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Background and Hypothesis:  Gut microbiota alterations 
have been reported in severe mental illness (SMI) but 
fewer studies have probed for signs of gut barrier disrup-
tion and inflammation. We hypothesized that gut leakage 
of microbial products due to intestinal inflammation could 
contribute to systemic inflammasome activation in SMI. 
Study Design:  We measured plasma levels of the chemo-
kine CCL25 and soluble mucosal vascular addressin cell 
adhesion molecule-1 (sMAdCAM-1) as markers of T cell 
homing, adhesion and inflammation in the gut, lipopoly-
saccharide binding protein (LBP) and intestinal fatty acid 
binding protein (I-FABP) as markers of bacterial translo-
cation and gut barrier dysfunction, in a large SMI cohort 
(n = 567) including schizophrenia (SCZ, n = 389) and af-
fective disorder (AFF, n = 178), relative to healthy con-
trols (HC, n = 418). We assessed associations with plasma 
IL-18 and IL-18BPa and leukocyte mRNA expression of 
NLRP3 and NLRC4 as markers of inflammasome activa-
tion. Study Results:  Our main findings were: (1) higher 
levels of sMAdCAM-1 (P = .002), I-FABP (P = 7.6E−11), 

CCL25 (P = 9.6E−05) and LBP (P = 2.6E−04) in SMI 
compared to HC in age, sex, BMI, CRP and freezer 
storage time adjusted analysis; (2) the highest levels of 
sMAdCAM-1 and CCL25 (both P = 2.6E−04) were ob-
served in SCZ and I-FABP (P = 2.5E−10) and LBP (3) 
in AFF; and (3), I-FABP correlated with IL-18BPa levels 
and LBP correlated with NLRC4. Conclusions:  Our find-
ings support that intestinal barrier inflammation and dys-
function in SMI could contribute to systemic inflammation 
through inflammasome activation. 

Key words: schizophrenia/affective disorder/ 
inflammasome/mucosal vascular addressin cell 
adhesion molecule-1/intestinal fatty acid binding 
protein/lipopolysaccharide binding protein

Introduction

Genetic and epidemiological evidence implicate im-
mune activation and inflammation in the development 
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and progression of severe mental illness (SMI) including 
schizophrenia (SCZ)1,2 and affective disorders (AFF).3–5 
Systemic activation of immune and vascular cells with 
enhanced secretion of inflammatory mediators has been 
demonstrated preceding6 and following diagnosis of SCZ 
and AFF.7–9 Molecular neuroscience studies suggest that 
inflammation and immune activation may influence neu-
ronal functioning and plasticity, dysregulate neuron-glia 
cross-talk, and predispose immunocompetent glia to a pro-
inflammatory state associated with neurodegeneration.10–13

Comorbid cardio-metabolic conditions such as 
dyslipidemia, diabetes, and increased fat mass may con-
tribute to systemic inflammation, and over time enhance 
cardiovascular (CV) mortality, which is two to three-fold 
higher in SMI.14,15 Accumulating evidence suggests that 
the gut microbiota composition and disrupted gut-blood 
barrier leading to gut wall inflammation and leakage of 
microbial products also may promote systemic inflamma-
tion, contributing to the pathogenesis of disorders like 
diabetes, obesity, and CV disease.16 Altered gut micro-
biota profiles have also been described in SMI and linked 
to brain structure,17 symptoms,18,19 and cognitive perfor-
mance.20 Conversely, stress related behavior may influence 
the microbiome, potentially representing a vicious circle 
in SMI.20 This bidirectional communication has been 
termed the gut–brain axis.21 While many studies have in-
vestigated gut microbiome in SMI,22,23 fewer studies have 
probed for signs of gut barrier disruption and inflamma-
tion or linked these to systemic inflammasome activation. 
Nod-like Receptor Protein (NLRP) 3 inflammasome ac-
tivation has been suggested as an important link between 
altered gut microbiota composition, impaired gut bar-
rier and systemic inflammation,24 through interactions 
between lipopolysaccharide (LPS) and toll-like receptor 
4,enhancing the release of the inflammatory cytokines 
interleukin (IL)-1β and IL-18.25 We have recently dem-
onstrated increased leukocyte mRNA expression of 
NLRP3 and NLRC4 which are core components of the 
inflammasome, as well plasma IL-18 levels in SMI.26

