
royalsocietypublishing.org/journal/rsob
Research
Cite this article: Dickson A, Yutuc E,
Thornton CA, Dunford JE, Oppermann U, Wang

Y, Griffiths WJ. 2023 HSD3B1 is an oxysterol

3β-hydroxysteroid dehydrogenase in human

placenta. Open Biol. 13: 220313.
https://doi.org/10.1098/rsob.220313
Received: 16 October 2022

Accepted: 15 March 2023
Subject Area:
biochemistry

Keywords:
HSD3B1, oxysterol, placenta, mass

spectrometry, bile acid, pregnancy
Author for correspondence:
William J. Griffiths

e-mail: w.j.griffiths@swansea.ac.uk
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6502556.
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
HSD3B1 is an oxysterol 3β-hydroxysteroid
dehydrogenase in human placenta

Alison Dickson1, Eylan Yutuc1, Catherine A. Thornton1, James E. Dunford2,
Udo Oppermann2, Yuqin Wang1 and William J. Griffiths1

1Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
2Centre for Translational Myeloma Research, NIHR Biomedical Research Centre, Botnar Research Centre,
University of Oxford, Oxford OX3 7LD, UK

JED, 0000-0002-9932-4042; WJG, 0000-0002-4129-6616

Most biologically active oxysterols have a 3β-hydroxy-5-ene function in the
ring system with an additional site of oxidation at C-7 or on the side-
chain. In blood plasma oxysterols with a 7α-hydroxy group are also
observed with the alternative 3-oxo-4-ene function in the ring system
formed by ubiquitously expressed 3β-hydroxy-Δ5-C27-steroid oxidoreduc-
tase Δ5-isomerase, HSD3B7. However, oxysterols without a 7α-hydroxy
group are not substrates for HSD3B7 and are not usually observed with
the 3-oxo-4-ene function. Here we report the unexpected identification of
oxysterols in plasma derived from umbilical cord blood and blood from
pregnant women taken before delivery at 37+weeks of gestation, of side-
chain oxysterols with a 3-oxo-4-ene function but no 7α-hydroxy group.
These 3-oxo-4-ene oxysterols were also identified in placenta, leading to
the hypothesis that they may be formed by a previously unrecognized 3β-
hydroxy-Δ5-C27-steroid oxidoreductase Δ5-isomerase activity of HSD3B1,
an enzyme which is highly expressed in placenta. Proof-of-principle exper-
iments confirmed that HSD3B1 has this activity. We speculate that
HSD3B1 in placenta is the source of the unexpected 3-oxo-4-ene oxysterols
in cord and pregnant women’s plasma and may have a role in controlling
the abundance of biologically active oxysterols delivered to the fetus.
1. Introduction
Oxysterols are oxidized forms of cholesterol or of its precursors [1]. The primary
routes of oxysterol metabolism are 7α-hydroxylation catalysed by cytochrome
P450 (CYP) 7B1 [2], or in the specific case of 24S-hydroxycholesterol (24S-HC)
by CYP39A1 [3], and (25R)26-hydroxylation or carboxylation catalysed by
CYP27A1 (figure 1) [4–6]. Once 7α-hydroxylated, oxysterols become substrates
for the ubiquitous hydroxysteroid dehydrogenase (HSD) 3B7 [7–9], which oxi-
dizes the 3β-hydroxy group to a 3-ketone and isomerizes the double bond
from Δ5 to Δ4 (figure 1), a key reaction in bile acid biosynthesis necessary for con-
version of initial 3β-hydroxy stereochemistry, as in the cholesterol structure, to the
3α-hydroxy stereochemistry in primary bile acids [5,6,10,11]. Cholesterol itself is
7α-hydroxylated by CYP7A1 to 7α-hydroxycholesterol (7α-HC) [12], which like
other oxysterols with a 7α-hydroxy group, is a substrate for HSD3B7 [5]. With
respect to oxysterols, including down-stream sterol-acids, oxidation at C-3 with
accompanying Δ5–Δ4 isomerization can be regarded as a deactivation mechanism
eliminating many of the biological activities of the substrate oxysterol. This is the
case for the chemoattractant oxysterols 7α,25-dihydroxycholesterol (7α,25-diHC)
and 7α,(25R)26-dihydroxycholesterol (7α,26-diHC, also known as 7α,27-dihy-
droxycholesterol) [13], and the liver X receptor (LXRα and LXRβ) ligand
3β,7α-dihydroxycholest-5-en-(25R)26-oic acid (3β,7α-diHCA) [14]. Note that in
much of the literature (25R)26-hydroxylation and (25R)26-carboxylation are
described according to non-systematic nomenclature as 27-hydroxylation and
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Figure 1. Abbreviated scheme of oxysterol metabolism. Primary oxysterols (hydroxycholesterols, HC) are in green, secondary oxysterols (diHC), including 3β-hydro-
xycholestenoic acids, are in blue and 3-oxo-4-ens are in claret.
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27-carboxylation, with the stereochemistry assumed to be 25R
[15]. Here we prefer to use systematic numbering, and for
brevity when hydroxylation or carboxylation is at C-26 the
reader can assume that the stereochemistry is 25R unless
stated otherwise, i.e. 26-HC is used as the abbreviation for
(25R)26-hydroxycholesterol. While HSD3B7 has activity
towards 7α-hydroxyoxysterols it has not been reported to
oxidize oxysterols lacking the 7α-hydroxy group [8]. Neverthe-
less deficiency in HSD3B7 does not completely eliminate
primary bile acid production [16], suggesting that a second
HSD may have 3β-hydroxy-Δ5-C27-steroid oxidoreductase
activity in human.

In humans, the HSD3B1 and HSD3B2 enzymes belong to
the evolutionarily conserved superfamily of short-chain dehy-
drogenases/reductases (SDR) [17], with official nomenclature
symbols SDR11E1 and SDR11E2, respectively [18]. They convert
C19 and C21 steroids with a 3β-hydroxy-5-ene structure to 3-oxo-
4-ene products (figure 1). HSD3B1 is primarily localized to
placenta and non-steroidogenic tissue, while HSD3B2 is primar-
ily expressed in the adrenal gland, ovary and testis [9,19]. The
3β-hydroxy-5-ene to 3-oxo-4-ene transformation is an essential
step in the biosynthesis of all classes of active steroid hormones
[20,21]. HSD3B1/2 enzymes are not reported to use C27

steroids as substrates although they share about 34% sequence
identity to HSD3B7 (SDR11E3) in human, and HSD3B7 does
not use C19 or C21 steroids as substrates suggesting different
physiological roles for these HSD enzymes [8].

Two side-chain oxysterols that have not been reported
to be 7α-hydroxylated in vivo are 22R-hydroxycholesterol
(22R-HC) and 20S-hydroxycholesterol (20S-HC). Instead,
22R-HC becomes hydroxylated to 20R,22R-dihydroxycholes-
terol (20R,22R-diHC) which then undergoes side-chain
shortening to pregnenolone in reactions catalysed by
CYP11A1 (figure 1) [22,23]. 20S-HC has also been reported
to be converted to pregnenolone [1]. Pregnenolone is con-
verted by HSD3B1/2 enzymes to progesterone. 20S-HC,
22R-HC and 20R,22R-diHC are ligands to LXRs [24–26],
while 22R-HC, like many other side-chain hydroxylated 3β-
hydroxysterols, is a ligand to INSIG (insulin induced gene),
important in the regulation of SREBP-2 (sterol regulatory
element-binding protein-2) processing and cholesterol bio-
synthesis [27]. 20S-HC also regulates SREBP-2 processing
[28], presumably by binding to INSIG, and is a ligand to
the G protein-coupled receptor (GPCR) Smoothened (SMO)
important in the Hedgehog (Hh) signalling pathway [29],
and has recently been reported to be a ligand to the sigma
2 (σ2) receptor TMEM97 [30]. These biological activities are
not known to be conveyed to the 3-oxo-4-ene analogues of
20S-HC, 22R-HC or 20S,22R-diHC, again suggesting that
oxidation at C-3 with accompanying Δ5–Δ4 isomerization
may be a deactivation mechanism of oxysterols.

