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Abstract
Sexual selection is a key evolutionary force but varies widely between populations. 
Two key factors that influence sexual selection are the extent to which females copu-
late with multiple males (polyandry) and variation in the social environment. Increasing 
research demonstrates populations are structured by complex socio- sexual networks, 
and the structure of these networks can influence sexual selection by shaping the 
relationship between male precopulatory mating success and the intensity of post-
copulatory competition. However, comparatively less attention has been dedicated to 
the influence of group structure on sexual selection and how differences in the size of 
groups may impact on the relative force of pre-  and postcopulatory sexual selection in 
polyandrous populations. The presence of groups (i.e., group structure) and the size of 
groups varies widely in nature and forms an implicit part of much experimental sexual 
selection research under laboratory conditions. Here I use simulations of mating com-
petition within populations that vary in the size of groups they contain, to show that 
variation in group size, and in particular small groups, can influence sexual selection. 
Specifically, I show that null expectations for the operation of pre-  and postcopula-
tory sexual selection is governed by the size of groups within populations because 
smaller group sizes constrain the structure of sexual networks leading to reinforcing 
episodes of pre-  and postcopulatory sexual selection. Given broad variation in group 
structure in nature and the tendency for experimental sexual selection research to 
study replicate small groups, these effects have implications for our understanding of 
the operation of sexual selection in polyandrous populations.
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1  |  INTRODUC TION

Sexual selection arises from competition between members of 
the same sex to fertilize the gametes of the opposite sex and is re-
sponsible for a vast array of ornaments, weapons, and behaviors 
(Andersson,	 1994; Darwin, 1871; McCullough et al., 2016). Over 
the	last	50 years	our	understanding	of	sexual	selection,	and	how	it	
varies between populations, has been advanced by two key devel-
opments. First, is the realization that when females copulate with 
multiple males over the time fertilization occurs (i.e., are polyan-
drous), sexual selection on males continues after mating, forcing 
males to compete not only over the number and fecundity of mates 
but also over the proportion of their mate's ova that they fertilize 
(Eberhard, 2009; Parker, 1970; Parker & Birkhead, 2013; Pizzari & 
Wedell, 2013; Simmons & Wedell, 2020). Second, is the growing un-
derstanding that patterns of sexual selection are strongly dependent 
on variation in the social environment (Clutton- Brock, 2017; Emlen 
& Oring, 1977; Lyon & Montgomerie, 2012; Maldonado- Chaparro 
et al., 2018; McDonald et al., 2013; West- Eberhard, 1983).

Polyandry principally impacts the operation of sexual selection on 
males by firstly generating sexual selection on postcopulatory traits 
[e.g., sperm, ejaculate, and behavioral traits that increase male pater-
nity share (Birkhead & Møller, 1998; Eberhard, 2009)], and secondly 
by influencing the strength of precopulatory selection by influencing 
variation in male mating success (Collet et al., 2012; Kvarnemo & 
Simmons, 2013; Morimoto et al., 2019; Parker & Birkhead, 2013). 
Understanding the forces that modulate the relative strength of pre-  
and postcopulatory episodes of sexual selection and the conditions 
that determine whether these episodes of selection reinforce or op-
pose each other, remains an ongoing challenge (Collet et al., 2012; 
Cramer, 2021; Devigili et al., 2015; Evans & Garcia- Gonzalez, 2016; 
Lüpold et al., 2014; Marie- Orleach et al., 2016; McDonald, Spurgin, 
et al., 2017; Morimoto et al., 2019; Pélissié et al., 2014; Turnell & 
Shaw, 2015).

The impact of the social environment on sexual selection has long 
been recognized, including variation in operational sex ratios and 
population density (Emlen & Oring, 1977; Janicke & Morrow, 2018; 
Kokko & Rankin, 2006). More recently, research has further demon-
strated that animal populations are structured by complex social 
and	sexual	networks	(Albery	et	al.,	2021; Beck et al., 2021; Krause 
et al., 2014; Maldonado- Chaparro et al., 2018; McDonald et al., 2019, 
2020; Muniz et al., 2015; Oh & Badyaev, 2010; Ryder et al., 2008; Silk 
& Hodgson, 2021; Smith et al., 2023). The structure of such socio- 
sexual networks (i.e., the patterning of sexual interactions among in-
dividuals) can influence sexual selection by shaping the relationship 
between male precopulatory mating success and the intensity of 
postcopulatory competition he faces (Fisher et al., 2016; Greenway 
et al., 2021; McDonald et al., 2013; McDonald & Pizzari, 2018; Muniz 
et al., 2015; Sih et al., 2009; Wey & Kelly, 2019). For example, if more 
polygynous males mate with on average the least polyandrous fe-
males (negative mating assortment) this can create a positive co-
variance between male mating success and male paternity share, 
because males successful in precopulatory competition may also 

