatory response after SCI 
than male mice (Farooque et al., 2006), we used male mice for this study. We 
obtained male C57BL/6 mice (specific-pathogen-free level, 6–8 weeks) from 
the Animal Center of Air Force Medical University, Xi’an, China (license No. 
SYXK (Shaan) 2019-001). The animal experimental protocol was approved by 
the Animal Protection and Utilization Committee of Air Force Military Medical 
University (approval No. IACUC-20210358; date: March 1, 2021). The mice 
were raised under standard conditions (temperature of 22–25°C, relative 
humidity of 45–65%, 12-hour light/dark cycle, and food and water available 
at all times), with three mice in each cage. A total of 80 mice were included in 
the experiment, and 69 survived for experimental study. Mice were randomly 
divided into a sham group (n = 15), SCI groups (n = 33), and PBM treatment 
groups (n = 15), and mice in the SCI groups were randomly divided into 3, 
7, 14, and 28 days subgroups. Grouping details are described in Additional 
Figure 1. 
 
SCI model
The SCI model was generated as described previously (Jiang et al., 2017). 
Mice were anesthetized by injecting 0.6% sodium pentobarbital (10 mL/kg) 
intraperitoneally. A longitudinal incision was made with T9 as the center, the 
skin and subcutaneous tissue were cut successively, T8–T10 spinous processes 
and lamina were exposed, and the T9 lamina was removed to expose the 
spinal cord. The forceps were completely inserted into both sides of the 
spinal cord in the vertical direction, and the spinal cord is clamped with the 
forceps maximally closed for 30 seconds at the T9 level to cause SCI, which 
was followed by hemostasis and suturing. After the operation, micturition was 
performed by manually squeezing the bladder every day. Only laminectomy 
was performed in the sham group. 
 
Cell extraction, culture, and transfection
The male C57BL/6 mice were killed by an overdose of 0.6% sodium 
pentobarbital (10 mL/kg) and were placed in 70% ethanol for 15 minutes. The 
intact hindlimb femurs and tibias were removed using aseptic techniques. The 
medullary cavity was repeatedly washed with precooled phosphate-buffered 
saline to obtain a mixed suspension, which was then collected in a 15 mL 
centrifuge tube. The red blood cell lysate was added for 10 minutes. The 
mixture was centrifuged at 300 × g for 5 minutes and the supernatant was 
discarded. The cells were gently resuspended in Dulbecco’s modified Eagle’s 
medium (Cytiva-HyClone Laboratories Inc., South Logan, UT, USA) containing 
10% fetal bovine serum (Biological Industries, Kibbutz Beit-Haemek, Israel) 
and 10 ng/mL macrophage colony-stimulating factor (Sino Biological, Beijing, 
China). BMDMs were cultured at 37°C with 5% CO2 for 7 days. M1 polarization 
of BMDMs was induced by lipopolysaccharide (100 ng/mL, Sigma-Aldrich, 
St. Louis, MO, USA) + interferon-γ (20 ng/mL, PeproTech, Cranbury, NJ, USA) 
(Zhang et al., 2020). miR-330-5p mimics, miR-330-5p inhibitors and negative 
control (NC) were obtained from General Biology Co., Ltd. (Chuzhou, Anhui 
Province, China). 
 
PBM treatment in in vivo and in vitro models
A previous percutaneous irradiation model was modified for subcutaneous 
irradiation in mice (Ma et al., 2022). SCI mice were anesthetized and fixed. 
The low-level laser fiber was placed subcutaneously in the injured area and 
mice were irradiated (808 ± 5 nm) once a day for 1 hour each time for 28 
days. In the in vitro experiment, cells were placed on an ultraclean worktable 
and subjected to 808 ± 5 nm low-level laser irradiation every 12 hours for 48 
hours. The parameters for PBM are described in detail in Additional Table 1. 
 