While oxysterols, including sterol-acids, based on a 3β-
hydroxy-5-ene framework are routinely analysed by both
gas chromatography–mass spectrometry (GC-MS) [31–33]
and liquid chromatography (LC)–MS [31,32,34–36], with the
exception of 7α-hydroxycholest-4-en-3-one (7α-HCO) and
7α-hydroxy-3-oxocholest-4-en-(25R/S)26-oic acid (7αH,3O-
CA), this is not normally the case for the 3-oxo-4-ene sterols
[31,37–39]. The ‘enzyme-assisted derivatization for sterol
analysis’ (EADSA) technology, as used in the current study,
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allows the analysis of 3β-hydroxy-5-ene and 3-oxo-4-ene oxy-
sterols, including sterol-acids, in a single LC-MS run [31,40–
43]. In this technology, after extraction each sample is split
into two equal aliquots: to the B-fraction endogenous 3-oxo-
4-ene sterols are reacted with the [2H0]Girard P hydrazine
(GP) reagent to tag a charge to the sterol skeleton to enhance
sensitivity of LC-MS analysis; while to the A-fraction bacterial
cholesterol oxidase enzyme is added. This converts sterols
with a 3β-hydroxy-5-ene function to their 3-oxo-4-ene equiva-
lents which are then reacted with [2H5]GP reagent (see
electronic supplementary material, figure S1). A salient feature
of the method is that in fraction-B only sterols with a natural oxo
group are derivatized (with [2H0]GP), while in fraction-A sterols
with a natural oxo group and those oxidized by cholesterol oxidase
to contain one are derivatized (with [2H5]GP). The derivatization
products are then combined and analysed by LC-MS, the orig-
inating structure of sterol, whether 3-oxo-4-ene or 3β-hydroxy-
5-ene, is revealed by the isotope labelling of the GP reagents
and deconvolution of the resultant data from A- and B-frac-
tions [40].

3β-Hydroxycholest-5-en-(25R)26-oic acid (3β-HCA) does not
have a 7α-hydroxy group and is a C27 sterol so should not be a
substrate for HSD3B7 or HSD3B1/2 enzymes; however, 3-oxo-
cholest-4-en-(25R)26-oic acid (3O-CA) is found at low levels in
human plasma at about 1–5% of 3β-HCA [31,41–43]. Here we
report evidence for the presence of (25R)26-hydroxycholest-4-
en-3-one (26-HCO), a potential precursor of 3O-CA, in human
plasma and its elevated concentration in plasma from pregnant
women taken 1–2 days prior to elective caesarean section at 37+
weeks of gestation and in plasma generated from blood of the
umbilical cord. Besides 26-HCO and 3O-CA, we identify other
C27–C24 cholesterol metabolites with a 3-oxo-4-ene structure
but without 7α-hydroxy group in these plasmas and in
human placenta. HSD3B1 is abundant in human placenta
[19], and we present proof-of-principle data that demonstrate
that the HSD3B1 enzyme will convert monohydroxycholester-
ols, where the added hydroxy group is in the side-chain, into
hydroxycholest-4-en-3-ones.
2. Material and methods
2.1. Materials
The source of all materials for oxysterol analysis can be found
in [43].

2.2. Human material
Maternal blood was taken 24–48 h prior to elective caesarean
section at 37+weeks of gestation for reasons that did not include
maternal or fetal anomaly. Umbilical cord blood and placenta
were collected at delivery of the baby. Control plasma was
from non-pregnant females. All samples were collected with
approval from a Health Research Authority Research Ethics
Committee (approval numbers 11/WA/0040 and 13/WA/
019). All participants provided informed consent and the
study adhered to the principles of the Declaration of Helsinki.

2.3. Oxysterol analysis
Oxysterol analysis was performed as described in detail in
[41–44] with minor modifications. In brief, oxysterols were
extracted in acetonitrile (absolute ethanol in the case of placental
tissue) and following dilution isolated by solid phase extraction
(SPE). The extract was split into two equal fractions: A and B.
Cholesterol oxidase was added to fraction-A to convert endogen-
ous 3β-hydroxy-5-ene oxysterols to their 3-oxo-4-ene equivalents
which were then derivatized with [2H5]GP (electronic sup-
plementary material, figure S1). Fraction-B was treated with
[2H0]GP in the absence of cholesterol oxidase, thus giving a measure
of endogenous 3-oxo-4-ene oxysterols, while fraction-A gives a
measure of endogenous 3β-hydroxy-5-ene plus 3-oxo-4-ene
oxysterols. Fractions-A and -B were combined and analysed
by LC-MS with multi-stage fragmentation (MS3), i.e.
[M]+→ [M-Py]+→, on an Orbitrap Elite high resolution mass
spectrometer (RRID:SCR_020548, ThermoFisher Scientific). In
the MS mode resolution was 120 000 FWHM (full width at
half maximum height) at m/z 400 with mass accuracy better
than 5 ppm. MS3 spectra were recorded in the linear ion trap
(LIT) in parallel to acquisition of mass spectra in the Orbitrap.
Oxysterols were identified by reference to authentic standards,
unless stated otherwise. Quantification was achieved with the
isotope-labelled standards [25,26,26,26,27,27,27-2H7]24R/S-HC
and [25,26,26,26,27,27,27-2H7]22R-hydroxycholest-4-en-3-one
([2H7]22R-HCO) which have been shown to be suitable for
quantification of side-chain oxysterols [40,43]. Further details
of the experimental methods can be found in electronic
supplementary material.

2.4. Transfection studies
HSD3B1 transfection was performed using the pcDNA3-
HSD3B1-STOP plasmid (see electronic supplementary material).
The plasmid construct was transfected into HEK293 cells using
JetOPTIMUS transfection reagent. Plasmid DNAwas combined
with JetOPTIMUS buffer at 1 µl per 10 ng of DNA and vortexed
briefly. The JetOPTIMUS transfection reagent was added at 1 µl
per 1000 ng of plasmid DNA and mixed gently. The mixture
was incubated at room temperature for 10 min before pipetting
evenly into seeded 60 mm dishes. The cells were incubated for
24 h at 37°C and 5% CO2 to allow for transfection and in vitro
expression of the HSD3B1 enzyme from the HSD3B1 open
reading frame (ORF) in the plasmid.

Transfected HEK293 cells were treated with oxysterols.
The incubation buffer was potassium phosphate, pH 6.8, con-
taining 1 mM EDTA, 1 mM of NAD+ and 1 µM of oxysterol.
One millilitre of oxysterol incubation buffer was added to
each dish. The cells were incubated for 1 h at 37°C, 5%
CO2. An aliquot of cells was taken for immunoblot (100 µl
of protein lysate loaded on gel; see electronic supplementary
material) while a separate aliquot was taken for LC-MS(MS3)
analysis.
3. Results
3.1. Plasma from pregnant women, plasma from

umbilical cord blood and placental tissue contain
3-oxocholest-4-en-(25R)26-oic acid and (25R)26-
hydroxycholest-4-en-3-one

The sterol-acid 3O-CA has been identified previously at low
levels compared with 3β-HCA in human plasma. Its origin
is unknown. As part of an investigation into oxysterols,
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including sterol-acids, associated with human pregnancy
EADSA technology was employed to identify oxysterols
based on their 3β-hydroxy-5-ene scaffold or native oxo
group. As anticipated, 3O-CAwas found in blood from preg-
nant women taken 1–2 days before elective caesarean section,
but at quite appreciable levels (2.41 ± 0.61 ng ml−1 ± s.d.), cor-
responding to about 6% of that of 3β-HCA (figure 2c,d and
table 1; see also electronic supplementary material, figure
S2B). In terms of absolute concentration 3O-CA was found
at similar levels in plasma from non-pregnant women (con-
trol plasma, 1.99 ± 0.69 ng ml−1), but when compared with
3β-HCA at a level of only 2% (figure 2a,b; electronic sup-
plementary material, figure S2A). Cord blood is blood left
over in the placenta after birth and collected from the umbi-
lical cord, the level of 3O-CA in cord plasma (12.74 ±
6.60 ng ml−1) is higher than in circulating plasma from both
pregnant and non-pregnant women, and similar to that of
3β-HCA in cord plasma (figure 2e,f; electronic supplementary
material, figure S2C). These data suggest that 3O-CA may be
produced from 3β-HCA in the placenta, where the levels of
3O-CA (3.99 ± 1.29 ng g−1) are about the same as those
of 3β-HCA (figure 2g,h; electronic supplementary material,
figure S2D). Note that concentrations of 3β-HCA are reported
in [44].