face the lowest intensity of postcopulatory competition (McDonald 
& Pizzari, 2016; Sih et al., 2009). Such patterns are expected to ac-
centuate the benefits of increased mating success (i.e., Bateman 
gradients) and accentuate sexual selection (Greenway et al., 2021; 
McDonald & Pizzari, 2018).	Alternatively,	if	the	males	with	the	high-
est mating success copulate with the most polyandrous females 
(positive mating assortment), they may suffer the most intense 
postcopulatory competition. These patterns may reduce the overall 
variance in male reproductive success and indicate trade- offs be-
tween pre-  and postcopulatory competitiveness (Fisher et al., 2016; 
McDonald & Pizzari, 2018), promoting the emergence of alternative 
male reproductive tactics (Kvarnemo & Simmons, 2013). Patterns 
of mating assortment in nature and in captive populations have the 
potential to vary widely (Fisher et al., 2016; Greenway et al., 2021; 
McDonald & Pizzari, 2018; Morimoto et al., 2019; Wey & Kelly, 2019) 
and preliminary investigations suggest these patterns of mating as-
sortment may be related to both the size of mating groups and lev-
els of polyandry (McDonald & Pizzari, 2018).	Assessing	under	what	
scenarios we may expect sexual networks to show positive, negative 
or no assortment is therefore an important step in understanding 
the conditions that determine whether episodes of sexual selection 
reinforce or oppose each other (Evans & Garcia- Gonzalez, 2016; 
Greenway et al., 2021; McDonald, Spurgin, et al., 2017; McDonald & 
Pizzari, 2018; Morimoto et al., 2019).

Group structure is a widespread axis of variation in the social 
organization of populations, where individuals form tight social 
units or are subdivided into small local demes (hereafter “groups”; 
Farine et al., 2015; Krause & Ruxton, 2002; Rousset, 2004). Group 
structure in polyandrous populations can vary widely, in some 
species individuals compete sexually as part of large aggregations 
whereas in other species, including many highly social animals, in-
dividuals live, and compete sexually within small distinct cohesive 
groups (Clutton- Brock, 2016; Grueter et al., 2020; Hanlon, 1998; 
Krause & Ruxton, 2002; Shuster & Wade, 2003; Sullivan, 1981; 
Thornhill, 1980). For instance, many polyandrous primates live in 
small cohesive groups with 2– 8 adult males (Bradley et al., 2005; 
Dixson, 2018; Kowalewski & Garber, 2010). Similarly, some galli-
formes form small polygynandrous social units of between 2 and 28 
individuals (Collias & Collias, 1967, 1996; Collias & Saichuae, 1967). 
In invertebrates, intrasexual competition and mating may occur 
within restricted small subunits with only a handful or few dozen of 
individuals, such as within the local demes of forked fungus beetles 
(Bolitotherus cornutus) and other insects (Formica et al., 2011; Greeff 
& Ferguson, 1999), as well as small local aggregations of hermaphro-
ditic barnacles and leeches (Tan et al., 2004; Wilkialis & Davies, 1980). 
Such group structure is also an implicit component of much of sexual 
selection research under laboratory conditions, where small groups 
are experimentally constructed and where mating and competition is 
restricted to within these small groups (De Lisle & Svensson, 2017). 
For example, experimental studies of the impacts of polyandry in 
fowl (Gallus gallus)	have	used	groups	ranging	from	3	males	and	4	fe-
males to 10 males and 12 females (Collet et al., 2012; McDonald, 
Spurgin, et al., 2017; Roth et al., 2021). In mammals, experimental 
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investigations of sexual selection have used group sizes of 2 females 
and	2–	4	males	(Mills	et	al.,	2007), while studies in fish and reptiles 
have investigated the effects polyandry, sex ratios, and density on 
sexual	selection	in	groups	ranging	from	2	to	60	individuals	(Aronsen	
et al., 2013; Devigili et al., 2015; Fitze & Le Galliard, 2008; Head 
et al., 2008; Wacker et al., 2013). In invertebrates, the group sizes 
employed also vary between model species, including 5 individuals 
in hermaphroditic snails and flatworms (Hoffer et al., 2017; Marie- 
Orleach et al., 2016; Pélissié et al., 2014), from 3 males and 3 females 
to 16 males and 16 females in Drosophila species (Bateman, 1948; 
Bjork & Pitnick, 2006; Gowaty et al., 2012; Morimoto et al., 2019; 
Pischedda & Rice, 2012), 10 males and 10 females in Squash bugs 
(Greenway et al., 2021) and 20 males and 20 females in swordtail 
crickets (Laupala cerasina; Turnell & Shaw, 2015).	As	a	result,	many	
sexual selection studies implicitly emulate populations structured 
into groups, whether assessing patterns of sexual selection within 
groups or overall patterns of selection across groups (De Lisle & 
Svensson, 2017). While the consequences of constraining inter-
actions in animal social networks to within small groups has been 
considered in terms of patterns of infectious disease transfer (Nunn 
et al., 2015; Sah et al., 2018) as well as phenotypic assortment and 
social selection (McDonald, Farine, et al., 2017), the effects of group 
structure on the scope for different patterns of sperm competition 
in sexual networks and its impact on pre-  and postcopulatory sexual 
selection remains comparatively unexplored (Rodriguez- Exposito & 
Garcia- Gonzalez, 2021).