RNA sequencing
BMDMs were harvested after treatment, and total RNA was extracted 
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). mRNA enrichment, 
fragmentation, reverse transcription, library construction, sequencing, and 
data analysis were performed at Genergy Biotechnology Co. Ltd. (Shanghai, 
China). The thresholds for determining differentially expressed transcripts 
were P < 0.05 and fold change ≥ 1. Then, differentially expressed transcripts 
were evaluated by functional and pathway enrichment analyses using the 
Gene Ontology (GO; http://geneontology.org/) (Ashburner et al., 2000; 
Gene Ontology Consortium, 2021) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG; https://www.kegg.jp/) databases. Significantly enriched 
pathways were determined when P < 0.05 and at least two genes were 
involved. Protein-protein interaction (PPI) networks were constructed using 
the STRING database (https://cn.string-db.org/) (Szklarczyk et al., 2021). The 
miRanda database (http://www.miranda.org/) was used to build a competing 
endogenous RNA (ceRNA) network with long non-coding RNAs (lncRNAs) and 
circular RNAs (circRNAs).
 
Western blot assay
BMDMs were washed with phosphate-buffered saline after treatment, 
and incubated with radioimmunoprecipitation assay buffer containing 
phosphatase inhibitor. In the in vivo experiment, mice were deeply 
anesthetized and sacrificed at 3, 7, 14, and 28 days post-operation, and a 
0.5-cm segment of spinal cord centered on the injury site was collected. 
Radioimmunoprecipitation assay buffer containing phosphatase inhibitor was 
added for grinding. All proteins were harvested after being digested at 4°C 
for 20 minutes. The samples were transferred to a 1.5 mL centrifuge tube 
and centrifuged for 20 minutes at 4°C and 12,000 × g. The precipitate was 
discarded. Bicinchoninic acid protein analysis kits (Pierce, Rockford, IL, USA) 
were used to detect protein concentrations. The total protein extracts were 
separated by 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
and transferred to nitrocellulose membranes. The membranes were 

blocked with 5% nonfat milk. Next, the membranes were incubated with the 
corresponding antibodies overnight at 4°C. The specific primary antibodies 
are as follows: rabbit anti-signal transducer and activator of transcription 3 
(STAT3, 1:1000, Cell Signaling Technology, Danvers, MA, USA, Cat# 12640, 
RRID: AB_2629499), rabbit anti-inducible nitric oxide synthase (iNOS, 1:1000, 
Cell Signaling Technology, Cat# 13120, RRID: AB_2687529), mouse anti-
CD86 (1:500, Santa Cruz Biotechnology, Dallas, TX, USA, Cat# sc-28347, RRID: 
AB_627200) and mouse anti-β-actin (1:1000, Proteintech, Wuhan, Hubei 
Province, China, Cat# 66009-1-Ig, RRID: AB-2687938). The membrane was 
washed with phosphate-buffered saline/Tween at room temperature (25°C). 
Subsequently, the secondary antibodies were added and incubated for 1 
hour at room temperature (goat anti-rabbit horseradish peroxidase antibody, 
1:3000, InCellGene, Cimarron Path San Antonio, TX, USA, Cat# SA-10011; goat 
anti-mouse horseradish peroxidase antibody, 1:3000, InCellGene, Cat# SA-
10010). After samples were washed with phosphate-buffered saline/Tween, 
the chemiluminescence image was obtained with an Amersham Imager 600 
(GE Healthcare, Stockholm, Sweden). The experiment was repeated three 
times and ImageJ software (v1.4.67; National Institutes of Health, Bethesda, 
MD, USA) (Schneider et al., 2012) was used to calculate the optical density of 
proteins.
 
Quantitative polymerase chain reaction
As described in a previous study (Ju et al., 2018), total RNA was extracted 
from BMDMs using the TRIzol reagent (Invitrogen). RT mix was used to obtain 
complementary DNA. SYBR Select Master Mix was used for quantitative 
polymerase chain reaction (PCR). CFX (Invitrogen) and the CFX Connect Real-
time PCR System (Bio-Rad, Hercules, CA, USA) settings were 95°C for 15 
seconds, followed by 40 cycles of 95°C for 5 seconds and 60°C for 34 seconds. 
The data were analyzed with the 2–ΔΔCt method (Livak and Schmittgen, 2001). 
MicroRNA (miRNA) primers and the internal reference U6 were synthesized by 
General Biology Co., Ltd. Sequences of all primers were shown in Additional 
Table 2.
 