3O-CA may be derived by oxidation of 3β-HCA at C-3 or
conceivably by oxidation of 26-HCO at C-26 to yield the car-
boxylic acid group (figure 3). Although to the best of our
knowledge concentrations of 26-HCO have not been reported
in plasma, we have seen evidence in previous studies for
the presence of 26-HCO at about the level of detection but
below the level of quantification (less than 0.2 ng ml−1). By
investigating the reconstructed ion chromatogram (RIC) at
m/z 534.4054 ± 5 ppm appropriate to 26-HCO following
[2H0]GP-derivatization, a peak with the correct retention
time is evident in plasma from pregnant women and co-elut-
ing with that of 26-HC following ex vivo cholesterol oxidase
treatment and [2H5]GP derivatization at m/z 539.4368 ±
5 ppm (figure 4c; see also electronic supplementary material,
figure S2F). The MS3 ([M]+→ [M-Py]+→) fragmentation spec-
tra of GP-derivatized 26-HCO and 26-HC are very similar,
with the exception of the precursor-ion m/z, confirming the
identification of endogenous 26-HCO (figure 4d; see Yutuc
et al. [43] for MS3 spectra of reference standards). The level
of 26-HCO in pregnant women’s plasma is low at 0.69 ±
0.42 ng ml−1 and was only detected in nine of the ten samples
analysed, being present at 3% that of 26-HC. In plasma from
non-pregnant females, 26-HCO was only just detectable
(figure 4a,b) but was below the limit of quantification
(0.2 ng ml−1) in all samples analysed. The situation in cord
plasma is quite different (figure 4e,f ): the level of 26-HCO
was found to be 1.65 ± 0.68 ng ml−1, 23% that of 26-HC. As
was the case in placenta for 3O-CA and 3β-HCA, the ratio
of 26-HCO to 26-HC in this tissue was also high, with 26-
HCO at 16.0 ± 3.39 ng g−1 being 39% that of 26-HC
(figure 4g,h).
3.2. Potential artefactual formation of 3-oxo-4-ene
oxysterols from 3β-hydroxy-5-ene oxysterols

An alternative explanation for the current data showing the
existence of 3-oxo-4-ene oxysterols formed in the absence of
a 7α-hydroxy group is that their defining LC-MS peaks
may be artefacts generated as a consequence of the presence
of contaminating [2H0]GP within the [2H5]GP reagent which
is used in conjunction with cholesterol oxidase enzyme in the
EADSA process. Such a situation would result in a fraction of
3β-hydroxy-5-ene sterols becoming derivatized with [2H0]GP
instead of exclusively by [2H5]GP and being incorrectly inter-
preted as being derived from endogenous 3-oxo-4-ene
oxysterols. This situation is unlikely to be significant as the
[2H5]pyridine from which [2H5]GP reagent is prepared is
99.94% isotopically pure, which should lead to no more
than 0.06% artefactual formation of the [2H0]GP derivatives
of 26-HCO or 3O-CA derived from native 26-HC and 3β-
HCA, respectively. The levels of 26-HCO in pregnant
women’s and cord plasma are 3% and 23% of 26-HC, respect-
ively, and in placenta 26-HCO is 39% of 26-HC, values very
much greater than 0.06%. Another possibility whereby unre-
liable data can be generated is through back-exchange of the
derivatization groups when fraction-A ([2H5]GP) and frac-
tion-B ([2H0]GP) are mixed just prior to LC-MS analysis.
However, in the absence of an acid catalyst the exchange
reaction does not proceed. To confirm that the observations
of unexpected 3-oxo-4-ene oxysterols were not ex vivo arte-
facts of sample preparation, including the EADSA process
or of sample injection, the formation of [2H7]24R/S-hydroxy-
cholest-4-en-3-one ([2H7]24R/S-HCO) from [2H7]24R/S-
hydroxycholesterol ([2H7]24R/S-HC) internal standard,
added during the first step of oxysterol extraction, was
monitored for every sample analysed. In no case was the
[2H0]GP derivative of [2H7]24R/S-HCO observed (electronic
supplementary material, figure S3), eliminating the possi-
bility of ex vivo formation of 3-oxo-4-ene oxysterols during
sample preparation and analysis and confirming the high
isotopic purity of [2H5]GP-hydrazine.
3.3. Metabolic products of 3-oxocholest-4-en-(25R)26-
oic acid

The immediate metabolic product of 3β-HCA in bile acid bio-
synthesis is 3β,7α-diHCA, formed in a reaction catalysed by
CYP7B1 (figure 1). 3β,7α-diHCA is then converted by
HSD3B7 to 7αH,3O-CA, which then undergoes peroxisomal
side-chain shortening to give the C24 acid 7α-hydroxy-3-oxo-
chol-4-en-24-oic acid (7αH,3O-Δ4-BA); or 7αH,3O-CA may be
first reduced in the A-ring by aldoketoreductase (AKR) 1D1
then by AKR1C4 prior to peroxisomal side-chain shortening
to ultimately give chenodeoxycholic acid [5,6]. Alternatively,
3β,7α-diHCA itself can undergo side-chain shortening to
give 3β,7α-dihydroxychol-5-en-24-oic acid (3β,7α-diH-Δ5-
BA). Each of these pathways proceeds following 7α-hydroxy-
lation of the core 3β-hydroxy-5-ene sterol. It is unknown
whether CYP7B1 will accept 3-oxo-4-ene oxysterols and
sterol-acids as substrates (figure 3), and whether 3O-CA
will undergo side-chain shortening leading to 3-oxochol-4-
en-24-oic acid (3O-Δ4-BA). Interrogation of the RIC at m/z
506.3377 ± 5 ppm corresponding to [2H0]GP-derivatized 3O-
Δ4-BA indicates its presence in plasma from pregnant
women but below the limit of quantification (0.2 ng ml−1,
figure 5c,d; electronic supplementary material, figure S4B).
In cord plasma, the concentration of 3O-Δ4-BA is still low
(0.76 ± 0.47 ng ml−1) but about 23% that of 3β-hydroxychol-
5-en-24-oic acid (3βH-Δ5-BA; figure 5e,f ). In placenta, the con-
centration of 3O-Δ4-BA is also low at 1.26 ± 0.72 ng g−1 and
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Figure 2. 3β-HCA and 3O-CA are present in plasma from non-pregnant (control) and pregnant women, umbilical cord plasma and in placental tissue. Reconstructed ion
chromatograms (RICs) of 553.4161 ± 5 ppm corresponding to 3β-HCA plus 3O-CA derivatized with [2H5]GP (upper panels) and 548.3847 ± 5 ppm corresponding to 3O-
CA derivatized with [2H0]GP (lower panels). (a) Non-pregnant woman’s (control) plasma, (c) pregnant woman’s plasma, (e) cord plasma, and (g) placenta. Chromato-
grams in upper and lower panels are plotted on the same y-axis and magnified as indicated. MS3 ([M]+→ [M-Py+→) spectra of 3β-HCA plus 3O-CA derivatized with
[2H5]GP (upper panels) and 3O-CA derivatized with [