Here I address this using simulated populations to investigate 
how the size of groups within group- structured polyandrous popu-
lations can impact on the relationship between pre-  and postcopu-
latory sexual selection on males. I used using simulated populations 
of equal size and sex ratio but which vary in the size of sexually com-
petitive groups. Specifically, I generate replicate populations where 
males compete for fertilizations within small groups (3 males:3 fe-
males), intermediate groups (6 males:6 females) or one large group 
(18 males:18 females) at different levels of average female polyan-
dry (i.e., average number of mating partners per female; Figure 1). 
I show that group structure constrains the structure of the sexual 
network, such that when mating competition occurs within smaller 
groups, this leads to (i) negative patterns of mating assortment and 
reinforcing episodes of pre-  and postcopulatory sexual selection and 
(ii) a stronger potential for sexual selection on male precopulatory 
traits. These results provide testable null expectations for the ef-
fect of group size on pre-  and postcopulatory sexual selection. Given 
the tendency for experimental sexual selection research to study 
small replicate groups, these effects may have implications for our 
understanding of the operation of sexual selection in polyandrous 
populations.

2  |  MATERIAL S AND METHODS

To explore the impact of different group sizes on sexual networks 
and the relationship between pre-  and postcopulatory sexual 

selection, I first constructed artificial populations of 18 males and 18 
females. In each population, individuals mated within small groups 
of three males and three females with one of five predefined mat-
ing distributions that differed in average polyandry (i.e., the mean 
number of male mating partners per female) ranging from 1.67 to 
2.67 mates per female, and also differed in the standardized vari-
ance in male mating success (i.e., the opportunity for precopulatory 
sexual selection, IM = VARM ∕M

2; Appendix 1). The range of average 
polyandry utilized here is biologically relevant given both behavioral 
and extra- pair paternity studies indicate that the average number 
of mates per female often ranges between 1 and 2 males in pri-
mates (Qi et al., 2020; Reichard, 1995), in birds (Brekke et al., 2013; 
Dunn et al., 2009; Fiske & Kålås, 1995; Grinkov et al., 2022; Krietsch 
et al., 2022; Webster et al., 1995; Wetton et al., 1997), as well as 
in studies of polyandrous spiders and reptiles (Levine et al., 2015; 
Watson, 1998). Moreover, the range of polyandry per female of 1– 3 
mates in simulations represents the minimum and maximum possi-
ble levels of female polyandry when group sizes are constrained to 
within small groups of 3 males and 3 females, similar to experimental 
studies in systems such as flies, voles, and fowl (Collet et al., 2012; 
Mills et al., 2007; Morimoto et al., 2019). I generated 100 random 
starting populations for each of the five predefined mating distri-
butions (Appendix 1). These initial starting populations therefore 
provide example populations (i) where individual males mate and 
compete within small groups of six individuals, comparable to the 
lower end of the freely mating group sizes often used in experimen-
tal studies of sexual selection, (ii) with different levels of polyandry 
and (iii) with a range of levels of male mating skew.

For each population, I constructed its sexual network where in-
dividual males and females are nodes connected by edges (links) if 
they copulated (Figure 1). To investigate patters of network mating 
assortment, I first calculated each male's sperm competition inten-
sity	(SCI).	A	male's	SCI	can	be	described	by	the	average	mating	suc-
cess of his female partners in the network of male– female copulations 
(i.e., the average polyandry of his partners, [McDonald & 
Pizzari, 2016; Shuster & Wade, 2003]) calculated as 

SCIi = 1∕
1

Mi

�

∑M

j
1∕kj

�

, where Mi is the number of females the ith 

male mated with (i.e., mating success) and kj is the mating success of 
his jth female mating partner (McDonald & Pizzari, 2016; Shuster & 
Wade, 2003). SCI thus represents the harmonic mean mating suc-
cess of a male's female partners (e.g., where a value of one means a 
male has complete exclusivity with his female partners, a value of 
two means his female partners on average mate with two males and 
so he sperm competes with on average one rival male).

I then measured each population's network mating assortment 
as the relationship between a male's mating success (number of 
unique mating partners) and his SCI, termed the sperm competition 
intensity correlation (SCIC; McDonald & Pizzari, 2016, 2018). In a 
population where the polyandry of a male's female partners impacts 
on his paternity share (e.g., higher SCI reduces a males paternity 
share by increasing sperm competition), SCIC is expected to impact 
patterns of sexual selection. For example, consider a population 
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with positive selection on male mating success, that is, a positive 
male Bateman gradient (�M), where �Mis calculated as T = �MM + � ,	
and �	 is	 an	 error	 term.	 A	male's	 SCI	 can	 be	 added	 to	 the	 above	
regression such that T = �M∙SCIM + �SCI∙MSCI + �. Here �M∙SCI rep-
resents a partial sexual selection gradient on male mating success 
controlling for variation in SCI and �SCI∙M represents a partial sexual 
selection gradient on male SCI controlling for variation in male M. 
In general, sexual selection theory predicts that increasing sperm 
competition will decrease a male's reproductive success (i.e., a neg-
ative �SCI∙M ),	whereas	male	mating	success	increases	his	reproduc-
tive success (i.e., a positive �M∙SCI).	As	a	result,	the	way	in	which	the	
Bateman gradient, �M, is affected by variation in sperm competition 

intensity across males is determined by the slope of the regression 
of each male's sperm competition intensity on male mating success 
(M; i.e., the sperm competition intensity correlation, SCIC) such 
that �M = �M∙SCI + (SCIC × �SCI∙M; McDonald & Pizzari, 2016). Strong 
positive values of SCIC may mean males with high mating success 
face high sperm competition and generate a negative covariance 
between mating success and paternity share (negative COVMP) 
and therefore counteracting pre-  and postcopulatory episodes of 
sexual selection and a reduced �M (Fisher et al., 2016; McDonald 
& Pizzari, 2016, 2018; Sih et al., 2009). Whereas strong negative 
values of SCIC may generate a positive covariance between mat-
ing success and paternity share (positive COVMP), and therefore 