Luciferase assay
PmirGLO-mutant (Mut) STAT3 3′-untranslated regions (3′-UTRs, General 
Biology Co., Ltd.) or PmirGLO-wild type (WT) STAT3 3′-UTRs (General Biology 
Co., Ltd.) and miR-330-5p mimics or NC mimics (General Biology Co., Ltd.) 
were cotransfected into 293T cells (National Collection of Authenticated 
Cell Culture, Shanghai, China; Cat# GNHu17). The Luciferase Reporter Assay 
System (E1910, Promega, Madison, WI, USA) was used to detect luciferase 
activity.
 
Luminex assay
After 7 days, spinal cord tissue from the sham, SCI, and SCI + PBM groups 
were collected. Before the experiment, the lysate (protease inhibitor) was 
added at 150–250 µL per 20 mg of tissue then ground for 60 seconds, 
and the sample was diluted twice. The Mouse Premixed Multi-Analyte Kit 
(R&D, Minneapolis, MN, USA; Cat# LXSAMSM-10) was maintained at room 
temperature for approximately 30 minutes before use. Data were read using 
the Luminex200 instrument (Luminex Corp., Austin, TX, USA).
 
Functional assessment 
The Basso Mouse Scale (BMS) was used to evaluate the motor function of the 
mice hindlimbs on days 1, 3, 7, 14, and 28 after injury and was scored from 
0 to 9 according to the previously described scoring system (posterior ankle 
mobility, coordination, paw posture, trunk stability, and tail posture, higher 
scores representing better functional recovery) (Basso et al., 2006). 

The Louisville swimming scale (LSS) is an 18-point scale (0–17) divided into 0–5, 
6–11, and 12–17. It is usually used to assess the recovery of hindlimb motor 
function in mice, with higher scores representing better functional recovery. 
The LSS assesses swimming performance based on three main components: 
forelimb dependence, hindlimb activity, and body posture (Smith et al., 
2006). Two experienced researchers who were not involved in the experiment 
conducted the evaluation.
 
Statistical analysis
Statistics were analyzed using GraphPad Prism (version 9.0.0 for Windows, 
GraphPad Software, San Diego, CA, USA, www.graphpad.com). Two groups 
were compared using Student’s t-test, and multiple groups were compared 
using one-way analysis of variance with least significant difference test. The 
measured data were expressed as mean ± standard deviation. P < 0.05 was 
considered statistically significant. 

Results
Identification of differentially expressed mRNAs, lncRNAs, and circRNAs
We extracted and cultured BMDMs in vitro and sequenced cells after M1 
induction and irradiation. Screening of the sequencing results identified 
18,176 differentially expressed mRNAs, 1712 differentially expressed lncRNAs, 
and 71 differentially expressed circRNAs between M0 and M1 macrophages 
(Figure 1A). We also identified 3612 differentially expressed mRNAs, 218 
differentially expressed lncRNAs, and 25 differentially expressed circRNAs 
between M1 and M1 + PBM macrophages (Figure 1B). In summary, we 
detected extensive expression differences between M0, M1, and M1 + PBM 
macrophages. Additionally, we obtained the intersection of the differentially 
expressed mRNAs, lncRNAs, and circRNAs in the M0 vs. M1 and M1 vs. M1 + 
PBM groups, as visualized in a Venn diagram in Figure 2. 
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GO enrichment analysis results of differentially expressed genes
We performed a GO enrichment analysis of the overlapping differentially 
expressed genes in the M0 vs. M1 and M1 vs. M1 + PBM groups (Figure 3A–
C). In the biological process category, the differentially expressed mRNAs 
were mainly enriched for cellular metabolic processes. In the cellular 
component category, the differentially expressed mRNAs were mainly 
expressed in intracellular, membrane-bounded organelles. In the molecular 
function category, the differentially expressed mRNAs were mostly related 
to protein binding. The lncRNAs were mainly enriched in the GO terms 
antigen processing and presentation, major histocompatibility complex class 
II protein complex, and major histocompatibility complex class II protein 
complex binding. The circRNAs were mainly enriched in the intracellular 
distribution of mitochondria, cyclin K-cyclin-dependent kinase 13 complex, 
and phosphatidylinositol 3-kinase regulator activity. These results suggest 
potential biological processes by which differentially expressed genes induced 
by PBM inhibit M1 macrophage polarization.