2H0]GP (lower panels) from (b) non-pregnant woman’s (control) plasma, (d ) pregnant woman’s plasma, ( f ) cord
plasma, and (h) placenta. There is some shift in retention time between samples which were analysed at different times on different LC columns but of the same type.
MS3 spectra can be compared to those of authentic standards [43]. Further data can be found in electronic supplementary material, figure S2A–D.

royalsocietypublishing.org/journal/rsob
Open

Biol.13:220313

5



Ta
bl
e
1.
3β
-H
yd
ro
xy
-5
-e
ne

an
d
3-
ox
o-
4-
en
e
ste
ro
ls
in
pl
as
m
a
fro
m
no
n-
pr
eg
na
nt
an
d
pr
eg
na
nt
w
om
en

an
d
th
e
um

bi
lic
al
co
rd
.D
at
a
fo
r
22
R-
HC
,2
4S
-H
C,
26
-H
C,
7α
,2
6-
di
HC

an
d
3β
-H
CA

ar
e
re
po
rte
d
in
[4
4]
.C
on
tro
lp
las
m
a
is
pl
as
m
a

fro
m
no
n-
pr
eg
na
nt
fe
m
ale
s.
No
te
:1
.S
in
gl
e
ou
tli
er
re
m
ov
ed

fro
m
co
nt
ro
l2
5-
HC

da
ta
.2
.P
re
su
m
pt
ive

id
en
tifi
ca
tio
n
in
th
e
ab
se
nc
e
of
au
th
en
tic

sta
nd
ar
d.
Da
ta
on
ly
se
m
i-q
ua
nt
ita
tiv
e.
3.
Ge
ne
ric

str
uc
tu
re
3β
,x-
di
HC
-y
O.
4.
Ge
ne
ric

str
uc
tu
re

x-
HC
,3
,y-
di
O.
5.
Ge
ne
ric

str
uc
tu
re
3β
,y-
di
HC
A.
6.
Ge
ne
ric

str
uc
tu
re
yH
,3
O-
CA
.7
.G
en
er
ic
str
uc
tu
re
3β
,x-
di
HC
A.
8.
Ge
ne
ric

str
uc
tu
re
xH
,3
O-
CA
.

[2 H
0]
GP

[2 H
5]
GP

co
m
po
un
d

co
rd

pl
as
m
a
(n
=
14
)

pr
eg
na
nt

w
om

an
pl
as
m
a
(n
=
10
)

co
nt
ro
lp
la
sm
a
(n
=
5)

no
te

m
/z

m
/z

ab
br
ev
ia
tio
n

m
ea
n
(n
g
m
l−

1 )
s.d
.

3-
on
e/
3β
-O
L

m
ea
n
(n
g
m
l−

1 )
s.d
.

3-
on
e/
3β
-O
L

m
ea
n
(n
g
m
l−

1 )
s.d
.

3-
on
e/
3β
-O
L

53
9.
43
68

22
R-
HC

6.
19

3.
01

2.
55

1.
18

0.
00

0.
00

53
4.
40
54

22
R-
HC
O

0.
11

0.
21

0.
02

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

53
9.
43
68

24
S-
HC

7.
34

2.
38

14
.9
9

4.
28

14
.4
8

3.
33

53
4.
40
54

24
S-
HC
O

0.
29

0.
39

0.
04

0.
04

0.
10

0.
00

0.
00

0.
00

0.
00

53
9.
43
68

25
-H
C

2.
75

1.
88

2.
74

1.
66

1.
55

0.
13

1

53
4.
40
54

25
-H
CO

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

53
9.
43
68

26
-H
C

7.
23

2.
88

21
.6
1

5.
63

25
.6
7

2.
30

53
4.
40
54

26
-H
CO

1.
65

0.
68

0.
23

0.
69

0.
42

0.
03

0.
00

0.
00

0.
00

55
5.
43
17
2

7α
,2
5-
di
HC

0.
48

0.
48

1.
07

0.
35

0.
79

0.
64

55
0.
40
03
2

7α
,2
5-
di
HC
O

0.
72

0.
88

1.
50

1.
77

0.
76

1.
65

1.
40

0.
43

1.
77

55
5.
43
17
2

7α
,2
6-
di
HC

0.
49

0.
23

1.
03

0.
54

1.
08

0.
55

55
0.
40
03
2

7α
,2
6-
di
HC
O

3.
24

1.
26

6.
56

3.
89

1.
19

3.
79

4.
13

1.
23

3.
82

55
5.
43
17
2

20
R,
22
R-
di
HC

49
.7
4

23
.9
7

13
.2
3

6.
79

0.
00

0.
00

55
0.
40
03
2

20
R,
22
R-
di
HC
O

12
.8
6

6.
09

0.
26

6.
04

3.
94

0.
46

0.
00

0.
00

0.
00

55
3.
41
60
7

3β
-H
CA

10
.5
6

4.
71

43
.6
4

13
.7
1

90
.0
2

21
.4
0

54
8.
38
46
7

3O
-C
A

12
.7
4

6.
60

1.
21

2.
41

0.
61

0.
06

1.
99

0.
69

0.
02

51
1.
36
91

3β
H-
Δ
5 -B
A

3.
37

2.
64

1.
50

0.
81

1.
89

0.
65

50
6.
33
77

3O
-Δ

4 -B
A

0.
76

0.
47

0.
23

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

55
3.
41
60
7

3β
,2
0-
di
HC
-2
2O

10
3.
60

44
.5
1

21
.7
2

8.
22

10
.5
9

5.
77

2,
3

54
8.
38
46
7

20
-H
C-
3,
22
-d
iO

78
.2
4

30
.8
5

0.
76

18
.2
1

6.
91

0.
84

0.
00

0.
00

0.
00

2,
4

56
9.
41
09
8

3β
,2
5-
di
HC
A

13
.0
2

6.
47

6.
34

2.
03

6.
36

3.
05

2,
5

56
4.
37
95
8

25
H,
3O
-C
A

12
.1
2

5.
03

0.
93

4.
29

2.
64

0.
68

0.
00

0.
00

0.
00

2,
6

56
9.
41
09
8

3β
,x-
di
HC
A

34
.0
0

16
.8
7

7.
42

2.
95

4.
68

1.
82

2,
7

56
4.
37
95
8

xH
,3
O-
CA

11
.8
0

4.
60

0.
35

4.
99

2.
25

0.
67

0.
00

0.
00

2,
8

royalsocietypublishing.org/journal/rsob
Open

Biol.13:220313

6



steroid hormones

progesterone

pregnenolone

cholesterol

bile acids

side-chain shortening

side-chain shortening

side-chain shortening

Figure 3. Suggested metabolic pathways generating oxysterols with a 3-oxo-4-ene function. Unexpected pathways are shown on pale-yellow, orange and lime
backgrounds. Oxysterols and steroids are coloured as in figure 1.
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about 16% that of 3βH-Δ5-BA (figure 5g,h). 3O-Δ4-BA was not
observed in plasma from non-pregnant women (figure 5a).

The current data suggest that 3-oxo-4-ene sterol-acids may
be formed in placenta even when they do not possess a 7α-
hydroxy group. A pathway can be envisaged starting with
26-HC and involving the intermediates 26-HCO, 3O-CA and
3O-Δ4-BA (shown on a pale-yellow background in figure 3).
Alternatively, like 26-HCO, 3O-CA and 3O-Δ4-BA could be
formed directly from their 3β-hydroxy-5-ene equivalents by a
HSD enzyme other than HSD3B7.