F I G U R E  1 Variation	in	competitive	group	size	in	polyandrous	populations.	(a)	Diagrams	show	three	idealized	polyandrous	populations	of	
males and females. The sexual networks of each population are shown where males (blue ♂) and females (orange ♀) are nodes connected by 
links representing copulations. Colored lines encircle competitive groups where individuals mate and compete intrasexually for fertilizations 
and therefore the scale at which pre-  and postcopulatory competition occur. Populations range from small groups; a where intrasexual 
competition and mating occur within groups of three males and three females (red circles), medium groups; an intermediate case with larger 
groups of six males and six females (blue circles), to one large group of 18 males and 18 females (black circle) where all males and females 
freely interact, and competition occurs at the level of the population or otherwise large aggregation. (b) Matrix representations of the sexual 
networks of hypothetical populations of 18 males (rows) and 18 females (columns) with three different levels of group structure. Colored 
rectangles encircle competitive groups including (red) six small groups, (blue) three medium sized groups or (black) one large group. Black 
squares indicate pairs that copulated. From left to right each population represents one of two levels of average polyandry (i.e., the mean 
number of mating partners per female) including either 1.67 or 2.67 male mating partners per female on average.

(a) (b)
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reinforcing pre-  and postcopulatory episodes of sexual selection 
and stronger positive values of �M (Greenway et al., 2021; McDonald 
& Pizzari, 2016, 2018).

For each starting population I then conducted randomizations 
to vary the structure of the sexual network, to either increase or 
decrease the SCIC. Crucially, to explore the effects of group struc-
ture, I conducted the above stepwise randomizations in three dif-
ferent ways that allowed mating to occur within increasingly larger 
group sizes. This included mating within (i) small groups; where 
all randomized swaps occur only within the original predefined 
groups of three males and three females, (ii) medium groups; 
where all randomized swaps occur within groups of six males and 
six females obtained by merging pairs of small groups, and (iii) 
large groups; where randomized swaps were made between pairs 
across the whole population (i.e., one large group or unstructured 
population	of	18	males	and	18	females).	All	 randomizations	hold	
constant the mean polyandry and the variation in male and fe-
male mating success of the original population. Randomizations 
were conducted in a stepwise way for each population, one pair-
wise swap at a time, and retained each newly assorted population 
and continued until randomizations could no longer increase or 
decrease the SCIC. This process means that for each mating dis-
tribution (i.e., level of polyandry and IM) we now have populations 
of equal size where males and females mate and compete within 
group sizes ranging six individuals (3 males:3 females), 12 individ-
uals (6 males:6 females), or 36 individuals (18 males:18 females), 
comparable to the range of the freely mating group sizes used in 
experimental studies of sexual selection, and each group size also 
has range of levels of SCIC. Such a simulation approach allows 
exploration of different network structures given differences in 
group size, as well differences in average and variance in mating 
rates within the network and is commonly applied in studies of 
assortative patterns of connections in networks (Farine, 2014; 
Montiglio et al., 2018).	In	total,	this	process	generated	11,843	ran-
domized mating populations across all five mating distributions.

For every population I then simulated sperm competition, where 
each female produced 10 ova and every male that mated with a fe-
male had an equal probability of fertilizing each of her ova (i.e., if two 
males mated with a female, each male had a 50% chance of fertiliz-
ing each ova). Under this scenario sperm competition occurs under 
a fair raffle where each male has an equal sperm contribution, and 
therefore represents a simple null model that does not rely on as-
sumptions of male competitive phenotypes (Parker & Pizzari, 2010). 
For every population, I then calculated each male's paternity share 
(P) as the proportion of all his partners' ova that he fertilized and 
the covariance between a male's mating success and his paternity 
share (COVMP) following Webster et al. (1995). Holding all else con-
stant, a higher positive value of COVMP will result in a higher posi-
tive covariance between mating success and reproductive success 
(i.e., COVMT), and therefore a steeper positive Bateman gradient 
(�M). I therefore also calculated the mean standardized male �M for 
each population, where a mean standardized Bateman gradient of 
1 indicates that a 100% increase in relative mating success results 

in a 100% increase in relative reproductive success and allows di-
rect	 comparisons	 between	 populations	 (Arnqvist,	 2013; Hereford 
et al., 2004). In addition, I calculated the maximum potential sex-
ual selection gradient on a male precopulatory trait (i.e., the Jones 
Index = �M

√

IM; Jones, 2009). The Jones index combines information 
on both the variation in male mating success (IM) and the mean stan-
dardized Bateman gradient and has been more recently indicated as 
an accurate measure of the strength of sexual selection on pheno-
typic traits (Henshaw et al., 2016). Holding IM constant, a steeper 
positive Bateman gradient will result in larger values of the Jones 
index and a higher potential for sexual selection on a male precop-
ulatory trait (Henshaw et al., 2016; Jones, 2009). Similarly, higher 
values of IM will result in a higher Jones index, as there is a stron-
ger potential for sexual selection to act on variation in male mating 
success.