Both loss of integrity in the epithelial barrier and bacte-
rial translocation may enhance inflammatory processes in 
the intestinal mucosa where different lymphocyte subsets 
are important regulators of immune responses.27 CCR9/
CCL25 interaction seems to regulate the inflammatory 
immune response of the intestinal mucosa by balancing 
different dendritic and T cell subsets.28 CCL25 is exclu-
sively expressed by thymic cells and intestinal epithelial 
cells, and enhanced intestinal levels are seen during gut 
inflammation.29–31 Markedly higher circulating CCL25 
has been demonstrated in patients with inflammatory 
bowel disease (IBD)32 and mucosal levels correlate with 
the Mayo endoscopic sub-score and mucosal TNF levels, 
as markers of mucosal inflammation, in ulcerative colitis 
patients.31 Furthermore, CCR9/CCL25 interactions in-
duce pro-migratory responses, including the activation of 
integrins and binding to Mucosal addressin cell adhesion 

molecule-1 (MAdCAM-1), a homing receptor preferen-
tially expressed on gut-associated endothelial cells and 
lymphoid tissues,33,34 which plays a central role in leuko-
cyte traffic into the mucosal immune compartment.35,36 
Elevated MAdCAM-1 has been observed in Crohn’s dis-
ease at sites of active inflammation,37 and increased

levels correlate with disease activity in IBD.38 Damage 
to the intestinal mucosa may lead to leakage of intestinal 
fatty acid binding protein (I-FABP), a small (15 kD) cy-
tosolic protein exclusively expressed by mature epithelial 
cells of the mucosal layer of the large and in particular the 
small intestines.39 Upon damage to the intestinal barrier, 
I-FABP is released into the bloodstream and considered 
a marker of epithelial integrity with a causal relationship 
to permeability and innate barrier function.40,41 Increased 
levels are seen in patients with enhanced mucosal in-
flammation and gut barrier dysfunction due to intestinal 
epithelial cell damage such as celiac disease, intestinal is-
chemia, and necrotizing colitis.42–45 Leakage of microbial 
products such as lipopolysaccharides (LPS) to the cir-
culation will stimulate hepatic production of its binding 
protein, LPS-binding protein (LBP), and is considered a 
potential surrogate marker of microbial translocation.46

To investigate if gut leakage mechanisms due to intes-
tinal barrier inflammation and dysfunction could con-
tribute to systemic inflammasome activation, being an 
important component of the innate immune system, we 
measured plasma levels of CCL25 and sMAdCAM-1 as 
markers of leukocyte homing, adhesion, and inflamma-
tion in the gut, LBP, and I-FABP as markers of bacte-
rial translocation and gut barrier dysfunction, in a large 
SMI cohort including SCZ (n = 389) and AFF (n = 178), 
relative to healthy controls (HC, n = 418). Furthermore, 
we assessed associations with plasma levels of IL-18 and 
IL-18BPa and leukocyte mRNA expression of NLRP3 
and NLRC4 as markers reflecting systemic inflammasome 
activation. Finally, as MAdCAM-1 is also expressed in the 
brain47 and potentially could promote leukocyte trafficking 
across the BBB, we also assessed MADCAM1 mRNA 
levels in RNA-seq data of dorsolateral prefrontal cortex 
(DLPFC) post mortem samples from the CommonMind 
Consortium (CMC, n = 474), to assess if potential sys-
temic dysregulation was reflected in brain tissue.

Materials and Methods

Setting and Participants

The current study is a naturalistic, cross-sectional study 
which is part of  the ongoing Thematically Organized 
Psychosis (TOP) Study at the NORMENT Centre which 
includes patients from psychiatric clinics of  hospitals in 
the Oslo region. The clinical participants were recruited 
to the current study consecutively from 2003 through 
2017 mainly from outpatient clinics, but also from inter-
mediate and long term units. Inclusion of  patients ad-
mitted to acute treatment units was awaited until they 