KEGG pathway enrichment analysis results of differentially expressed genes
Additionally, we conducted a KEGG enrichment analysis of all differentially 
expressed genes (Figure 4A–C). The differentially expressed mRNAs, lncRNAs, 
and circRNAs were mainly involved in inflammation-related pathways, such 
as the nuclear factor-κB signaling pathway, tumor necrosis factor signaling 
pathway, phosphatidylinositol 3-kinase/protein kinase B (AKT) signaling 
pathway, and Janus kinase/STAT signaling pathway. These signaling pathways 
may play essential roles in M1 macrophages. 
 
PPI network analysis results
With the differentially expressed mRNAs summarized in Figure 2, we 
constructed a PPI network using the STRING database. The network indicated 
potential interactions among the genes. The PPI network based on the top 50 
differentially expressed genes was presented in Figure 5. 
 
Construction of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks
In the PPI network, multiple genes were associated with inflammation, such 
as IL-6, STAT3, and SGK1. We identified key genes by building ceRNA networks 
with lncRNAs and circRNAs using the top 50 genes in the PPI network (Figure 
6A and B). We found that the miR-330-5p/STAT3 axis was included in both 
ceRNA networks. STAT3 and miR-330-5p are involved in the inflammatory 
response. STAT3 promoted inflammation, whereas miR-330-5p inhibited 
inflammation in a lung injury model (Yu et al., 2021, 2022). In addition, in the 
RNA sequencing analysis, STAT3 was highly expressed in M1 macrophages 
and was decreased after PBM. Therefore, miR-330-5p/STAT3 may mediate the 
effects of PBM and was evaluated in subsequent experiments.
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Figure 1 ｜ Identification of differentially expressed mRNAs, lncRNAs, and circRNAs in 
M0 vs. M1 and M1 vs. M1 + PBM macrophages.
(A) Differentially expressed mRNAs, lncRNAs, and circRNAs between M0 and 
M1 macrophages identified by RNA sequencing (three samples per group). (B) 
Differentially expressed mRNAs, lncRNAs, and circRNAs between M1 and M1 + PBM 
macrophages. Each line represents a gene; red indicates upregulation and blue indicates 
downregulation. circRNAs: Circular RNAs; lncRNAs: long noncoding RNAs; PBM: 
photobiomodulation.
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Figure 3 ｜ GO enrichment analysis of differentially expressed genes between M0 vs. 
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(A–C) GO enrichment analysis of differentially expressed genes in mRNA (A), lncRNA (B) 
and circRNA (C), according to three categories: biological process, cellular component, 
and molecular function. circRNA: Circular RNA; GO: Gene Ontology; lncRNA: long 
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Regulatory effects of the miR-330-5p/STAT3 axis on M1 polarization of 
BMDMs
We detected the expression of miR-330-5p and STAT3 in macrophages. 
According to western blotting results, STAT3 expression in M1 macrophages 
was higher than that in M0 macrophages, and was decreased after PBM 
treatment (Figure 7A). Quantitative PCR results showed that miR-330-5p 
expression in M1 macrophages was lower than that in M0 macrophages, 
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Figure 4 ｜ KEGG pathway enrichment analysis of differentially expressed genes 
between M0 vs. M1 and M1 vs. M1 + PBM groups. 
(A–C) KEGG pathway enrichment analysis of differentially expressed genes in mRNA (A), 
lncRNA (B) and circRNA (C), which suggested important roles of inflammation-related 
pathways. The size of the circle represents the number of genes. Darker red indicates a 
higher P-value. circRNA: Circular RNA; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
lncRNA: long noncoding RNA; PBM: photobiomodulation.

and was increased after treatment with PBM (Figure 7B). We then predicted 
the binding sites of miR-330-5p and STAT3 using StarBase (Figure 7C). The 
luciferase reporter assay showed that the activity of WT-STAT3 in miR-330-
5p mimics was reduced, but the activity of Mut-STAT3 was not changed. 
These results showed that miR-330-5p binds to STAT3 directly (Figure 7D 
and E). Furthermore, we transfected miR-330-5p mimics and inhibitors into 
macrophages. Quantitative PCR showed that, compared with that after the 
transfection with NC, the expression of miR-330-5p was higher after the 
transfection of miR-330-5p mimics and was lower after the transfection 
of the miR-330-5p inhibitor, indicating that transfection was successful 
(Figure 7F and G). Western blot assay showed that the transfection of miR-
330-5p mimics into M1 macrophages inhibited STAT3 and iNOS expression, 
with further reductions in expression after the combined use of miR-330-

5p mimics and PBM (Figure 7H). In contrast, transfection of miR-330-5p 
inhibitors increased STAT3 and iNOS expression in M1 macrophages, and PBM 
attenuated the miR-330-5p inhibitor-induced increases in STAT3 and iNOS 
expression (Figure 7I). These findings showed that miR-330-5p, a potential 
target of PBM, reduced STAT3 expression and macrophage polarization.
 