Finally, for each of these three related metrics SCIC, COVMP 
and the Jones Index, I constructed linear mixed- effects models to 
compare how they varied as a function of both group size and poly-
andry. Each model included group size as a 3- level factor, average 
polyandry as a continuous variable, their interaction and the identity 
of original starting population as a random effect. The significance 
of interactions was assessed by comparing models with and without 
interactions	using	likelihood	ratio	tests.	All	analysis	was	conducting	
using	R	statistical	software	version	4.2.1	(R	Core	Team,	2022) and 
mixed-	effects	models	using	package	“lme4”	(Bates	et	al.,	2015).

3  |  RESULTS

Across	all	levels	of	polyandry,	SCIC	was	significantly	lower	and	was	
restricted to negative values when males competed in small groups, 
compared to medium and larger groups, where variation in SCIC was 
larger and spanned both positive and negative values (Figure 2a, 
Table 1). There was a significant interaction between group size and 
polyandry (�2

2
 = 87.174,	p < .001,	Table 1) driven by the absence of 

extremely negative SCICs in large groups at highest level of polyan-
dry.	As	expected,	SCIC	was	negatively	associated	with	COVMP be-
cause in simulated populations with a positive SCIC, males with the 
highest mating success (M) must share their paternity (P) with more 
rivals, reducing the covariance between M and P, and consequently 
reducing male Bateman gradients (Appendix 2).

As	 a	 consequence	 of	 the	 bias	 toward	 negative	 SCIC	 values	 in	
small groups, COVMP was significantly higher and largely restricted 
to positive values in small groups for all levels of polyandry, whereas 
in medium and large groups, COVMP was typically lower and spanned 
both positive and negative values (Figure 2b). The absolute magni-
tude of COVMP was constrained toward zero at higher levels of poly-
andry as a consequence of reduced variation in male mating success 
and paternity share (Figure 2b). In addition, there was a significant in-
teraction between polyandry and group size (�2

2
 = 193.620,	p < .001,	

Table 1) as the range of COVMP decreased with polyandry toward 
zero in small groups, while the contraction towards zero in large 
groups resulted in an overall increase in average COVMP (Figure 2b).
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Finally, for all levels of polyandry, group size significantly im-
pacted on the Jones index, with smaller groups consistently dis-
playing a higher Jones index due to higher values of male COVMP 
and �M compared to medium or large groups (Figure 2c). The 
Jones index decreased with increasing levels of polyandry and its 
associated lower variance in mating success, but this rate of de-
crease was faster in small groups (�2

2
 = 74.776,	p < .001,	Figure 2c, 

Table 1).

4  |  DISCUSSION

Many animals live and compete for fertilizations in populations sub-
divided into small groups or local demes (Collias & Collias, 1996; 
Farine et al., 2015; Formica et al., 2011; Krause & Ruxton, 2002; 
Rousset, 2004; Shuster & Wade, 2003; Tan et al., 2004; Wilkialis & 
Davies, 1980) and much of sexual selection research under labora-
tory conditions, examines sexual selection in small experimentally 
constructed groups (De Lisle & Svensson, 2017). In this study, I used 
a simulation approach to investigate how variation in the size of such 

groups may impact on patterns of sexual selection through its effect 
on the structure of sexual networks.

The results presented here firstly highlight that group size can 
impact on patterns of mating assortment in sexual networks, by 
constraining the range of SCIC (i.e., smaller groups more strongly 
limit the range of possible network structures). Specifically, by 
limiting mating to among only a few individuals, smaller groups 
restrict SCIC to more negative values (i.e., where the more suc-
cessful males also copulate with the least polyandrous females, 
whereas the least successful males typically mate with the 
most polyandrous females), even for populations with the same 
mean and variance in mating rates. This effect is similar to lim-
itations in the diversity of social interactions in social networks 
(Kappeler, 2019). In social networks, the number of individuals 
that a focal individual can interact with increases linearly as addi-
tional individuals are added to the network. However, in contrast 
the number of potential interacting pairs increases exponentially 
(Kappeler, 2019). In terms of sexual interactions in sexual net-
works, doubling group size from two males and two females to 
four males and four females, adds two new possible mates and 