637

Gut Inflammation in SMI

were stabilized and able to consent and participate in 
interviews and assessments. This project studies the un-
derlying mechanisms of  SMI, amongst others to assess 
specific research questions on the role of  inflammation 
and immune activation in SMI, and the current study is 
part of  this aim. The main patient criterion of  inclusion 
in the TOP Study is a diagnosis of  schizophrenia (SCZ) 
spectrum disorder, bipolar spectrum disorder or major 
depressive disorder with psychotic features according to 
DSM-IV. All participants were between 18 and 65 years 
and able to give a written informed consent. Patients re-
cruited after an acute episode (post-acute episode) were 
only included when they were clinically stable enough to 
provide informed consent. Participants were excluded if  
they did not speak Scandinavian and/or demonstrated 
pronounced cognitive deficits (IQ < 70) and/or severe 
brain damage/illness in order to ascertain that all parti-
cipants were able to complete the protocol and fully un-
derstand the meaning of  participating in the study. The 
HC participants were randomly invited from statistical 
records (www.ssb.no) from the same catchment area as 
the patients. HC were between 18 and 65 years old appar-
ently healthy individuals with none reporting any history 
of  SMI, significant head injury, neurological disorders, 
illicit drug use, first-degree relatives with SMI, or neu-
rological disorders or other medical problems that could 
interfere with brain function (eg, severe uncontrolled 
hypothyroidism, hypertension, or diabetes). All partici-
pants were weighed on calibrated digital weights under 
equal conditions, height was measured with standard 
methods and body mass index (BMI) (kg/m²) calculated. 
All participants have given written informed consent and 
the study was approved by the Regional Committees for 
Medical and Health Research Ethics (REC) in Norway 
and the Norwegian Data Protection Agency.

Sample

A total of 567 patients with SMI and 418 HC were in-
cluded in the current study. In the sample, a total of 389 
patients had schizophrenia spectrum disorder (schizo-
phrenia, schizoaffective disorder, schizophreniform dis-
order, delusional disorder, brief psychotic disorder, and 
psychosis NOS) and were included in the diagnostic group 
“Schizophrenia” (SCZ), while 178 patients had affective dis-
order (bipolar I, bipolar II, bipolar NOS, and major depres-
sive disorder with psychotic features) and were included in 
the diagnostic group “Affective” (AFF). To avoid individuals 
with ongoing/intermittent severe infection or inflammation, 
participants with C-reactive protein (CRP) >10 mg/L for 
any reason were excluded from the study (n = 103).48

Clinical Assessments

Sociodemographic history, medical history, substance 
use, psychiatric symptoms, medication, and potential 

side effects were recorded by interviews and reviewing 
medical records. They all underwent diagnostic inter-
views based on Structured Clinical Interview of DSM-IV 
axis I Disorders (SCID-1), and symptom assessments 
with Positive and Negative Syndrome Scale (PANSS),49 
Young Mania Rating Scale (YMRS)50 and the symptom 
score of the split version of the Global Assessment of the 
Functioning Scale (GAF-S).51 Diagnostic evaluation was 
performed by trained psychologists and physicians super-
vised by senior researchers and the inter-rater reliability 
of diagnostic and symptom assessments was satisfac-
tory.52 The HC were interviewed for current or previous 
history of SMI themselves or in their family and assessed 
with Primary Care Evaluation of Mental Disorders 
(PRIME MD).

Biochemistry

EDTA plasma was obtained and processed as de-
scribed26,53 and levels of  sMAdCAM-1, I-FABP, CCL25, 
and LBP were measured in duplicates by enzyme im-
munoassays (EIA) using commercially available anti-
bodies (R&D Systems, Minneapolis, MN, USA) in a 
384 format using a combination of  a SELMA (Jena, 
Germany) pipetting robot and a BioTek (Winooski, 
VT, USA) dispenser/washer. Absorption was read at 
450 nm with wavelength correction set to 540 nm using 
an ELISA plate reader (Bio-Rad, Hercules, CA, USA). 
Plasma levels of  IL-18 and IL-18-BPa and leukocyte 
mRNA expression of  NLRP3 and NLRC4 in this popu-
lation have been reported previously.26,53 Intra- and inter-
assay coefficients of  variation were <10% for all EIAs.

Medication

The information regarding prescribed antipsychotics 
(AP), antiepileptic’s (AE) and antidepressants (AD) used 
by patients were obtained by clinical interviews and hos-
pital records. We calculated “defined daily doses” (DDD) 
according to the World Health Organization (WHO) 
principles, as described previously.54 The DDD is the as-
sumed average maintenance dose per day for a drug used 
for its main indication in adults and provide a fixed unit 
of measurement independent of dosage (https://www.
whocc.no/atc_ddd_index/).

RNA-seq of Brain Samples from the CommonMind 
Consortium (CMC)

See the Supplementary file for details.