PBM reduces STAT3 and iNOS expression and promotes SCI repair in vivo
We collected spinal cord tissue for western blotting at 3, 7, 14, and 28 days 
after SCI. The expression levels of iNOS and STAT3 were highest on day 7 
after injury and decreased on day 14 after injury compared with sham groups 
(Figure 8A). Furthermore, after 7 days of treatment with PBM, iNOS and 
STAT3 expression levels were decreased compared with SCI groups (Figure 
8B). We also detected the expression of CD86, which was consistent with 
iNOS expression (Additional Figure 2A and B). In addition, a Luminex assay 
showed that the levels of inflammatory factors IL-1α and IL-6 also were 
decreased after 7 days of PBM treatment compared with SCI groups. These 
results showed that PBM inhibited STAT3 and iNOS expression in mice after 
SCI, which was consistent with the results of the in vitro assays (Figure 8C). 
Furthermore, we evaluated the motor functional recovery of SCI mice after 
PBM treatment. After 28 days of PBM treatment, the BMS and LSS scores 
of mice were increased compared with SCI groups, indicating that PBM 
promoted the recovery of motor function after SCI (Figure 8D and E). Overall, 
our data showed that PBM had a significant therapeutic effect on SCI model 
mice. 

Discussion
The secondary inflammatory response is critical for functional recovery after 
SCI, and BMDMs are critical for the regulation of secondary inflammation 
(Gensel and Zhang, 2015). Therefore, strategies to effectively change the 
polarization direction of BMDMs and regulate the inflammatory response may 
be valuable for SCI repair. Genome sequencing can identify genes associated 
with disease occurrence and development (Wu et al., 2021; Young et al., 
2022). In this study, we performed transcriptome sequencing for the first time 
at the cellular level for PBM regulation of macrophage polarization, which 
included lncRNAs, mRNAs, and circRNAs. These results indicate potential 
target genes that warrant further investigation. 

To identify the biological features and signaling pathways associated with 
these differential genes, GO and KEGG analyses were performed. GO 
enrichment analysis is performed from three aspects: biological process, 
cellular component and molecular function. The GO analysis indicated that 
the differentially expressed genes were enriched in immune and metabolic 
responses, which is consistent with the biological function of macrophages 
(Greene et al., 2022; Pan et al., 2022). This provides reliable information to 
help further our understanding of macrophage regulation of PBM. The KEGG 
enrichment analysis identified that multiple common signaling pathways 
were altered, such as the nuclear factor-κB signaling pathway, hypoxia-
inducible factor-1 signaling pathway, tumor necrosis factor signaling pathway, 
phosphatidylinositol 3-kinase/AKT signaling pathway, and Janus kinase/
STAT signaling pathway. These signaling pathways have been reported to 
be involved in nerve injury, oxidative stress, osteogenic differentiation 
and inflammatory response (Gao et al., 2022; Geng et al., 2022; Lin et al., 
2022; Qiu et al., 2022; Wang et al., 2022b, c). In SCI, selective inhibition 
of nuclear factor-κB in astrocytes improved SCI recovery (Brambilla et al., 
2005). Autophagy induced by activation of the hypoxia-inducible factor-1α/
BNIP3 signaling pathway promoted nerve survival and axonal regeneration 
(Li et al., 2019). Elimination of tumor necrosis factor in macrophages and 
neutrophils led to a decrease in lesion volume after SCI (Ellman et al., 
2020). Activation of the phosphatidylinositol 3-kinase/AKT pathway reduced 
endothelial cell apoptosis and microvascular injury induced by SCI (Li et al., 
2020). This finding provides a direction for further study of the signaling 
pathways that may be involved in PBM. Furthermore, we conducted a PPI 
analysis of the differential genes to assess molecular interactions. Our results 
showed interactions among the top 50 differentially expressed genes, of 
which many have been reported to be involved in inflammatory response. For 
example, inhibition of STAT3 reduced renal ischemia/reperfusion injury, and 
miR-221-3p inhibited inflammatory response in osteoarthritis by targeting 
Janus kinase 3/STAT3 (Quero et al., 2019; Wang et al., 2022a). SGK1 plays an 
important role in pulmonary fibrosis, diabetic renal fibrosis and liver cirrhosis 
by upregulating the nuclear factor-κB pathway and then stimulating the 
expression of many inflammatory mediators (Lu et al., 2022). Nfkb2 increases 
the proinflammatory gene response driven by RelA in intestinal epithelial cells 
(Chawla et al., 2021). The signaling pathways associated with these top genes 
were consistent with the KEGG analysis.

