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Abstract 

Epigenetic characterization of cell-free DNA (cfDNA) is an emerging approach for detecting and characterizing 
diseases such as cancer. We developed a strategy using nanopore-based single-molecule sequencing to measure 
cfDNA methylomes. This approach generated up to 200 million reads for a single cfDNA sample from cancer patients, 
an order of magnitude improvement over existing nanopore sequencing methods. We developed a single-molecule 
classifier to determine whether individual reads originated from a tumor or immune cells. Leveraging methylomes of 
matched tumors and immune cells, we characterized cfDNA methylomes of cancer patients for longitudinal monitor-
ing during treatment.
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Background
Malignant tumor cells shed their DNA into the blood-
stream of cancer patients in the form of cell-free DNA 
(cfDNA). Sequencing cfDNA can identify cancer-asso-
ciated biomarkers and is useful for disease monitoring. 
This approach is commonly referred to as a liquid biopsy 
[1–3]. Epigenetic modifications of tumor DNA are of par-
ticular interest because of their contribution to cancer 
development and progression [4]. Characterizing cancer-
specific methylation changes has proven to be a highly 
sensitive and specific modality for liquid biopsies [5–7]. 
For detecting methylation, cfDNA is typically processed 
with bisulfite or enzymatic conversion of unmodified 

cytosines into uracils. Short-read sequencing detects the 
presence of methylated bases. However, this approach 
introduces biases such as significant GC skews, DNA 
damage, PCR amplification bias, and alignment artifacts 
[8, 9]. Compounding these issues, extracted cfDNA from 
plasma has low yields. Characterizing cfDNA methy-
lomes from patients remains challenging, particularly 
with conventional sequencing approaches.

Addressing these challenges, we developed a single-
molecule sequencing approach for efficiently char-
acterizing methylation profiles from the cfDNA of 
cancer patients (Fig. 1A). This PCR-free process generates 
sequencing libraries from nanogram amounts or less of 
cfDNA per sample. We leveraged the Oxford Nanopore 
platform to identify cfDNA methylation without cytosine 
conversion. The passage of methylated DNA through the 
nanopore generates a unique electrical signal compared 
to unmodified DNA; currently, 5-methylcytosine (5mC) 
CpG methylation is detected with machine learning algo-
rithms at high accuracy [10, 11]. By eliminating PCR, we 
avoided GC-biased amplification skews from bisulfite 
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Fig. 1  Nanopore sequencing of cfDNA. A An optimized protocol for generating cfDNA sequencing libraries enables high-throughput methylation 
characterization. The key improvement was the optimization of specific end-repair, a-tailing, and ligation conditions to maximize the number 
of cfDNA fragments available for nanopore sequencing. B Cell-free DNA library comparison. An optimized workflow enables approximately an 
order of magnitude increase in sequencing yield versus the conventional protocol. C Sequencing yield correlation with input cfDNA. Fluorometric 
quantification was performed on cancer patient-derived cfDNA samples and compared to the aligned sequencing yield. Each patient is shown 
as a separate color in triplicate. Correlation and significance value are annotated on the plot. D Genome-wide methylation quantification. The 
degree of methylation across the genome was computed for healthy and patient-derived cfDNA. E Nucleosome enrichment analysis. The ratio 
of mononucleosomes to di-nucleosomes was quantified for each tissue type, using a cutoff of 250 bp between mono- and di-nucleosomes. F 
Distribution of fragment sizes. Example fragment sizes are shown for healthy and patient-derived cfDNA. Mono- and di-nucleosome size peaks 
are annotated with dotted lines to be 167 bp and 334 bp. G Methylation profiles of healthy- and patient-derived cfDNA. Gene-level methylation 
values for each sample were determined, and statistically significant ones (q < 0.01) are plotted as a heatmap with the gene-level methylation 
percentage as the intensities. The heatmap was clustered by gene-level methylation. H Differential methylation. Statistically significant differences 
in methylation between sample types are shown for several selected genes
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conversion and enabled direct single-molecule counting 
of cfDNA. The nanopore-based methylation profiles thus 
directly reflect the native single-molecule state of the 
cfDNA.