Statistical Analyses

Statistical analyses were performed in Stata. Missing 
values were generated with multiple imputation (with 
chained equations) to avoid any bias in the association of 

http://www.ssb.no
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
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interest introduced by excluding individuals with missing 
data. Differences in demographics were assessed using 
one-way ANOVA, Chi-square test and Scheffe’s posthoc 
tests. Associations between gut inflammation markers, 
BMI, CRP, markers of inflammasome (IL-18 and 
IL-18BPa) and T cell activation (sCD25) inflammatory 
markers were assessed with Spearman rank-order correl-
ations. Additionally, we assessed pair-wise correlations 
stratified by use of medications and CRP levels to further 
assess the pattern of findings (see Supplementary File 2).

Associations between diagnosis (HC, SCZ+AFF, 
SCZ, AFF) and the gut inflammation markers CCL25, 
sMAdCAM-1, LBP andI-FABP were assessed using or-
dinary least square (OLS) regression models, both with 
and without adjusting for age, sex, BMI, CRP, and freezer 
storage time. Some previous studies suggest that ad-
ministration of AP drugs could affect gut permeability 
markers55,56; therefore, we performed sensitivity analysis by 
assessing the pattern of associations among those not using 
APs. Associations between gut inflammation markers and 
use of medications and between symptom/functionality 
scores and inflammatory gut markers in patient groups 
were also assessed using OLS regression with these same 
covariates. Additionally, we assessed the potential moder-
ating role of age, sex, BMI, CRP, AP use, AD use, and AE 
use in the association between diagnosis and inflammatory 
markers with linear and fractional polynomial models.

Results

Demographics and Clinical Characteristics

As shown in Table 1, patients with SCZ (mean 29.2 years, 
SD 9.4) were younger than HC and AFF (mean 33 years 

and 31.9 years, respectively). SCZ and HC had a higher 
proportion of males compared to AFF. SCZ patients had 
a higher BMI compared to AFF and HC, while AFF 
had a higher BMI and more females compared to HC. 
As expected, SCZ patients had more severe symptoms 
as reflected by PANSS, and lower levels of functioning 
as reflected by GAF-S, compared to AFF. CRP levels 
were higher in SCZ compared to HC. As expected, use of 
AP was more frequent in SCZ compared to AFF, with a 
higher DDD of APs, and use of AEs was higher in AFF 
with a higher DDD of AEs.

Circulating Markers of Gut Inflammation in Severe 
Mental Illnesses

Distributions of  plasma markers among SMI patients 
and HC and within diagnostic groups, with P-values 
adjusted for age, sex, BMI, CRP, and freezer storage 
time are shown in Figure 1, with coefficient estimates 
for different levels of  adjustment shown in Table 2. 
Patients with SMI showed significantly higher plasma 
sMAdCAM-1 (P = .006), I-FABP (P = 7.3E−11), 
CCL25 (P = 3.8E−05) and LBP (P = 1.6E−07) than 
HC in age- and sex-adjusted analysis, with the highest 
levels in SCZ for sMAdCAM-1 (P = .001) and CCL25 
(P = 8.0E−05), while I-FABP was highest (P = 3.5E−10) 
and sMAdCAM-1 was not regulated differently in AFF. 
The pattern of  findings remained the same among pa-
tients not using APs (Supplementary Figure 1). For all 
markers, these differences remained significant when 
including BMI, CRP, and freezer storage time in the 
models, although LBP correlated positively with CRP 
(r = .42, P < .001) in the SMI group. Data analysis, not 

Table 1. Demographics

SCZ (n = 389) AFF (n = 178) HC (418)

P

SCZ vs HC AFF vs HC SCZ vs AFF

n Mean (SD) n Mean (SD) n Mean (SD) P P P

Age, yrs 389 29.2 (9.4) 178 33 (12.2) 418 31.9 (8.6) 7.3E−081 1.7E−053 0.2443 6.6E−053

Sex (male) 241 61.9 % 80 44.9 % 244 58.4 % .0012 .2992 .0032 1.5E−042

PANSS total 376 54.8 (17) 177 41.2 (12) – – – – – 2.7E−073

YMRS 278 10.8 (10.3) 167 10.3 (9.5) – – – – – .6093

GAF-S 388 28.6 (11.5) 178 39.4 (12.7) – – – – – <2E−163

BMI, kg/m2 357 26.4 (5.1) 168 25.2 (4.2) 368 24.5 (3.5) 2.1E−121 3E−093 .0333 .0083