F I G U R E  2 Group	size	impacts	the	relationship	between	pre-		and	postcopulatory	episodes	of	sexual	selection.	Boxplots	show	(a)	the	
sperm competition intensity correlation (SCIC), (b) the covariance between male mating success and male paternity share (COVMP) and (c) the 
maximum potential sexual selection gradient on male precopulatory traits (Jones Index) calculated for simulated for populations of 18 males 
and 18 females (n = 11,843)	with	four	different	levels	of	average	polyandry	(i.e.,	mean	number	of	mating	partners	per	female = 1.67,	2,	2.33,	
or 2.67) and three levels of group structure, small groups (3 males:3 females, red), equally sized medium groups (6 males:6 females, blue) or 
one large group or unstructured population (18 males:18 females, gray). Points behind boxplots show individuals values for each simulated 
population and squares show mean values. Line graphs show predictions from linear mixed- effects models for the effect of polyandry and 
group	size	on	each	metric.	Shaded	areas	represent	95%	confidence	intervals.
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competitors for each male individual, but increases the number of 
possible	mating	pairs	from	4	to	16.	As	a	result,	this	means	that	the	
number possible mating pairs of males and females (i.e., the mat-
ing matrix) is far fewer in populations structured into small groups 
versus even moderately larger groups (i.e., Figure 1b), restricting 
possible patterns of assortment.

As	 a	 consequence	 of	 limiting	 patterns	 of	mating	 assortment	
toward more strongly negative values, populations with small 
groups consistently demonstrated a higher, more positive COVMP 
compared to populations with larger groups, across levels of poly-
andry. This is because in negatively assorted populations, males 
with the highest mating success on average also have the high-
est exclusivity with their mates, whereas males with the lowest 
mating success copulate on average with the most polyandrous 
females. The simulations here assume a simple raffle- type sperm 
competition as a null model (Parker & Pizzari, 2010), where each 
male has equal sperm contribution and therefore increases in a 
male's sperm competition (SCI) as a result of female polyandry 
in will result in a reduction in male paternity share (Greenway 
et al., 2021; McDonald & Pizzari, 2018). Given there are no male 
traits or cryptic female choice within simulations, systematic vari-
ation in COVMP can only emerge via the structure of mating net-
works,	that	is,	SCIC.	A	key	advance	of	the	results	presented	here	
is therefore to demonstrate that for populations with the same 
mating distributions (i.e., mean and variation in male and female 
mating success), null expectations for patterns of SCIC and COVMP 
are impacted by group size alone. The impact of SCIC on COVMP 
then has downstream consequences both for Bateman gradients 
and therefore ultimately the maximum potential selection on pre-
copulatory traits (i.e., the Jones index). These results therefore 
provide null expectations for the relationship between pre-  and 
postcopulatory episodes of sexual selection and show that null 
expectations	vary	based	on	group	 size	 alone.	Appreciating	 such	
null expectations is likely crucial to avoid misinterpretations when 
extrapolating patterns observed in small groups to larger groups 
and when comparing between study systems and experiments 
using different group sizes, particularly as positive values COVMP 
of may arise purely due to small group sizes.

In nature, a diversity of sperm competitive mechanisms may 
exist (Parker & Pizzari, 2010) and future studies should further 
test the impact of such different mechanisms on null patterns 
of sexual selection. Despite this, consistent with the results pre-
sented here, experimental studies that have estimated COVMP in 
small replicate polyandrous groups, have typically identified either 
positive or weakly positive values of COVMP (Collet et al., 2012; 
Devigili et al., 2015; Marie- Orleach et al., 2016; McDonald, Farine, 
et al., 2017; Pélissié et al., 2014; Turnell & Shaw, 2015), although 
some studies have produced more variable positive and negative val-
ues of COVMP (Morimoto et al., 2016, 2019). While the simulations 
presented here included only subset of the full possible range of 
mating distributions, these results indicate that for populations with 
a similar IM and average polyandry, males with low mating success in 
populations structured into small groups may typically face stronger 
sperm competition intensities and these populations will be charac-
terized by pre-  and postcopulatory episodes that act in concert (i.e., 
a positive COVMP). Such effects may accentuate the reinforcement 
of traits such as male social dominance that have been shown to be 
favored by both pre-  and postcopulatory sexual selection in several 
species such as cockroaches and in small groups of fowl (Montrose 
et al., 2008; Pizzari & McDonald, 2019). Future research should fur-
ther investigate how the traits targeted, and relative strength of pre-  
and postcopulatory sexual selection on such traits, differs among 
populations subdivided into groups of different sizes.

As	a	result	of	the	typically	stronger	reinforcement	between	pre-		
and postcopulatory episodes in small groups, the simulations pre-
sented here further show that small groups had consistently higher 
maximum potential strength of sexual selection on precopulatory 
traits (Jones index) across all levels of polyandry. Moreover, these 
results also show that as polyandry increases, the range of both the 
Jones index and COVMP consistently reduces. This highlights how in 
smaller groups, increases in polyandry may rapidly saturate the num-
ber of possible mating pairs in a population structured into smalls 
groups, more dramatically eroding variation in male mating success 
and the magnitude of such covariances. For example, in groups 
where average female polyandry is three male mates per female, 
this may represent strong sperm competition levels regardless of 

TA B L E  1 Linear	mixed-	effects	model	results	for	the	effects	average	polyandry	and	group	size	on	the	sperm	competition	intensity	
correlation (SCIC), the standardized covariance between mating success and paternity share (COVMP) and the maximum potential 
precopulatory selection gradient (Jones index).