Methods
Samples
We obtained informed consent from all patients based on 
a protocol approved by Stanford University’s Institutional 
Review Board. Our cohort consists of patients with a pos-
itive diagnosis of cancer (N = 23) and healthy volunteers 
(N = 5). Blood and tissue samples came from the Stan-
ford Cancer Center, the Stanford Tissue Bank, and the 
Stanford Blood Center. For a subset of patients enrolled 
at the Stanford Cancer Center (three patients: P6199, 
P4822, and P6527), we obtained whole blood samples in 
Streck or EDTA tubes which were later centrifuged into 
plasma and PBMC fractions. For these patients, matched 
tumor tissue was also obtained. Plasma from the Stan-
ford Tissue Bank was obtained as single aliquots in 1-ml 
cryovials. Tumor tissue was archived by flash freezing in 
liquid nitrogen and stored at − 80 °C. From the Stanford 
Blood Center, we obtained whole blood from anonymous 
donors to serve as healthy controls; these samples were 
centrifuged into plasma and buffy coat fractions. All sam-
ples were stored at − 80 °C before processing.

Nucleosome DNA controls
To generate DNA fragments modeling the qualities of 
cell-free DNA, we used the EZ Nucleosomal DNA Prep 
Kit (Zymo Research). This method uses DNase to digest 
open chromatin positions and yields a fragment pattern 
characteristic of cell-free DNA instead of random frag-
mentation. Briefly, nuclei were processed from whole 
cells by adding a nuclei prep buffer that lyses the cell 
membrane but leaves the nuclei membrane intact. Enzy-
matic DNase digestion then fragments DNA at unpro-
tected locations, after which DNA is purified with the 
kit’s included components. For nucleosomes from cancer 
lines, we used cells treated with trypsin.

The Stanford Blood Center provided anonymous donor 
blood as healthy controls. We used peripheral blood 
mononuclear cells (PBMCs) for nucleosome preparation. 
Whole blood was diluted with an equal volume of PBS 
and added to a SepMate PBMC isolation tube (STEM-
CELL Technologies) containing Ficoll. The tube was 
spun at 1200  g for 10  min before decanting into a new 
tube. Cells were spun again at 400 g for 5 min and were 
washed with PBS. Cells were resuspended in freezing 
medium (90% FBS/10% DMSO). Isolated PBMCs were 
then used as input for the nucleosome preparation kit. 
For the experimental admixtures, the PBMC and cell line 
nucleosomes were diluted to a target concentration (e.g., 

1  ng/μl) and mixed to known ratios. Serial dilutions of 
this mixture are then performed to simulate lower input 
amounts.

Sample processing
Extracted DNA was obtained from tissue biopsies using 
the Maxwell 16 DNA extraction kit (Promega). Briefly, a 
small tissue fragment was excised from the tissue sam-
ple with a scalpel and deposited into the input well of 
the DNA purification cartridge. The cartridge was placed 
into the Maxwell 16 instrument (Promega), and the asso-
ciated protocol was run. For extracting cell-free DNA, 
plasma was separated from whole blood by centrifuga-
tion. The plasma fraction was pipetted into a Maxwell 16 
ccfDNA Plasma kit cartridge (Promega) using the stand-
ard instrument protocol. The cellular blood portion was 
extracted using a Maxwell 16 LEV Blood DNA Kit. Yields 
were measured by Qubit (Thermo Fisher Scientific). Cell-
free DNA was quantified using the AccuBlue NextGen 
DNA Quantification Kit (Biotium).

Sequencing library preparation
We developed a protocol for generating sequencing 
libraries that accommodate the low input amounts of 
cfDNA and maximize sample barcode adapters’ incorpo-
ration rate. A full protocol is available online at https://​
dx.​doi.​org/​10.​17504/​proto​cols.​io.​4r3l2​7rjxg​1y/​v1 [12]. 
Briefly, 25  μl of extracted cfDNA (out of a typical 50  μl 
extracted volume; thus corresponding to ~ 0.5  ml of 
plasma) was diluted with 25 μl of water. The sample DNA 
underwent end-repair and A-tailing with conditions 
of 20 °C for 30 min and 65 °C for 30 min (Roche KAPA 
HyperPrep kit). We ligated native barcodes using 5 μl of 
each barcoded adapter (EXP-NBD196, Oxford Nanopore 
Technologies) following the standard reaction volumes 
in the KAPA HyperPrep workflow. We used a thermo-
cycler for the ligation step for 4.5 h incubation at 20  °C 
before holding at 4  °C overnight to maximize the liga-
tion yield. These steps provided a higher ligation rate of 
cell-free DNA molecules to a native barcode adapter than 
the standard protocol’s shorter end-repair/A-tailing and 
ligation time (10 min per the standard Oxford Nanopore 
protocol).