3.4. Placenta and umbilical cord blood contain novel
intermediates in a pathway leading to
progesterone

Progesterone is formed in steroidogenic tissue from choles-
terol by mitochondrial CYP11A1 and HSD3B1/2 (figure 1)
[21]; CYP11A1 and HSD3B1 are both enriched in placenta
[9,19]. In the first step, cholesterol is converted to 22R-HC
and then further to 20R,22R-diHC and onto pregnenolone
all by CYP11A1 [22,23]. Pregnenolone is then converted to
progesterone by HSD3B1 in placenta and by HSD3B2 in
other steroidogenic tissues. The evidence presented above
suggesting that 26-HC can be converted to 26-HCO in pla-
centa raises the possibility that similar oxidation reactions
may proceed with 22R-HC and 20R,22R-diHC as substrates
leading to 22R-hydroxycholest-4-en-3-one (22R-HCO) and
20R,22R-dihydroxycholest-4-en-3-one (20R,22R-diHCO) pro-
ducts, providing an alternative route to progesterone
involving the same enzymes as the conventional route but
acting in a different order and avoiding pregnenolone
(figure 3, see pathway on an orange background).

22R-HCO was found to be present in only 3 out of the 14
cord plasma samples, and where its level was about
0.5 ng ml−1, for comparison 22R-HC was found in all samples
at a level of 6.19 ± 3.01 ng ml−1 (figures 4e and 6b; electronic
supplementary material, figure S2G) [44]. 22R-HCO was at
or below the detection limit in plasma from pregnant and
non-pregnant women (control) plasma, although 22R-HC
was found in pregnant women’s plasma (2.55 ± 1.18 ng ml−1;
figures 4a,c and 6a) [44]. In placenta, the concentration of
22R-HCO was found to be 2.16 ± 0.38 ng g−1, 1% that of 22R-
HC (figures 4g and 6c).

20R,22R-diHCO was found in each of the cord plasma
samples analysed. It was much more abundant than 22R-
HCO, at a concentration of 12.86 ± 6.09 ng ml−1 corresponding
to 26% that of 20R,22R-diHC (figure 7c,f; electronic sup-
plementary material, figure S5C). In plasma from pregnant
women 20R,22R-diHCO was present at a concentration of
6.04 ± 3.94 ng ml−1, 46% that of 20R,22R-diHC (figure 7b,e),
although it, and 20R,22R-diHC, were absent from plasma
from non-pregnant females (figure 7a). Both 20R,22R-diHCO
and 20R,22R-diHC were present in placenta (figure 7d,g).

It is surprising that the ratio of 20R,22R-diHCO to
20R,22R-diHC is greater in plasma from pregnant women
than cord plasma, but the fact that both these sterols are
more abundant than their 20R-monohydroxy analogues
raises the possibility of further metabolism of 20R,22R-
diHCO by CYP11A1 to progesterone in the placenta or alter-
natively to intermediates analogous to a recently described
pathway to bile acids [44].
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3.5. 24S-Hydroxycholest-4-en-3-one is present in
pregnant women’s and cord plasma, 20S-
hydroxycholest-4-en-3-one is present in placenta

In plasma from pregnant women, 24S-HC is the second
most abundant side-chain monohydroxycholesterol after
26-HC (figures 4c and 6d; table 1). While 26-HCO was pre-
sent in nine of the ten samples analysed, at about 3% of
26-HC, 24S-hydroxycholest-4-en-3-one (24S-HCO) could
only be detected in three of the ten samples, giving a
mean concentration of 0.04 ± 0.10 ng ml−1 which is less
than 1% of the concentration of 24S-HC. 24S-HCO was
below the limit of quantification in all five plasma samples
from non-pregnant females (figure 4a). In cord plasma
24S-HCO was quantified in 7 of the 14 samples (figures 4e
and 6e), leading to a mean concentration of 0.29 ± 0.39 ng
ml−1, only 4% that of 24S-HC, compared with 26-HCO
being 23% of 26-HC.

20S-HC is not normally found in plasma, but it is
reported to be present in rodent brain and human placenta
[44–46]. Both 20S-HC and 24S-HC are found in placenta as
are 20S-hydroxycholest-4-en-3-one (20S-HCO) and 24S-HCO
(figures 4g and 8a–d; electronic supplementary material,
figure S6). 20S-HC and 20S-HCO can be targeted by generat-
ing multiple reaction monitoring (MRM)-like chromatograms
[M]+→ [M-Py]+→ 327 (figure 8b, first and second panels),
while 24S-HC and 24S-HCO can be targeted by [M]+→ [M-
Py]→ 353 chromatograms (figure 8b, third and fourth
panels). As is the case of most oxysterols, 20S-HC and 24S-
HC and 20S-HCO and 24S-HCO each give twin peaks
when derivatized with GP-hydrazine corresponding to syn
and anti conformers about the hydrazone C=N double
bond [43]. While the first peaks for 20S-HC and 20S-HCO
are resolved from 24S-HC and 24S-HCO peaks, and the
second peaks for 24S-HC and 24S-HCO are similarly resolved
from the 20S-isomers, the second 20S-HC and 20S-HCO
peaks co-elute with the first peaks of 24S-HC and 24S-HCO
(figure 8a,b). This means that quantification in placenta is
only approximate. As an estimation, 24S-HCO and 20S-
HCO are present at about 5% of 24S-HC and 20S-HC,
respectively.

3.6. Other 3-oxo-4-enes in plasma and placenta
Oxysterols with a 7α-hydroxy-3-oxo-4-ene structure are likely
to be formed via the action of HSD3B7 on 3β,7α-dihydroxy-5-
ene substrates (figure 1) [8]. Their identification and quantifi-
cation in pregnant women’s and cord plasma are presented
elsewhere [44].

In both pregnant women’s and cord plasma low levels of
25-hydroxycholest-4-en-3-one (25-HCO) are detected but
below the limit of quantification (figure 4c,e; electronic
supplementarymaterial, figure S2F,G). 25-Hydroxycholesterol
(25-HC) the likely precursor is, however, present at low levels
in these two types of plasma at about 2.7 ng ml−1. 25-HC
and 25-HCOare also found in placenta butwere not quantified
(figure 8a,e).

In previous studies, we have partially identified an
oxysterol in plasma as either 3β,20-dihydroxycholest-5-en-
22-one (3β,20-diHC-22O) or 3β,22-dihydroxycholest-5-en-24-
one (3β,22-diHC-24O) but the identity was not confirmed
due to the absence of authentic synthetic standards [43].
This oxysterol is present in the current samples generically
named as 3β,x-diHC-yO (figure 2; electronic supplementary
material, figure S7) and its concentration increases in the
order non-pregnant women’s plasma (10.59 ± 5.77 ng ml−1,
figure 2a), pregnant women’s plasma (21.72 ± 8.22 ng ml−1,
figure 2c) and cord plasma (103.6 ± 44.51 ng ml−1, figure 2e).
It is also present in placenta (figure 2g). Interestingly, the
3-oxo-4-ene version of this molecule (generically x-HC-3,y-
diO), 20-hydroxycholest-4-ene-3,22-dione (20-HC-3,22-diO)
or 22-hydroxycholest-4-ene-3,24-dione (22-HC-3,24-diO),
shows the same trend in concentration, being below the
limit of detection in non-pregnant female plasma, at 18.21 ±
6.91 ng ml−1 in plasma from pregnant women and 78.24 ±
30.85 ng ml−1 in cord plasma. These values correspond to
less than 1%, 84% and 76% of the 3β-hydroxy-5-ene versions.
20-HC-3,22-diO or 22-HC-3,24-diO is also abundant in pla-
centa. In the derivatization method employed in this study
24-oxo groups may be derived from natural 24,25-epoxy
groups [43], which raises the possibility that this may also
be the case here.