CRP, mg/L 389 3.2 (2.7) 178 2.6 (2.5) 418 2.3 (2.2) .0011 5.4E−073 .2533 .0083

Antipsychotics use 321 82.5% 105 58.9% 0 0.0% – – – 1.8E−092

DDD antipsychotics 317 1.3 (0.9) 105 0.9 (0.8) – – – – – .0013

Anti-epileptics use 40 10.3% 73 41% 0 0.0% – – – 1.9E−172

DDD anti-epileptics 40 0.6 (0.4) 72 0.9 (0.5) – – – – – .0033

Antidepressants use 114 29.3% 66 37.1% 0 0.0% – – – .0642

DDD antidepressants use 106 1.7 (0.9) 59 1.4 (0.8) – – – – – .0513

Categorical data are given as percentage while continuous data are given as mean (SD).
HC, healthy controls; SCZ, Schizophrenia; AFF, affective disorders; BMI, body mass index; PANSS, Positive and Negative Syndrome 
Scale; YMRS, Young Mania Rating Scale; GAF-S, Global Assessment of Functioning Scale; CRP, C-reactive protein.
1One-way ANOVA.
2Chi-square test.
3Scheffe’s post hoc test.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
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using imputed data is given in Supplementary Table 
1 showing a similar pattern as with imputed data. We 
did not have information on GI disorders or antibiotic 

use in HC, but found 4 patients with GI disorders (2 
with IBD, 2 with celiac disease) and 5 using antibiotics. 
Exclusion of  these patients did not change the results 

Figure 1. Circulating gut and inflammatory proteins by group. (A) Soluble mucosal vascular addressin cell adhesion molecule1 
(MAdCAM-1) (B) Intestinal fatty acid binding protein (I-FABP) (C) Chemokine (C–C motif) ligand 25 (CCL25) (D) 
Lipopolysaccharide binding protein (LBP) levels between SMI patients (AFF+SCZ, n = 567) and HC (n = 418) and within SCZ (n = 
389) and AFF (n = 178) groups. Data are shown as adjusted (age, sex, BMI, CRP, and freezer storage time) marginal means.

Table 2. Associations between diagnosis and inflammatory markers with different levels of adjustment

Unadjusted Age + sex + FST Age + sex + FST + BMI
Age + sex + FST + 

BMI+ CRP

β P-value β P-value β P-value β P-value

sMAdCAM-1
 SCZ+AFF 0.60 .005 0.60 .006 0.68 .002 0.68 .002
 SCZ 0.79 .001 0.80 .001 0.94 1.8e−04 0.93 2.4e−04
 AFF 0.18 .489 0.12 .664 0.12 .658 0.12 .669
I-FABP
 SCZ+AFF 141.77 7.3e−11 143.22 1.6e−10 149.06 6.9e−11 149.17 7.6e−11
 SCZ 121.66 4.9e−08 121.01 2.0e−07 129.43 6.0e−08 127.56 1.1e−07
 AFF 185.74 2.8e−10 188.74 3.5e−10 191.85 2.2e−10 191.54 2.5e−10
CCL25
 SCZ+AFF 38.81 7.3e−05 41.46 3.8e−05 39.85 1.0e−04 40.01 9.6e−05
 SCZ 42.86 7.8e−05 44.66 8.0e−05 42.31 2.7e−04 42.58 2.6e−04
 AFF 29.94 .003 30.48 .003 31.11 .003 31.05 .003
LBP
 SCZ+AFF 3.68 3.6e−07 3.86 1.6e−07 2.97 5.0e−05 2.56 2.6e−04
 SCZ 3.51 4.9e−06 3.80 1.6e−06 2.72 6.5e−04 2.15 .005
 AFF 4.03 1.9e−05 4.07 2.1e−05 3.61 1.3e−04 3.70 3.2e−05

Participants with CRP > 10mg/L were excluded.
FST, freezer storage time; BMI, body mass index.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
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as shown in the fully adjusted models in Supplementary 
Table 2

As shown in Supplementary Table 3, none of the 
markers were associated with symptom/functionality 
scores except a positive association between LBP and 
PANSS total in SCZ (β = 0.24, P = .001).

Circulating Markers of Gut Inflammation in Relation to 
Treatment Modalities

Supplementary Table 4 show the associations between 
treatments and inflammatory gut markers evaluated in all 
patients. AP treatment or use of AE and AD were not in-
dependently associated with sMAdCAM-1 or CCL25 in 
our study and there were no significant associations with 
DDD for the medication groups within users. However, 
I-FABP was associated positively with DDD AP (β = 
48.62, P = .035) and with AE use (β = 145.65, P = .001). 
On the contrary, LBP was associated negatively with AP 
use (β = −2.34, P = .048) and DDD AP (β = −1.34, P = 
.033).