After the ligation step, 88  μl of Mag-Bind Total NGS 
beads (Omega Bio-Tek; an alternative to Ampure XP 
beads) were added and mixed to each reaction. After 
incubation for 5 min, the mixtures were pooled together 
into a 50-μl centrifuge tube. The beads were magnetized 
and washed with 80% ethanol using a DynaMag separa-
tion rack (Thermo Fisher Scientific) before eluting in 
600 μl of 10 mM Tris–HCl pH 8.0 buffer. We performed 
a second bead cleanup step with 900 μl Mag-Bind Total 
NGS beads (1.5 × ratio) and the same magnetic rack 

https://dx.doi.org/10.17504/protocols.io.4r3l27rjxg1y/v1
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procedure. The elution solution was 50 μl 10 mM Tris–
HCl pH 8.0 buffer.

We improved the preparation of multiplex sequencing 
libraries. For the Oxford Nanopore platform, multiplex-
ing is restricted to the AMII adapter, which has the same 
motor protein family as the LSK109 sequencing chemis-
try. This adapter has a significant disadvantage for short 
fragment libraries because it incurs active consumption 
of on-chip “fuel” of idle sequencing molecules, lead-
ing to rapid flow cell exhaustion. To address this issue, 
we modified the library preparation process to incorpo-
rate the updated “fuel-fix” adapter (LSK110 kit, Oxford 
Nanopore Technologies), which at the time when these 
experiments were conducted, did not have multiplexing 
capabilities. We developed a protocol to enable multi-
plexing with this adapter. We performed a second end-
repair and A-tailing reaction using the Kapa HyperPrep 
library preparation kit. This step removed the sticky end 
from the barcode multiplexing adapter and produced 
a compatible A-tail for sequencing adapter ligation. We 
used an increased amount (10 μl) of the AMX-F sequenc-
ing adapter (LSK110, Oxford Nanopore Technologies) 
for the ligation step to maximize the yield of sequenc-
ing adapters to barcoded fragments. This second ligation 
reaction occurred for 1.5  h. Subsequently, we mixed in 
88  μl of Mag-Bind Total NGS beads and incubated for 
5 min. As in the standard protocol, we washed the beads 
with 200 μl SFB buffer (Oxford Nanopore Technologies) 
with gentle tube flicking to resuspend the beads during 
the wash steps. The beads were resuspended in EB buffer 
(Oxford Nanopore Technologies). We used 1 μl for quan-
tification with Qubit (Oxford Nanopore Technologies) 
and 1 μl for determining the DNA size with an E-gel EX 
cartridge (Thermo Fisher Scientific).

We generated sequencing libraries for tumor tissue 
and PBMCs with 1–2  μg of extracted genomic DNA. 
For some tissue and buffy coat samples with low extrac-
tion yields (less than 1 μg), we used the entire amount of 
extracted DNA for library preparation. We followed the 
standard Kapa HyperPrep library preparation kit pro-
tocol using 5  μl of AMX-F adapter (LSK110) without 
barcoding. Each sample was loaded into its own Prome-
thION flow cell for sequencing. For comparison with the 
standard library preparation protocol, we followed the 
standard protocol for Native Barcoding (EXP-NBD196) 
coupled with the SQK-LSK109 library preparation kit 
using the AMII adapter. The standard protocol is avail-
able on the Oxford Nanopore Technologies website.

Nanopore sequencing and data processing
We performed sequencing on the Oxford Nanopore 
Technologies’ PromethION 24 instrument using R9.4.1 
PromethION flow cells. After quantification and sizing of 