Another oxysterol previously found in plasma and
partially identified, based on exact mass, retention time
and MS3 data, is either 3β,25-dihydroxycholest-5-en-26-oic
acid (3β,25-diHCA) or 3β,25,x-trihydroxycholest-5-en-y-one
(3β,25,x-triHC-yO) [43]. In the present study, this compound
is found at similar levels in plasma from non-pregnant (6.36
± 3.05 ng ml−1, table 1; see electronic supplementary material,
figure S8A–C) and pregnant women (6.34 ± 2.03 ng ml−1;
electronic supplementary material, figure S8E–G) but is
more abundant in cord plasma (13.02 ± 6.47 ng ml−1; see elec-
tronic supplementary material, figure S9A–C). As might be
expected in light of the data presented above, the 3-oxo-4-
ene version, i.e. either 25-hydroxy-3-oxocholest-4-en-26-oic
acid (25H,3O-CA) or 25,x-dihydroxycholest-4-en-3,y-dione
(25,x-diHC-3,y-diO), is absent from non-pregnant women’s
plasma (electronic supplementary material, figure S8A,B),
but present at increasing concentration in pregnant women’s
plasma (4.29 ± 2.64 ng ml−1; electronic supplementary mate-
rial, figure S8E–G) and cord plasma (12.12 ± 5.03 ng ml−1;
electronic supplementary material, figure S9A–C), the latter
two concentrations corresponding to 68% and 93% of their
3β-hydroxy-5-ene analogues. Both 3β,25-diHCA or 3β,25,x-
triHC-y-O and 25H,3O-CA or 25,x-diHC-3,y-diO are present
in placenta (electronic supplementary material, figure S9E–G).

A further partially identified pair of 3β-hydroxy-5-ene
and 3-oxo-4-ene sterol-acids found in pregnant women’s
and cord plasma is 3β,x-dihydroxycholest-5-en-26-oic (3β,
x-diHCA) and x-hydroxy-3-oxocholest-4-en-26-oic acid
(xH,3O-CA; see electronic supplementary material, figures
S8E,F,H and S9A,B,D). The extra hydroxy group designated
by x is probably on the side-chain. Only the 3β-hydroxy-5-
ene sterol-acid is found in non-pregnant females’ plasma
(see electronic supplementary material, figure S8A,B,D).
The concentration of 3β,x-diHCA increases from non-preg-
nant women’s plasma (4.68 ± 1.82 ng ml−1) to pregnant
women’s plasma (7.42 ± 2.95 ng ml−1) to cord plasma
(34.00 ± 16.87 ng ml−1). The concentrations of xH,3O-CA in
pregnant women’s and cord plasma are 4.99 ± 2.25 ng ml−1

and 11.8 ± 4.60 ng ml−1, these values corresponding to
67% and 35%, respectively, of the equivalent 3β-hydroxy-5-
ene sterols. Both 3β,x-diHCA and xH,3O-CA are also
present in placenta (see electronic supplementary material,
figure S9E,F,H). An alternative identification for this
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Figure 4. Monohydroxycholesterols (HC) and monohydroxycholestenones (HCO) are present in plasma from non-pregnant (control) and pregnant women, umbilical
cord plasma and in placental tissue. RICs of 539.4368 ± 5 ppm corresponding to monohydroxycholesterols plus monohydroxycholestenones derivatized with [2H5]GP
(upper panels) and 534.4054 ± 5 ppm corresponding to monohydroxycholestenones derivatized with [2H0]GP (lower panels). (a) Non-pregnant woman’s (control)
plasma, (c) pregnant woman’s plasma, (e) cord plasma, and (g) placenta. Chromatograms in upper and lower panels are plotted on the same y-axis and magnified
as indicated. MS3 ([M]+→ [M-Py]+→) spectra of 26-HC plus 26-HCO derivatized with [2H5]GP (upper panels) and 26-HCO derivatized with [

2H0]GP (lower panels)
from (b) non-pregnant woman’s (control) plasma, (d ) pregnant woman’s plasma, ( f ) cord plasma, and (h) placenta. There is some shift in retention time between
samples which were analysed at different times on different LC columns but of the same type. MS3 spectra can be compared to those of authentic standards [43].
Further data can be found in electronic supplementary material, figure S2E–H.
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Figure 5. 3-Oxo-4-ene C24-bile acids in pregnant women’s and cord plasma and in placental tissue. RICs of 511.3691 ± 5 ppm corresponding to 3βH-Δ5-BA plus
3O-Δ4-BA (where present) derivatized with [2H5]GP (upper panels) and 506.3377 ± 5 ppm corresponding to 3O-Δ4-BA derivatized with [2H0]GP (lower panels). (a)
Non-pregnant woman’s (control) plasma, (c) pregnant woman’s plasma, (e) cord plasma, and (g) placenta. Chromatograms in upper and lower panels are plotted
on the same y-axis. MS3 ([M]+→ [M-Py]+→) spectra of 3βH-Δ5-BA plus 3O-Δ4-BA (if present) derivatized with [2H5]GP (upper panels) and where present 3O-Δ

4-
BA derivatized with [2H0]GP (lower panels) from (b) non-pregnant woman’s (control) plasma, (d ) pregnant woman’s plasma, ( f ) cord plasma and (h) placenta.
There is some shift in retention time between samples which were analysed at different times and on different LC columns but of the same type. MS3 spectra can be
compared to those of authentic standards [43].
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Figure 6. Hydroxycholestenones are present in pregnant women’s and cord plasma and in placenta tissue. MS3 ([M]+→ [M-Py]+→) spectra of hydroxycholesterol
(HC) plus hydroxycholestenone (HCO, where present) derivatized with [2H5]GP (upper panels) and hydroxycholestenones (if present) derivatized with [

2H0]GP (lower
panels). (a) 22R-HC is present in pregnant woman’s and (b) cord plasma but 22R-HCO is at, or below, the detection limit in these plasmas, while it is present in (c)
placenta. 24S-HCO is present in (d ) pregnant woman’s and (e) cord plasma. 25-HCO is at the detection limit in ( f ) pregnant woman’s plasma and (g) cord plasma.
See figure 8d,e for spectra of 24S-HCO and 25-HCO in placenta. Note the presence of the fragment ion at m/z 327 in the MS3 spectra of 24S-HCO from pregnant
woman’s and cord plasma (d,e) indicating the additional presence of minor amounts of 20S-HCO. See figure 4c,e,g for chromatograms from pregnant woman’s and
cord plasma, and placenta, respectively. There is some shift in retention time between samples which were analysed at different times and on different LC columns
but of the same type. MS3 spectra can be compared to those of authentic standards [43].
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pair of 3β-hydroxy-5-ene and 3-oxo-4-ene sterols is 3β,x,y-
trihydroxycholest-5-en-z-one (3β,x,y-triHC-zO) and x,y-
dihydroxycholest-4-en-3,z-dione (x,y-diHC-3,z-diO). If this
were the correct structure it is likely that the extra hydroxy
groups designated x and y and the oxo group z are in the
side-chain [43].
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Figure 7. 20R,22R-diHCO is present in pregnant women’s and cord plasma and in placental tissue. RICs of 555.4317 ± 5 ppm corresponding to dihydroxycholes-
terols (diHC) plus dihydroxycholestenones (diHCO) including 20R,22R-diHC plus 20R,22R-diHCO when present, derivatized with [2H5]GP (upper panels) and 550.4003
± 5 ppm corresponding to dihydroxycholestenones, including 20R,22R-diHCO if present, derivatized with [2H0]GP (lower panels). (a) Non-pregnant female (control)
plasma, (b) pregnant woman’s plasma, (c) cord plasma, and (d ) placenta. Chromatograms in upper and lower panels are plotted on the same y-axis and magnified
as indicated. MS3 ([M]+→ [M-Py]+→) spectra of 20R,22R-diHC plus 20R,22R-diHCO derivatized with [2H5]GP (upper panels) and 20R,22R-diHCO derivatized with
[2H0]GP (lower panels) from (e) pregnant woman’s plasma, ( f ) cord plasma, and (g) placenta. There is some shift in retention time between samples which were
analysed at different times and on different LC columns but of the same type. MS3 spectra can be compared to those of authentic standards [43]. Further data can
be found in electronic supplementary material, figure S5A–D.
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Figure 8. 20S-HC, 20S-HCO, 24S-HC, 24S-HCO, 25-HC, 25-HCO, 26-HC and 26-HCO are present in placenta. (a) RICs of 539.4368 ± 5 ppm (upper panel) and
534.4054 ± 5 ppm (lower panel) over the elution time of 20S-HC, 20S-HCO, 24S-HC, 24S-HCO, 25-HC, 25-HCO, 26-HC and 26-HCO. The full-length chromatogram
is presented in figure 4g. (b) MRM-like chromatograms targeting 20S-HC (top panel) and 20S-HCO (second panel), i.e. [M]+→ [M-Py]+→ 327, plotted on the same
y-axis, and 24S-HC (third panel) and 24S-HCO (bottom panel), i.e. [M]+→ [M-Py]→ 353, plotted on the same y-axis. MS3 ([M]+→ [M-Py]+→) spectra of (c) the
first peaks of 20S-HC plus 20S-HCO (upper panel) and 20S-HCO (lower panel), (d ) the second peaks of 24S-HC plus 24S-HCO (upper panel) and 24S-HCO (lower
panel), and (e) 25-HC plus 25-HCO (upper panel) and 25-HCO (lower panel). Note the fragment ion at m/z 353 is characteristic of 24S-HC/24S-HCO while m/z 327 is
characteristic of 20S-HC/20-HCO. Further data can be found in electronic supplementary material, figure S6.
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3.7. HSD3B1 converts 24S-HC and 20S-HC to 24S-HCO
and 20S-HCO, respectively