Parameter

Response

SCIC COVMP Jones index

[Intercept] Group size (Large) −0.448	[−0.518	to	−0.378] −0.050	[−0.071	to	−0.029] 1.257	[1.222	to	1.292]

Group size (Intermediate) 0.389	[0.271	to	0.507] 0.018	[−0.021	to	0.057] −0.023	[−0.066	to	0.021]

Group size (Small) 0.179	[−0.002	to	0.360] 0.524	[0.464	to	0.584] 0.394	[0.328	to	0.461]

Polyandry × Group	size	(Large) 0.191	[0.159	to	0.223] 0.019	[0.009	to	0.028] −0.414	[−0.430	to	−0.398]

Polyandry × Group	size	(Intermediate) −0.224	[−0.278	to	0.169] −0.002	[−0.020	to	0.016] 0.021	[0.001	to	0.042]

Polyandry × Group	size	(Small) −0.256	[−0.337	to	−0.174] −0.190	[−0.217	to	−0.163] −0.121	[−0.151	to	−0.091]

Note:	Effects	are	shown	compared	to	large	group	size	as	the	reference	level,	alongside	upper	and	lower	95%	confidence	intervals.	All	interactions	are	
significant at the p < .001	level.
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whether the population is unstructured or is divided into local mat-
ing groups of three males and three females. However, in the popu-
lation structured into groups of three males and three females, there 
would be no variation in male mating success, and variation in male 
reproductive success would instead be driven only by postcopula-
tory mechanisms. Crucially, such group sizes and levels of polyandry 
are not unusual in both nature and experimental settings (e.g., Bjork 
& Pitnick, 2006; Collet et al., 2012; Collias & Collias, 1967; Collias 
& Saichuae, 1967; House et al., 2019; Krause & Ruxton, 2002; Mills 
et al., 2007; Morimoto et al., 2019; Oklander et al., 2014). For exam-
ple, a recent experimental investigation of Bateman gradients in the 
hermaphroditic pond snail (Lymnaea stagnalis) explored polyandrous 
groups of five individuals, in which variation in mating success was 
quickly eroded as every individual had soon copulated with every 
partner in both male and female roles in the early stages of the ex-
periment (Hoffer et al., 2017). Similarly, in an explicit examination of 
the effects of group size on mating system plasticity in water strid-
ers (Aquarius remegis), individual groups of a population subdivided 
into units of three males and three females in some cases reached 
saturation of the mating matrix with up to 88%– 100% of possible 
mating	 pairs	 copulating	 in	 only	 6 days	 (Sih	 et	 al.,	2017). Taken to-
gether the results presented here suggest that understanding the 
role of precopulatory sexual selection across experiments requires 
an appreciation of how polyandry differentially affects variation in 
mating success in populations characterized by different group sizes. 
In other words, to understand how polyandry impacts sexual selec-
tion it is crucial to appreciate that an increase in average polyandry 
of one or two male partners per female in a population structured 
into small groups may result in a qualitatively different impact on 
the potential for precopulatory sexual selection compared to large 
aggregations or more openly mixed populations. Future experimen-
tal research should explicitly address how variation in polyandry 
impacts on sexual selection across populations with differing group 
structures and group sizes.

More broadly these results also demonstrate that null expecta-
tions for the relationship between pre-  and postcopulatory sexual 
selection (COVMP) can be non- zero and secondly that these null 
expectations vary depending on the group structure of popula-
tions (i.e., more positive COVMP in populations structured into small 
groups). This suggests that future research investigating the rela-
tionship between pre-  and postcopulatory episodes of sexual selec-
tion and their contribution to sexual selection, should generate null 
expectations that may be non- zero and assess observed patterns in 
the context of these null expectations. Ideally, careful experiment 
should complement the use of null models. For instance, while mat-
ing patterns may not differ in comparison with random networks, 
experiment may more effectively assess the extent to which ob-
served patterns are a result of random processes versus counteract-
ing non- random behavioral mechanics. Exploring sexual networks in 
systems that allow manipulations that exclude individual competi-
tive mechanisms, such as those that prevent males from delivering 
mating plugs, or block the impact of male seminal fluid proteins, may 
be particularly useful (e.g., Morimoto et al., 2019).

The results here indicate that the strongest impact of group struc-
ture should be observed when sexual competition is consistently 
limited to within small groups either via experiment or in natural pop-
ulations. In nature a wide variety of factors can place limits on the 
size of groups within populations. For example, foraging strategy, 
prey density, predation pressure, ecological constraints, social com-
petition, and risk of infectious disease spread, may all restrict the 
minimum and maximum size of groups (Chapman & Chapman, 2000; 
Creel et al., 2014; Hamilton, 1971; Janson, 1988; Kasozi & 
Montgomery, 2020; Lucchesi et al., 2020; Markham et al., 2015; Nunn 
et al., 2015; Szemán et al., 2021; Takada & Washida, 2020; Teichroeb 
& Sicotte, 2009). However, in many natural populations group mem-
bership may be more temporally fluid. For example, when extra- group 
matings are common and/or multiple groups are more highly inter-
connected (e.g., Cant et al., 2002; Carpenter et al., 2005; Lucchesi 
et al., 2020) or when females visit and copulate at multiple leks rather 
than mating within one lek (Hess et al., 2012; Schroeder, 1991). This 
movement and mating between groups may effectively increase the 
size of the group in which competition occurs. When competition and 
mating is sufficiently fluid between social groups, the scale at which 
competition occurs will instead more closely match that of non- group 
structured	more	openly	mixed	population.	As	a	result,	if	group	sizes	in	
nature are typically larger than those used in experiments, the results 
here suggest scope for a potential disconnect between patterns of 
pre-  and postcopulatory sexual selection observed in laboratory ex-
periments and patterns expected in larger natural groups.