the final pooled library, we calculate its molarity. We split 
the library among multiple flow cells depending on its 
final concentration. Approximately 150fmol of the library 
was loaded for each flow cell, loading up to four flow cells 
in a single batch. The remainder of the library was stored 
at − 80  °C. For tissue samples, we used one entire flow 
cell per sample. Sequencing runs had a duration of 72 h. 
Barcode demultiplexing was performed on the sequencer 
using onboard basecalling in MinKNOW with the “high 
accuracy” model and then transferred to a separate stor-
age device. Raw demultiplexed fast5 sequencing data 
were processed using Megalodon v2.4.0 (Oxford Nano-
pore Technologies, https://​github.​com/​nanop​orete​ch/​
megal​odon) and Guppy v5.0.16 (Oxford Nanopore Tech-
nologies, available closed source at https://​nanop​orete​
ch.​com/) with the “dna_r9.4.1_450bps_modbases_5mc_
hac_prom.cfg” model for each demultiplexed barcode 
folder with standard settings. The quality score cutoff 
was 7. The GRCh38 reference was used for alignment. 
The output consists of a file in BedMethyl format for each 
sample. The files included modified base calls, a sequenc-
ing alignment bam file with modified base calls for each 
read, and a per-read text file containing modified base 
call probabilities. Before further processing, the BedMe-
thyl and sequence alignment bam files were sorted and 
indexed with samtools [13]. For larger sequencing runs 
involving multiple samples (e.g., from multiple flow cells 
and many barcodes), data was transferred to the Sherlock 
High-Performance Computing cluster at Stanford Uni-
versity for multi-node GPU-based data processing.

The overall methylation status of sequenced cfDNA 
was determined by taking the average of all methylation 
values across all sequenced sites that had at least one read 
(coverage > 0). To determine nucleosome enrichment, we 
subsampled each library’s sequence-aligned bam file to 
50,000 reads, tabulated the estimated fragment size as 
inferred by the alignment length, and set a cutoff of 250.5 
base pairs separating mono- and di-nucleosome states, 
with a maximum length filter of 600  bp. This data was 
then compiled for all reads and all samples sequenced.

We determined gene-level methylation for all 
sequenced cfDNA samples by calculating the average 
per-site methylation for each CpG site with non-zero 
coverage, and then searched for statistically significant 
differences in gene-level methylation. This procedure is 
similar to that of another study [7], with the main differ-
ence being that our data enables site-level detection of 
methylation percentage. We utilized “gene”-level annota-
tions in GENCODE v38 [14], which includes all coding 
exons and introns. First, we filtered on genes which were 
covered by at least one sample and where the standard 
deviation of average gene methylation is greater than 
zero. Then, grouping by gene-level annotations, we 

https://github.com/nanoporetech/megalodon
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calculated the average methylation. Based on genomic 
coordinates, we then excluded annotations that were 
pseudogenes, unprocessed, “to be experimentally con-
firmed genes,” lncRNAs, and miRNAs. Finally, we used 
a t-test to compare methylation between the healthy 
donor-derived cfDNA and cancer patient-derived 
cfDNA. An FDR-based multiple testing correction was 
applied to determine statistically significant differences in 
gene-level methylation. We used a cutoff of q < 0.01. For 
promoter region analysis, we selected a window begin-
ning 2  kb upstream and 500  bp downstream of a gene 
annotation while maintaining strand specificity.

In silico admixture analysis
To simulate circulating tumor DNA (ctDNA) data of 
varying fractions in cfDNA, we generated in silico admix-
tures of sequence data from the GP2D cancer cell line-
derived and PBMC-derived nucleosomes. Using a Python 
script, we mixed two sequence-aligned bam files using 
a known random seed to ensure reproducibility. We 
also controlled for the number of reads to simulate dif-
ferent read depths. Methylation profiles were compiled 
from the Mm and Ml tags using the modbampy library 
as part of the modbam2bed package (https://​github.​com/​
epi2me-​labs/​modba​m2bed). We used only reads that 
mapped to the reference and used the subsequent bam 
file for downstream analysis. The remainders of the reads 
were not used, including unmapped reads and those with 
secondary or supplementary alignments. As another out-
put, we included the metadata about the sample origins, 
namely whether it originated from PBMC-derived nucle-
osomes or a cancer cell line.

Reference methylation profile processing of tumors 
and immune cells
For a subset of the patient samples, we had matched 
tumor tissue and PBMCs (three patients: P6199, P4822, 
and P6527). These matched samples underwent nano-
pore sequencing to generate reference methylomes. 
Methylation calls were also performed with megalodon. 
The reference methylomes consist of megalodon’s out-
put BedMethyl files, which contain genomic positions 
of CpG sites, coverage (> 0), and the associated percent 
methylation for that position.

To process these reference profiles for read-level clas-
sification, we used an R script to read both the tumor and 
PBMC methylation profiles. We intersected these pro-
files on genomic coordinate positions, with a coverage 
filter of greater than four in both samples [15]. We con-
sidered a site to be methylated if the percentage methyla-
tion per a given genomic segment was greater than zero. 
The resultant intersected table was used for read-level 
classification.