HSD3B1 converts pregnenolone to progesterone (figure 1)
and is highly expressed in placenta [9,19]. HSD3B7, the
enzyme that converts 7α-hydroxysterols to their 3-oxo-4-ene
equivalents does not use as substrates C27 sterols lacking a
7α-hydroxy group [8], and is not expressed in placenta [9].
Thus, HSD3B1 represents a plausible enzyme which is
present in placenta that could have 3β-hydroxy-Δ5-C27-
steroid oxidoreductase Δ5-isomerase activity and convert
3β-hydroxy-5-enes to their 3-oxo-4-ene equivalents. To test
this hypothesis, the plasmid encoding human HSD3B1
(pHSD3B1; see electronic supplementary material) was trans-
fected into HEK 293 cells using JetOPTIMUS transfection
reagent and the expression of protein confirmed by immuno-
blot analysis (electronic supplementary material, figure S10).
The activity of HSD3B1 expressed in transfected HEK
293 cells towards 1 μM [2H7]24R/S-HC and [2H7]20S-HC
was investigated in incubation buffer [47]. After 1 h of incu-
bation, oxysterols were extracted from cell pellets (approx.
3 × 106 cells) and subjected to EADSA and LC-MS(MS3).
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[2H7]22S-HCO and [2H7]7α-HC were included in the extrac-
tion solvent to act as internal standards to quantitatively
monitor newly formed hydroxycholestenones and any spur-
ious formation of 3-oxo-4-enes during sample preparation,
respectively.

As is evident from figure 9a,e un-transfected cells do not
convert [2H7]24R/S-HC or [2H7]20S-HC to their 3-ones. How-
ever, when HEK 293 cells were transfected with HSD3B1 and
incubated for 1 h with 1 μM [2H7]20S-HC, about of 75% sub-
strate was converted to [2H7]20S-HCO product (figure 9c,d).
Similar results were obtained in incubations with [2H7]24R/
S-HC but conversion to [2H7]24S-HCO was only about 35%
(figure 9g,h).
Open
Biol.13:220313
4. Discussion
In the current study, we have made the surprising obser-
vation that oxysterols, including sterol-acids, with a 3-oxo-
4-ene function but lacking a 7α-hydroxy group are present
in plasma from pregnant women and from umbilical cord
blood. The origin of these unexpected metabolites is likely
to be the placenta based on their relative abundance in this
tissue. In the analysis of adult plasma, oxysterols with
a 3-oxo-4-ene function are nearly always found to be
7α-hydroxylated [38,41–43,48]. HSD3B7 is the C27 oxido-
reductase Δ5-isomerase which converts the 3β-hydroxy-5-
ene group in oxysterols possessing a 7α-hydroxy group to
the 3-oxo-4-ene group (figure 1) [8]. HSD3B7 only uses C27

oxysterols with a 7α-hydroxy group as its substrates and
does not convert pregnenolone to progesterone or oxidize
other C21 steroids at C-3 [8]. Instead, this activity is the pre-
serve of HSD3B1 and 3B2 [19–21,47]. HSD3B2 is primarily
expressed in the adrenal gland, ovary and testis, while
HSD3B1 is primarily localized to placenta and non-steroido-
genic tissue [9,19]. In the placenta, HSD3B1 is reported to
have both microsomal and mitochondrial locations, the
latter being optimal for progesterone synthesis from pregne-
nolone, as CYP11A1 producing pregnenolone is also
mitochondrial [49,50]. As HSD3B1 is a 3β-HSD Δ5 isomerase
and is abundant in placenta, it represents a good candidate
enzyme to catalyse the unexpected conversion of C27 3β-
hydroxy-5-ene oxysterols lacking a 7α-hydroxy group to
their 3-oxo-4-ene analogues. We performed a proof-of-prin-
ciple study where we incubated isotope-labelled versions of
oxysterols (i.e. [2H7]24R/S-HC and [2H7]20S-HC), whose
natural S-isomers are present in placenta, with HEK 293
cells transfected with HSD3B1 and expressing HSD3B1. We
selected these oxysterols as their natural-isotopic versions
have previously been identified in placenta; although the
former is not known to be synthesized in placenta, its pres-
ence is most likely from circulating maternal blood [44,45].
We found that both oxysterols were converted to their 3-
oxo-4-ene forms. This preliminary study confirms that
HSD3B1 has activity towards C27 oxysterols and is likely to
be the enzyme converting oxysterols without a 7α-hydroxy
group from their 3β-hydroxy-5-ene to 3-oxo-4-ene form.

When unexpected oxysterols are identified, it is wise to
be wary of ex vivo autoxidation leading to artefact formation.
We were able to confirm that this was not the case here by
the inclusion of isotope-labelled standards in the extraction
solvent and by noting an absence of isotope-labelled oxyster-
ols with a changed structure. Another potential stage for
autoxidation is during sample storage. However, the most
labile positions in cholesterol are at C-4 and C-7 allylic to
the Δ5 double bond [51–54], and it is difficult to conceive a
simple free radical mechanism for the transition of a 3β-
hydrox-5-ene group to a 3-oxo-4-ene and a more plausible
route is therefore through enzymatic oxidation. Bacterial
cholesterol oxidase can convert the 3β-hydroxy-5-ene group
to the 3-oxo-4-ene [55], and in our analytical method we per-
form such a reaction (electronic supplementary material,
figure S1); however, we detect the unexpected 3-oxo-4-ene
oxysterols in the absence of added cholesterol oxidase.
Bacteria in the uterus could provide an alternative source of
cholesterol oxidase activity and interestingly mycobacteria
can express a 3β-HSD which will convert 25-HC to 25-HCO
[56]. An alternative source of cholesterol oxidase activity
has been found to be a complex of Cu2+ and amyloid β-pep-
tide [57], and amyloid beta precursor protein does have some
expression in placenta as does beta secretase 1 and the
gamma secretase components presenilin-1, nicastrin, anterior
pharynx-defective 1 and presenilin enhancer 2 [9], required
for amyloid β-peptide formation. Copper is also present in
placenta at a level of about 1 µg g−1 [58]. However, our find-
ing that cells expressing human HSD3B1 will convert the 3β-
hydroxy-5-ene function to the 3-oxo-4-ene, at least in
[2H7]24R/S-HC and [2H7]20S-HC, strongly favours the con-
clusion that the unexpected oxysterols with a 3-oxo-4-ene
group are formed endogenously in placenta by this enzyme.