In addition, we constructed the ceRNA network using the top 50 genes 
(lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA). lncRNA is involved in 
the occurrence of various diseases and performs biological functions through 
molecular scaffolds, RNA-binding proteins, or ceRNAs (Ju et al., 2018, 2019; 
Liu et al., 2021). circRNAs are noncoding covalently closed circular RNAs 
produced by alternative splicing. The 3′ and 5′ ends of circRNAs are covalently 
linked to a covalent closed-loop structure without a free end. These RNAs are 
evolutionarily conserved and form a ceRNA interaction with miRNAs (Li et al., 
2018; Patop et al., 2019; Chen, 2020; Xiao et al., 2020). The importance of the 
interaction between miRNAs and mRNAs, which degrades mRNAs and inhibits 
their function, is now well-established (Borchert et al., 2006; Krol et al., 2010). 
These analyses are helpful for us to elucidate the potential mechanism of 
PBM regulating macrophage polarization from the perspective of noncoding 
RNA.
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A B

IncRNA-miRNA-mRNA circRNA-miRNA-mRNA

Figure 5 ｜ PPI network analysis 
of differentially expressed genes 
between M0 vs. M1 and M1 vs. M1 + 
PBM groups. 
PPI network of the interactions among 
the top 50 genes. Interactions between 
genes are indicated by a straight 
line. PBM: Photobiomodulation; PPI: 
protein-protein interaction.

Figure 6 ｜ Construction of lncRNA-miRNA-mRNA (A) and circRNA-miRNA-mRNA (B) networks. 
Red represents miRNA, green represents lncRNA, and blue represents mRNA. Connections are represented by a straight line. circRNA: Circular RNA; lncRNA: long noncoding RNA; 
miRNA: microRNA.

Finally, our study verified the interaction between miR-330-5p and STAT3. In 
previous studies, enhancing miR-330-5p expression inhibited the progression 
of bladder cancer and pancreatic cancer (Chen et al., 2019, 2020). It was 
also reported that miR-330-5p inhibited intervertebral disc degeneration by 
targeting cartilage intermediate layer protein (Li et al., 2021). Furthermore, 
upregulation of miR-330-5p expression inhibited oxidative stress and 
macrophage inflammation (Liu et al., 2019), and miR-330-5p targeting TIM3 
inhibited myocardial ischemia-reperfusion injury induced by NLRP3 activation 
(Zuo et al., 2021). We found that miR-330-5p reduced STAT3 expression and 
inhibited M1 macrophage polarization. The results in vivo were consistent 
with those at the cellular level. iNOS and STAT3 expression were increased 
after SCI and decreased after PBM treatment. The PBM treatment improved 

motor function, which indicates that our PBM protocol has a therapeutic 
effect on mice after SCI at both the cellular and animal levels. This finding 
provides theoretical support for the clinical application of PBM.