To determine gene-level methylation for primary 
tumor and blood samples, average methylation pro-
files were determined for each “gene”-level annotation 
in GENCODE v38 [14]. These were then filtered to only 
include genes with the annotation “protein_coding.” We 
calculated the difference in methylation between the pri-
mary tumor and immune cells, and selected the top 25 
genes for each methylation state (e.g., top 25 differen-
tially hypermethylated genes, and top 25 differentially 
hypomethylated genes). We also ensured that the pri-
mary tumor and blood sample have opposing methyla-
tion stages (e.g., hypermethylated vs hypomethylated) by 
requiring that for any annotation the tumor sample must 
have over 50% methylation and the blood sample must 
have less than 50% methylation, or vice versa. Using this 
gene list, we extracted the methylation values from the 
patient cohort that underwent longitudinal sampling.

Single‑molecule read classification to reference profiles
We built a computational workflow to classify whether an 
individual read is associated with an associated reference 
methylation profile. It consists of two steps:

1. Read-level methylation processing: This process 
utilizes sequence-aligned bam files containing read 
modifications (from megalodon). We used a python 
script to emit a table with columns consisting of the 
read name, genomic coordinate, and called meth-
ylation status. The output is a flat data table whereby 
genomic coordinates and their methylation states can 
be grouped by individual reads.
2a. Scoring against reference profiles: We classified 
each read alongside a reference methylome contain-
ing informative methylation sites. Reference methy-
lomes consist of matched tumor and immune cell 
methylation profiles that were nanopore sequenced 
and processed as above. Informative sites are CpG 
sites where the methylation values differed between 
sample types. This process generated a value f tissuei  
where i is the read number from 1 to the total num-
ber of aligned reads.

Specifically, f tissue
i

=
∑Nsites

j
prob

�
mj = m

�

j

�
∕Nsites =

⎧⎪⎨⎪⎩

m
�

j
if mj = 1

100 −m
�

j
if mj = 0

 

where i is the read number, tissue is the candidate 
reference profile to match against, mj is the methyla-
tion of read i at site j (either 0 or 1), mj’ is the meth-
ylation of tissue at site j (ranging from 0 to 100), and 
Nsites is the number of methylated sites to consider 
for read i.
In other words, f tissuei  is the mean probability that 
read i matches to a specific tissue methylation refer-
ence profile. To implement this scheme, we obtained 
the methylation status (mi … mn) of each CpG site 
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for each read from a given sample and its reference 
coordinate. Then we intersected these coordinates 
of the CpG sites to the corresponding locations of 
a candidate tissue reference methylation profile 
(e.g., from PBMCs or matched primary tumor, with 
methylation profile mi’ … mn’). Subsequently, we cal-
culated a matching score, where each site is scored 
mi’ if the mi is methylated; otherwise, it is scored 
100 − mi’. In other words, the score is the probability 
that the methylation site and value mi is the same as 
the reference profile site mi’, which is equivalent to 
the reference profile’s methylation level at that site. 
It is then divided by the total number of candidate 
CpG sites on the read to derive f tissuei  . Reads with 
no candidate CpG sites or matching locations in a 
reference methylome were not considered.
2b. Score normalization and thresholding: A nor-
malized per-read tumor score was then assigned by 
the ratio of scores pi = f tumor

i /(f tumor

i + f immune

i ) , 
with scores close to zero indicating likely matches 
to PBMCs, and scores close to one indicating likely 
matches to tumor tissue. A final classification is 
determined by setting thresholds for matching to 
PBMC and cancer methylation profiles. By using a 
dual threshold system, a subset of reads in between 
the thresholds do not have a confident/stringent 
classification and were not called to be either type 
(and thus can be neglected from the final analysis). 
We varied the two thresholds to determine ROC 
curves and AUC performance metrics.
3. Processing all reads. We process and aggregate 
classification calls from all reads in order to calculate 
the fraction of reads with methylation changes that 
were classified as specific to the tumor.