Supplementary Table 5 shows the associations between 
lithium use and DDD lithium, and inflammatory gut 
markers. Lithium use was associated positively with LBP 
(β = 4.39, P = .028) but no significant associations were 
observed for any of the other inflammatory gut markers.

We next assessed treatment modalities within diag-
nostic groups. As shown in Supplementary Figure 2, 
within the SCZ group, AP and AD users had lower and 
higher levels of LBP, respectively. However, the biggest 
difference with regard to treatment was found for AE use, 

where SCZ users of AE had higher levels of I-FABP (P = 
3.6E−04, Supplementary Figure 2C), driving the differ-
ence seen for the whole group in Supplementary Table 4.

Correlation Between Markers of Gut Inflammation and 
Inflammasome Activation

Presented in Table 3, we next assessed correlates between 
the gut leakage/inflammation markers and markers of 
inflammasome activation. sMAdCAM-1 levels cor-
related positively with IL-18 in SMI but not HC and 
with IL-18BPa in all groups. I-FABP correlated pos-
itively IL-18 in HC and with IL-18BPa in SM and 
within diagnostic groups. We adjusted for the number of 
gut*inflammasome markers (ie, 4 * 4 = 16). Thus, our ad-
justed threshold is 0.05/16 = 0.0031 for these correlations.

A weak positive correlation between CCL25 and 
IL-18BPa was observed in SMI. LBP correlated pos-
itively with IL-18 in HC and with IL-18BPa in SMI 
and within diagnostic groups. No associations were de-
tected between sMAdCAM-1, I-FABP, and CCL25 with 
NLRP3 or NLRC4 mRNA expression in leukocytes, but 
LBP correlated positively with NLRP3 in SCZ and with 
NLRC4 in all groups.

These correlations were also performed in subgroups 
based on treatment as well as above or below 5 mg/L 
CRP, as a high and low inflammation group, respectively. 
As shown in Supplementary Table 6 coefficients were in 
general similar in these subgroups. The association be-
tween LBP and NLRP3 or NLRC4 was not present in 
patients not using AP.

Table 3. Associations between gut inflammation markers and markers of inflammasome activation (Spearman correlations)

Patients

MAdCAM-1 I-FABP CCL25 LBP

rho P rho P rho P rho P

IL-18
 HC 0.01 .791 0.06 .250 0.01 .821 0.10 .050
 SCZ+AFF 0.07 .077 0.03 .539 0.05 .229 0.02 .708
 SCZ 0.03 .559 −0.02 .729 0.01 .853 0.03 .597
 AFF 0.15 .050 0.16 .039 0.14 .068 −0.01 .896
IL-18BPa
 HC 0.05 .285 0.01 .859 0.01 .866 −0.00 .985
 SCZ+AFF 0.11 .008 0.17 <.001 0.04 .421 0.02 .556
 SCZ 0.12 .021 0.16 .002 0.07 .204 0.02 .704
 AFF 0.06 .434 0.24 .001 −0.04 .594 0.05 .498
NLRP3
 HC 0.07 .294 0.04 .553 −0.06 .408 −0.01 .875
 SCZ+AFF 0.02 .736 −0.02 .734 0.00 .994 0.15 .005
 SCZ 0.01 .850 −0.07 .295 −0.07 .305 0.15 .020
 AFF 0.03 .729 0.07 .439 0.12 .188 0.14 .112
NLRC4
 HC 0.03 .607 −0.10 .125 −0.04 .577 0.12 .053
 SCZ+AFF 0.06 .284 −0.05 .377 0.02 .662 0.19 <.001
 SCZ 0.03 .660 −0.09 .178 0.00 .993 0.22 <.001
 AFF 0.10 .247 0.02 .839 0.05 .584 0.14 .132

Bold = P < .0031.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
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Expression of MADCAM1 in the Brain

In contrast to the other measured mediators of gut 
leakage/inflammation (see “Methods”), MADCAM1 
is also expressed in the brain. We therefore next as-
sessed MADCAM1 expression in RNA-seq data from a 
large sample (n = 474) of dorsolateral prefrontal cortex 
(DLPFC) postmortem tissues from the CMC. Differential 
expression analyses of the whole brain region (bulk RNA-
seq) showed, however, no regulation of MADCAM1 in 
SMI (Supplementary Figure 3).