There were some limitations in this study to address. First, the bioinformatics 
analysis in this experiment was performed only at the cellular level, which 
may differ from the tissue level. Therefore, in a future study, we intend to 
perform tissue-level transcriptome sequencing and combined analysis with 
cellular-level transcriptome sequencing, which will be important to better 
clarify the therapeutic value of PBM. Second, at the animal level, we only 
made a preliminary observation of the phenotype, and the mechanism has 
not been explained. This will need to be studied in depth in future studies.
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Figure 8 ｜ PBM reduces STAT3 and iNOS expression in the injured spinal cord and promotes SCI repair in vivo.
(A) Western blotting of iNOS and STAT3 expression (n = 6 mice per group). (B) Western blotting of iNOS and STAT3 expression after 7 days of SCI and PBM treatment (n = 6 mice 
per group). (C) Luminex assay was used to detect the expression of inflammatory cytokines (n = 3 mice per group). (D, E) BMS and LSS scores were used to evaluate motor function 
recovery in mice after PBM treatment (n = 6 mice per group). Higher LSS scores indicate better recovery of motor function. Motor function of the sham group and sham + PBM group 
were the same. Motor function in the PBM group was better than that in SCI group. The data are expressed as mean ± SD. ***P < 0.001, ****P < 0.0001, vs. SCI group (one-way 
analysis of variance followed by least significant difference test [A, B, H, I] or Student’s t-test [D–F]). BMS: Basso Mouse Scale; IL: interleukin; iNOS: inducible nitric oxide synthase; LSS: 
Louisville swimming scale; PBM: photobiomodulation; SCI: spinal cord injury; STAT3: signal transducers and activators of transcription 3.

Figure 7 ｜ Regulatory effects of the miR-330-5p/STAT3 
axis on M1 polarization of BMDMs.
(A) STAT3 protein expression, as evaluated by western 
blotting, in M0, M1, and M1 + PBM macrophages. Data 
were normalized by M0. (B) qPCR detection of miR-330-
5p expression in M0, M1, and M1 + PBM macrophages. 
(C) Bioinformatics analysis identified a potential miR-330-
5p binding site of STAT3. (D, E) Luciferase reporter assay 
demonstrating the luciferase activity of cells cotransfected 
with miR-335-5p mimics and WT-STAT3 or Mut-STAT3. (F, G) 
qPCR results for the expression of miR-330-5p mimics and 
inhibitors. (H, I) Western blotting analysis of iNOS and STAT3 
expression. Data were normalized by M0. The data are 
expressed as mean ± SD (n = 6 mice per group). *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001 (one-way analysis 
of variance followed by least significant difference test [A, 
B, H, I] or Student’s t-test [D–G]). 3′-UTR: 3′-Untranslated 
region; BMDM: bone marrow-derived macrophage; iNOS: 
inducible nitric oxide synthase; Mut: mutant; ns: not 
significant; PBM: photobiomodulation; qPCR: quantitative 
polymerase chain reaction; STAT3: signal transducers and 
activators of transcription 3; WT: wild type.

In summary, through transcriptome sequencing and bioinformatics analysis, 
we identified the gene expression profile of PBM regulation of macrophage 
polarization and analyzed the functional enrichment of differential genes. 
These findings are important for understanding the potential key pathways 
and genes involved in PBM regulation of macrophage polarization, and are 
helpful for clarifying the potential mechanism of PBM in the treatment of SCI.
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Additional Figure 1 Animal grouping.
BMS: Basso Mouse Scale; LSS: Louisville swimming scale; PBM: photobiomodulation; SCI: spinal cord injury.
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Additional Figure 2 PBM reduces CD86 expression in SCI mice.
(A) Expression of CD86 in control group and at 3, 7, 14, and 28 days after SCI (n = 6 mice per group). (B)
Expression of CD86 after 7 days of SCI and PBM treatment. The data are expressed as mean ± SD (n = 6 mice per
group). **P < 0.01, ***P < 0.001, ****P < 0.0001 (one-way analysis of variance followed by least significant
difference test). PBM: Photobiomodulation; SCI: spinal cord injury.
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Additional Table 1 Specific parameters of photobiomodulation

Parameter In vivo In vitro

Center wavelength (nm) 808 808

Spectral bandwidth (nm) <5 <5

Operating mode Continuous wave Continuous wave

Frequency (Hz) 50 kHz 50 kHz

Beam spot size at target (cm²) 0.2 4.5

Irradiance at garget (mW/cm²) 50 6

Exposure duration (min) 50 7

Radiant exposure (J/cm²) 150 2.52

Radiant energy (J) 30 11.34

Number of points irradiated Once a day Twice a day
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Additional Table 2 The primer sequences used in this study

Gene Sequence (5’-3’)

mmu-miR-330-5p Forward: CCC TCT CTG GGC CTG TGT CTT AG

Reverse: ATC CAG TGC AGG GTC CGA GG

U6 Forward: GGA ACG ATA CAG AGA AGA TTA GC

Reverse: TGG AAC GCT TCA CGA ATT TGC G