Results
Enabling order‑of‑magnitude improvements in nanopore 
sequencing yield
Nanopore sequencing typically requires hundreds of 
nanograms of DNA for library preparation. However, 
extracted cfDNA yields range from single nanograms 
or less per ml of plasma. PCR amplification erases 
DNA methylation and cannot be used for nanopore-
based methylation analysis. To enable PCR-free library 
preparation from nanogram DNA amounts of cfDNA, 
we identified a series of steps to efficiently incorporate 
sample barcodes and nanopore sequencing adapters 
to cfDNA (Additional file 1: Supplementary Fig. 1). We 
systematically optimized reaction conditions to maxi-
mize cfDNA library yield. The method also incorporated 
a second end-repair and a-tailing step to add newer 

sequencing adapters for multiplexing cfDNA samples 
(Methods).

To validate our approach, we developed a model DNA 
analyte that replicates some of the fragmentation pat-
terns of cfDNA. We performed DNase digestion on 
nuclei from isolated peripheral blood mononuclear cells 
(PBMCs), where digestion of open chromatin yields 
DNA fragmentation patterns with a mononucleosome 
peak as seen in cfDNA (Additional file  1: Supplemen-
tary Fig. 2). With this DNA, we used our library prepa-
ration method to generate libraries that were sequenced 
on the Oxford Nanopore PromethION system. We used 
the “megalodon” software package, previously bench-
marked to provide high-quality methylation calls from 
nanopore sequence data concordant with traditional 
bisulfite sequencing [10, 11], for sequence alignment 
and methylation calling (Additional file  1: Supplemen-
tary Fig.  3). Specifically, nanopore sequencing was pre-
viously benchmarked to have a Pearson correlation of 
over 0.9 with whole-genome bisulfite sequencing data 
[10, 11]. We sequenced libraries made from different 
amounts of PBMC nucleosomal DNA. At 5  ng of input 
DNA, the yield was approximately 6 million aligned 
reads inclusive of quality score filtering. With 100 pg of 
input DNA, the yield was approximately 140,000 aligned 
reads (Additional file 1: Supplementary Table 1). We also 
prepared sequencing libraries of the same DNA with a 
standard protocol from Oxford Nanopore Technologies. 
Our method improved the aligned read yield by approxi-
mately an order of magnitude, even with input amounts 
as low as 100 pg (Fig. 1B).

Cell‑free DNA methylation patterns in a colorectal cancer 
cohort
Next, we sequenced cfDNA from 20 patients with colo-
rectal cancer (Additional file  1: Supplementary Table  1, 
2). Sequence yields ranged from one to 180 million reads 
per sample. We used a fluorometric assay to quantify 
the cfDNA of each sample (Fig.  1C); the measurements 
were highly correlated with the total sequencing yield 
(Spearman’s rho = 0.86, p < 2.2e − 16). As a control, we 
sequenced cfDNA from healthy individuals. There were 
several significant differences when comparing healthy 
and cancer patient cfDNA. First, the overall variance in 
genome-wide methylation in cancer patient cfDNA sam-
ples was higher at 7% compared to less than 2% in healthy 
cfDNA (Fig.  1D). The variation may be indicative of 
aggregate methylation shifts due to an increase in tumor-
specific cfDNA in plasma, although larger numbers of 
healthy controls and cancer patients are needed to make 
a statistically powered conclusion.

Next, we sought to determine whether there are any 
statistically significant changes in cfDNA fragment size 
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distributions between cancer patients and healthy con-
trols. We distinguished mono- and di-nucleosome frag-
ments using a size cutoff of 250 bp (Fig. 1E, F, Additional 
file  1: Supplementary Fig.  4). We observed that cancer 
patient cfDNA was enriched in mononucleosomes by 
approximately a factor of two (p = 8.814e − 05) compared 
to healthy controls. A similar result was also reported in 
another study [16].

We next determined the extent of gene-level methyla-
tion in cfDNA (Methods). To do so, we calculated the 
average per-site methylation for each CpG site with non-
zero coverage, and then filtered for statistically significant 
differences in gene-level methylation between cancer 
patients and healthy controls. We observed many signifi-
cant differences in gene-level methylation (q < 0.01) when 
comparing healthy versus patient cfDNA (Fig.  1G, H, 
Additional file  1: Supplementary Table  3). For example, 
there was an increase in the methylation of an immuno-
logic marker gene CD79A [17], a decrease in methyla-
tion of a tumorigenic modulation gene DICER1 [18], and 
a decrease in methylation of SLC25A1, a critical gene in 
mitochondrial homeostasis that is highly upregulated in 
cancer [19, 20]. Due to differences in biological relevance 
between promoter-level and gene-level methylation [21–
24], we also performed an additional analysis to discover 
statistically significant differences in promoter-level 
methylation (Additional file  1: Supplementary Table  4). 
Top statistically significant hits included ADAMTS5, 
ATP6V1C2, and S100A6—genes that have been pre-
viously identified as biomarkers for colorectal cancer 
[25–28].