Discussion

In the present study, we hypothesized that gut leakage of 
microbial products due to intestinal inflammation could 
contribute to systemic inflammation, at least partly due to 
activation of innate immunity that involve inflammasome 
activation, in SMI. Our major findings were: (1) higher 
levels of sMAdCAM-1, I-FABP, and LBP in SMI com-
pared to HC, with the highest levels of sMAdCAM-1 in 
SCZ and I-FABP in AFF, (2) higher sMAdCAM-1 and 
I-FABP were independent of BMI and CRP while differ-
ences in LBP were mitigated by these factors, (3) modestly 
elevated CCL25 in SMI, and (4) sMAdCAM-1, I-FABP 
and LBP correlated with inflammasome activation as re-
flected by levels of IL-18 and IL-18BPa and leukocyte 
mRNA expression of NLRP3 and NLRC4. Our findings 
support that intestinal barrier inflammation and dysfunc-
tion in SMI could contribute to systemic inflammation 
through inflammasome activation in these patients.

Gut microbiota alterations have been reported in SMI 
over the last years17–20 and there are indications of in-
creased levels of microbial products in the circulation of 
patients with SCZ57,58 and AFF,59 as summarized in a re-
cent meta-analysis.60 Leakage of microbial products such 
as LPS to the circulation will stimulate LBP production 
in the liver and while our finding of increased LBP levels 
in SMI in age- and sex-adjusted analysis supports bac-
terial translocation in these patients, the attenuation of 
these differences upon adjustment with BMI and CRP 
merit further consideration. First, adipose tissue derived 
LBP has been shown to promote systemic inflammation 
and metabolic deterioration in clinical and experimental 
models of obesity.61,62 Second, although CRP and LBP 
both are acute phase proteins mainly produced in the 
liver and a strong correlation between them is expected, 
we would anticipate a significant leakage of microbial 
products to induce circulating LBP levels beyond those 
explained by BMI and CRP. However, gut dysbiosis and 
endotoxin levels correlate strongly with CRP in other 
patients with metabolic disease and intestinal inflamma-
tion.63,64 Severance et al. demonstrated higher LBP only 
in SCZ patients with gut and endocrine disturbances, 
mainly driven by obesity.65 Bacterial translocation from 
the gut into the circulation has been shown to correlate 
with negative symptoms, neurocognitive impairments, 

and aggression in SCZ,57,58 however, we observed only a 
modest association between LBP level and PANSS total 
score in SCZ. Finally, the lower LBP in AP users in SCZ 
could suggest a beneficial effect of these drugs, however, 
only in AP users we observed a positive correlation be-
tween LBP and inflammasome mRNA expression making 
these results hard to interpret. In contrast, LBP was pos-
itively weakly associated with lithium use. However, for 
effects of treatment modalities, these are best assessed by 
a temporal design, adjusting for changes in relevant dem-
ographics (eg, BMI). Taken together, while LBP seems to 
reflect the enhanced systemic inflammation in SMI, it is 
unclear in what degree it also reflect gut leakage of micro-
bial products such as LPS.

Leakage of microbial products to the systemic is de-
pendent on gut barrier disruption, which has been evalu-
ated in SMI through zonulin, an established modulator 
and marker of intestinal permeability, and increased 
levels have been demonstrated in SCZ66,67 and AFF.68,69 
In addition, Maes et al. demonstrated zonulin mediated 
breakdown of the gut barrier and linked bacterial trans-
location to indices of BBB breakdown, negative symp-
toms and cognitive impairments in SCZ patients.57,70,71 A 
major finding in our study was the markedly higher levels 
of I-FABP in AFF and SCZ. I-FABP is a cytosolic pro-
tein exclusively expressed in epithelial cells in the small 
and large intestine and conditions with enhanced mu-
cosal inflammation and gut barrier dysfunction due to 
intestinal epithelial cell damage show increased systemic 
levels.45 Thus, while zonulin may reflect increased intes-
tinal permeability, our finding of increased I-FABP, fur-
ther suggest there may be significant intestinal epithelial 
cell damage in SMI.42 In our patients, AE use was associ-
ated with higher I-FABP levels in SCZ, possibly reflecting 
some adverse GI effect which has been reported with AE 
treatment.72,73