Finally, while I have discussed the impact of increasing poly-
andry on patterns of sexual selection on males in populations that 
vary in group structure, group structure may itself impact on levels 
of polyandry. For example, the division of populations into smaller 
groups may favor an increase in female polyandry to avoid the nega-
tive consequences of local group male infertility (Dean et al., 2010). 
Alternatively,	 if	 males	 that	 copulate	 frequently	 are	 more	 sperm-	
limited (Warner et al., 1995; Wedell et al., 2002)— all else being 
equal— successful males structured within small groups may be com-
paratively less sperm- limited than successful males in unstructured 
populations	 where	 access	 to	mates	 is	 less	 restricted.	 As	 a	 result,	
small group sizes may reduce female sperm limitation and disfavor 
increases in polyandry. Understanding the frequency of such alter-
nate scenarios my provide new insights into the potential coevolu-
tion of group size and polyandry.

5  |  CONCLUSION

A	key	goal	in	sexual	selection	research	is	to	understand	the	role	that	
polyandry plays in shaping the strength of sexual selection (Birkhead 
& Pizzari, 2002; Eberhard, 2009; Parker & Birkhead, 2013; Pizzari 
& Wedell, 2013; Simmons & Wedell, 2020) and the relationship 
between pre-  an postcopulatory sexual selection (Evans & Garcia- 
Gonzalez, 2016; Kvarnemo & Simmons, 2013). Here I have shown 
how group size may influence the structure of sexual networks with 
downstream consequences for the relationship between pre-  and 
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postcopulatory episodes of sexual selection. These insights indicate 
that the strongest impact of polyandry should be observed when mat-
ing is consistently limited to within small groups, such as within in ex-
perimentally defined small mating groups or in nature where species 
form tight polygynandrous social units. The predictions outlined here 
are readily testable in future studies by using manipulations of group 
size in experimental settings. In addition, such studies should explore 
to what extent such effects may be altered by variation in groups 
size within populations. Finally, I suggest that future studies exploring 
the impact of polyandry on sexual selection should explicitly consider 
variation in group sizes when comparing between systems. It seems 
likely that experimental studies focusing on small replicate groups 
represent the extreme end of the impact of polyandry.
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APPENDIX 1

Five example starting mating matrices representing each of the five 
unique male mating distributions used for simulations described in 
the main text (a– e). The mating matrix for each population has 18 
males and 18 females, where rows represent individual males (M1– 
M18) and columns represent individual females (F1– F18). Black 
squares indicate that a pair copulated. The average polyandry (mean 
number of male mating partners per female) and opportunity for 
precopulatory sexual selection on males (IM) for each mating distri-
bution is given. Colored squares outline the original small groups of 
three males and three females in which mating occur, prior to ran-
domizations used to generate different levels sperm competition 
intensity correlations (SCIC) and different group sizes. Stepwise 

randomizations were conducted in three ways that allowed mat-
ing to occur within groups of different sizes; included limiting ran-
domized swaps to within (i) the original predefined groups of three 
males and three females (small groups), (ii) within groups of six males 
and six females obtained by merging pairs of small groups (medium 
groups), and (iii) one large group of 18 males and 18 females, where 
randomized swaps were made between pairs across the whole 
population. Stacked histograms show the frequency distributions of 
male mating success (M) for each population, and colors indicate the 
frequency distributions of male mating success within each original 
small group in each population. Figure shows IM calculated using the 
sample variance.

(a) (b) (c) (d) (e)
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APPENDIX 2

Relationship between the sperm competition intensity correla-
tion (SCIC) and (a) the covariance between male mating success 
and male paternity share (COVMP) and (b) mean standardized male 
Bateman gradients (�M) for simulations described in the main text. 
Each point represents a value calculated for an individual population 
of 18 males and 18 females (n = 11,843).	Results	for	populations	at	
different levels of average polyandry (mean number of mated per 
female = 1.67,	2.00,	2.33	and	2.67)	are	shown	on	each	panel.	Colors	
indicate the group structure of the population, that is, where mating 
was restricted to occur within either groups of three males and three 

females (small groups, red), groups of six males and six females (me-
dium groups, blue), and one large group of 18 males and 18 females 
(large groups, gray). Higher and more positive levels of SCIC predict 
lower and more negative COVMP, however higher levels of polyan-
dry flatten the relationship between SCIC on COVMP (a). Higher and 
more positive levels of SCIC predict lower �M, however at higher lev-
els of polyandry the predictive power of SCIC on �M is reduced (b). 
For all levels of polyandry, the scope for variation in SCIC is limited 
by smaller groups versus larger groups, resulting in more positive 
COVMP and a steeper �M in small groups.
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