What might be the biological benefit of placental HSD3B1
having activity towards C27 sterols? As cord blood is the
blood remaining in the umbilical cord and placenta following
birth its composition can give clues to the biology of oxyster-
ols with the 3-oxo-4-ene function (figure 10). The oxysterol
composition of cord plasma indicates two unusual pathways
of metabolism. In the first we see a pathway of 26-HCO, 3O-
CA and 3O-Δ4-BA providing a route towards bile acids as
shown on the pale-yellow background in figure 3. 26-HCO
may be formed via HSD3B1 oxidation of 26-HC and then
metabolized to 3O-CA by CYP27A1. CYP27A1 has been
shown to be active towards sterols with a 3-oxo-4-ene struc-
ture [59]. Peroxisomal side-chain shortening will then lead
to 3O-Δ4-BA. 26-HC is an LXR ligand [60] and also a selective
oestrogen receptor modulator [61], so oxidation at C-3 could
provide a route to deactivate the ligand. Two alternative
routes of deactivation of 26-HC are (i) CYP27A1 mediated
oxidation to 3β-HCA, although 3β-HCA is itself an LXR
ligand [62,63], and (ii) 7α-hydroxylation by CYP7B1 to
7α,26-diHC, but 7α,26-diHC is also biologically active as a
chemoattractant of GPR183 expressing immune cells [13].
Interestingly, CYP27A1 is a mitochondrial enzyme [4], and
HSD3B1 can also be located in this organelle [49], thus
HSD3B1 oxidation of 3β-HCA to 3O-CA could act as a
route for the former acid’s deactivation. Conversion of the
3β-hydroxy-5-ene function in 7α,26-diHC by HSD3B7 to the
3-oxo-4-ene in 7α,26-dihydroxycholest-4-en-3-one (7α,26-
diHCO) is an established route of its deactivation [13].
In each of the plasma samples 7α,26-diHC is only a minor
oxysterol, 7α,26-diHCO being three to seven times more
abundant (table 1 and figure 10).

The second unusual metabolic pathway revealed by the
analysis of cord plasma also involves oxysterols with a 3-
oxo-4-ene structure and encompasses 20R-HC, 20R,22R-
diHC, 20R-HCO and 20R,22R-diHCO, presumably leading
to progesterone by side-chain cleavage of 20R,22R-diHCO
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Figure 9. [2H7]20S-HC and [
2H7]24R/S-HC are converted to [

2H7]20S-HCO and [
2H7]24R/S-HCO by HEK 293 cells transfected with HSD3B1. [

2H7]20S-HC was incubated
with un-transfected HEK 293 cells (a,b) or cells transfected with HSD3B1 (c,d). (a,c) RICs of m/z 546.4807 corresponding to GP-derivatized [2H7]20S-HC and [

2H7]20S-
HCO, if present, (upper panel) and m/z 541.4493 corresponding [2H7]20S-HCO (lower panel). [

2H7]22R-HCO and [
2H7]7α-HC were added in the extraction solvent to

quantitatively monitor [2H7]20S-HC formation and any spurious oxidation at C-3. (b,d) MS3 ([M]+→ [M-Py]+→) spectra of [2H7]20S-HC plus [
2H7]20S-HCO, if

present (upper panel), and [2H7]20S-HCO, if present (lower panel). (e,g) RICs of m/z 546.4807 corresponding to GP-derivatized [
2H7]24R/S-HC plus [

2H7]24R/S-
HCO, if present (upper panel), and m/z 541.4493 corresponding [2H7]24R/S-HCO (lower panel). ( f,h) MS3 ([M]+→ [M-Py]+→) spectra of [2H7]24S-HC plus
[2H7]24S-HCO, if present (upper panel), and [

2H7]24S-HCO, if present (lower panel).
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Figure 10. Concentrations of oxysterols in plasma from (a) the umbilical cord, (b) pregnant women and (c) non-pregnant women (controls).
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(figure 3, orange background). This pathway may again be a
route to deactivate LXR ligands, in this case 22R-HC and
20R,22R-diHC [24], or a route to progesterone avoiding preg-
nenolone, although using the same enzymes CYP11A1 and
HSD3B1 as in the conventional pathway but in a different
order. The introduction to this pathway may be through
HSD3B1 oxidation of either 22R-HC or 20R,22R-diHC,
CYP11A1 being a 22- and 20-hydroxylase and also the side-
chain shortening enzyme [22]. It is perhaps significant that
like CYP27A1, CYP11A1 is a mitochondrial enzyme, while
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HSD3B1 also has a mitochondrial location. Certainly, by
studying figure 10 it is evident that 3-oxo-4-ene metabolites
are most prevalent in compounds with 20- or 22-hydroxy-
lation (introduced by CYP11A1) or 26-hydroxylation or
carboxylation (introduced by CYP27A1). Extrapolating this
evidence to 20S-HC and 20S-HCO suggests that the enzyme
generating 20S-HC from cholesterol is mitochondrial,
perhaps CYP11A1.

20S-HC like many other side-chain oxysterols inhibits the
processing of SREBP-2 [27,28] and is an LXR ligand [24,26]. It
is also a reported agonist towards another nuclear receptor,
retinoic acid receptor-related orphan receptor γ (RORγ) [64],
an activator of the Hh signalling pathway by binding to
SMO [29], and a ligand to the σ2 receptor, encoded by
TMEM97 [30]. Interestingly, TMEM97 is overexpressed in
proliferating tumours and believed to be involved in choles-
terol homeostasis [30]. 20S-HC has previously been
reported in human placenta and rodent brain [44–46]. The
metabolism of 20S-HC has not been studied extensively [1];
however, it can bind to the active site of CYP11A1 [65], and
has been shown to be converted to pregnenolone [66],
although this reaction is not considered as a major route to
pregnenolone [1]. Besides inhibiting the processing of
SREBP-2 [28], 20S-HC will also repress the activity of hydro-
xymethylglutaryl (HMG)-CoA reductase [67], as will other
side-chain oxysterols [68]. Although produced primarily in
brain [69,70], 24S-HC is abundant in the circulation [43]
(table 1 and figure 10) and has a route from mother to fetus
via the placenta. Like 20S-HC, 24S-HC is a ligand to LXRs
and inhibits the processing of SREBP-2 [25–27], but unlike
20S-HC is an inverse agonist towards RORγ [71]. Of these
myriads of activities, few have been ascribed to the 3-oxo-4-
ene sterols, suggesting once more that HSD3B1 can provide
a role in deactivating oxysterols.

It should be pointed out that very few studies have been
performed on oxysterols with 3-oxo-4-ene function but
devoid of a 7α-hydroxy group [1,14,63,67,72]. This is prob-
ably because they are seldom identified in vivo.
Interestingly, the trio of metabolites 26-HCO, 3O-CA and
3O-Δ4-BA provide an exception in that like 25-HC and 26-
HC they will each suppress the activity of HMG-CoA
reductase in human fibroblasts [72]. These cells will convert
26-HCO to 3O-CA [72], in agreement with other studies
showing 3-oxo-4-ene sterols are substrates for CYP27A1 [59].

In summary, the placenta facilitates exchange of metab-
olites between the fetus and mother. It is also an endocrine
organ producing hormones that regulate maternal and fetal
physiology. The umbilical cord connects the placenta to the
fetus and its blood content can be sampled after birth as
cord blood representing the fetal blood content of the pla-
centa. By analysing plasma from pregnant women, cord
blood and placental tissue along with plasma from non-preg-
nant women we provide evidence for the conversion of
oxysterols with a 3β-hydroxy-5-ene structure to 3-oxo-4-ene
analogues in placenta. Based on a proof-of-principle study
this activity is likely to be catalysed by HSD3B1. We speculate
that these unexpected reactions provide a mechanism to regu-
late biologically active oxysterols and deserves further study.
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