MAdCAM-1 seem to play a major role in leukocyte 
homing into intestinal mucosa, and for B and T cells, 
CCL9 could also play a role.35,36 These mechanisms are 
shown to contribute to the chronically inflamed intes-
tine and barrier dysfunction in inflammatory bowel dis-
ease.74–76 Our finding of increased sMAdCAM-1 levels in 
SCZ thus support enhanced leukocyte homing into the 
intestine in these patients. However, MAdCAM-1 expres-
sion has also been reported in the brain47 suggesting it 
could promote leukocyte trafficking across the BBB. In ex-
perimental autoimmune encephalomyelitis, MAdCAM-1 
has been suggested to have a role in CNS immune sur-
veillance.77,78 However, an experimental study in mice 
evaluating the regulation of MAdCAM-1 in acute and 
chronic inflammation, demonstrated substantial consti-
tutive expression in colonic tissues, that were enhanced 
by TNF, while no expression was observed in the brain.79 
Moreover, in patients with multiple sclerosis, MAdCAM 
immunoreactivity could not be detected in brain tissue.80 
While we detected MADCAM1 mRNA expression in 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac191#supplementary-data
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brain necropsies, we observed no differences between pa-
tients and controls suggesting the higher systemic levels 
of sMAdCAM-1 in SCZ probably reflect dysregulated 
levels in gut-associated endothelial cells or lymphoid tis-
sues, the main sources of MAdCAM-1.33,34 We speculate 
that the enhanced CCL25 and sMAdCAM-1 levels, at 
least in SCZ, could reflect increased homing of T cells 
to the gut and reflect intestinal inflammation. Increased 
CCL25 levels have been reported in bipolar disorder pre-
viously81,82 and increased CCR9 mRNA has been detected 
in PBMC from patients with SCZ83 which could further 
enhance T and B cell homing to the gut.

Experimental studies suggest that LPS directly may 
cause infiltration of leukocytes in the brain,84 and 
through systemic inflammasome activation, promote 
neuroinflammation.85 Even chronic exposure of LPS at 
physiological doses, insufficient to cause acute behavioral 
alterations, enhances sickness behavior and neural re-
sponses over time.86 We recently demonstrated increased 
plasma levels of IL-18 and IL-18BPa, linked to a higher 
expression of inflammasome-related genes (NLRP3 and 
NLRC4) in blood leukocytes in SMI,26 supporting sys-
temic inflammasome activation in these patients. Our 
finding that I-FABP, sMAdCAM-1, and LBP correlated 
with IL-18BPa, sMAdCAM-1 correlated with IL-18 and 
LBP correlated with expression of NLRP3 and NLRC4, 
with stronger associations in SMI than HC, could suggest 
that gut inflammation and leakage of microbial products 
may contribute to chronic dysregulation of innate immune 
responses through systemic inflammasome activation in 
SMI. However, as stress related behavior may influence 
inflammasome activation87,88 and the microbiome,20 en-
hanced systemic inflammation could augment gut in-
flammation and leakage of microbial products, further 
promoting a vicious circle in SMI.

Limitations to our study include (1) despite adjust-
ments for a comprehensive range of variables, residual 
confounding factors cannot be ruled out, (2) the cross-sec-
tional nature of the study imply we cannot explore causal 
relationships. The cross-sectional design, after initiating 
therapy, will in particular hamper the analyses related to 
the effects of medications on inflammatory markers, (3) 
the study was not designed to look at intestinal inflamma-
tion and leakage of microbial products and lacks relevant 
fecal biomarkers (eg, fecal calprotectin) or microbiota. 
Also, the TOP study was not specifically designed to look 
at GI related issues, and lacked a detailed questionnaire 
for GI related comorbidities, antibiotic use and dietary 
information in the whole population. (4) While the bio-
markers in our study are relatively specific with regards 
to tissue, their ability to specifically reflect intestinal in-
flammation is not firmly established and are currently not 
used in clinical practice.89,90 (5) Although statistically sig-
nificant, the coefficients for correlations between inflam-
matory markers and IL-18 and IL-18BPa were modest. 
However, systemic inflammation in SMI is longstanding 

and subtle with multiple sources that also could con-
tribute to inflammasome activation such as smoking,91 
adiposity and dyslipidemia,92 in addition to the potential 
effects of bacterial translocation and gut inflammation.

In conclusion, our data show that, compared to 
healthy controls, patients with SMI have elevated 
markers of  gut inflammation as reflected by CCL25 and 
sMAdCAM-1 and leakage as reflected by I-FABP and 
LBP that correlate with systemic inflammasome activa-
tion. To which degree these markers reflect mechanisms 
that contribute to CNS pathology and represent targets 
for intervention in these patients should be pursued in 
future studies.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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