We further examined the genes with statistically sig-
nificant methylation differences between healthy controls 
and patient cfDNA. We calculated that such differ-
ences were not strongly correlated (Pearson r =  − 0.166, 
p = 3e − 13) with the sequencing read fold-coverage 
for those genes (Additional file  1: Supplementary 
Fig. 5A,B). This result indicated that read yields were not 
a major confounding factor in our analysis and that deep 
sequencing is not necessarily to distinguish cfDNA meth-
ylation between cancer patients and healthy controls. 
We also observed that the overall variation in gene-level 
methylation for these statistically significant genes was 
comparatively smaller in healthy cfDNA samples, indi-
cating a relatively uniform methylome for this sample 
type (Additional file 1: Supplementary Fig. 6A). We also 
observed a relatively uniform cfDNA methylome across 
healthy cfDNA samples compared to cancer patients’ 
cfDNA (p = 4.57e–4), further indicating that statisti-
cally significant methylation changes point to a biologi-
cal difference rather than sample-to-sample variability. 
To further validate that our results pointed to biologi-
cal variation rather than as a result of sample-to-sample 

variability, we repeated our statistical analysis for finding 
differentially methylated genes but instead using ran-
dom grouping of samples. We randomly assigned the 
combined cancer patient and healthy individual cfDNA 
cohort into two groups and performed the same differ-
entially methylated gene analysis as before. After testing 
for statistically significant differences and FDR-based 
multiple testing correction, we found that zero genes 
passed the q < 0.01 filter (Additional file 1: Supplementary 
Fig. 6B). This procedure was repeated 20 times. This sug-
gests that differences that came from our analysis were 
due to biological variation rather than by chance.

Finally, enrichment analysis of genes with statistically 
significant methylation differences using EnrichR [29, 30] 
yielded hits in the Myc pathway (Additional file 1: Sup-
plementary Fig. 7A), strongly indicating that the changes 
in gene-level methylation point to a cancer-specific bio-
logical mechanism. Other potential hits, which were not 
statistically significant, include E-cadherin pathways that 
are commonly implicated in epithelial cancers and not 
healthy immune cells (Additional file  1: Supplementary 
Fig. 7B). Promoter-level differential methylation analysis 
also yielded enrichment in the tumorigenic Ras pathway 
but also did not reach statistical significance (Additional 
file 1: Supplementary Fig. 7C,D). We also observed differ-
ences in the overall methylome profiles of individual can-
cer patients; however, disentangling these intra-cohort 
differences requires significant knowledge of other fac-
tors such as treatment status and molecular subtype 
which are beyond the scope of this study.

Single‑molecule classification of cell‑free DNA sequence 
reads
We determined whether individual reads from cfDNA 
sequence data can be classified as originating from 
tumor or immune cells. We leveraged patient-matched 
samples, which included resected tumors, peripheral 
leukocytes, and blood samples taken during treatment 
(Fig.  2A). DNA was extracted from these matched 
samples and underwent nanopore sequencing with 
methylation profiling. To classify each read, we cal-
culated the proportion of matching methylation sites 
based on genomic coordinate and methylation states 
when compared to the matched tumor or immune cell 
methylation profile. In other words, we measure for 
each individual read (e.g., from cfDNA) how similar 
its methylation profile is to another reference sample’s 
methylation profile (e.g., a primary tumor or immune 
cells) at the same alignment location. For each read, 
we intersected their aligned CpG coordinates along-
side their methylation status with those of each refer-
ence sample. The proportion of matching methylation 
sites is then calculated for each read. The result is a 
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classification score for each read which can then be 
aggregated into an overall proportion for all reads in 
a given cfDNA sample (Additional file  1: Supplemen-
tary Fig. 8). After normalization, thresholds were used 
to classify individual reads as immune cell- or tumor-
derived (Methods, Additional file  1: Supplementary 
Fig. 9). Example read pileups of this process as well as 
example classifications are shown in Additional file 1: 
Supplementary Fig. 10.

We validated this approach using in silico admix-
tures between digested PBMC nucleosomes from a 
healthy donor and the GP2D cancer cell line. Nucle-
osomal DNA was subject to high-depth nanopore 
sequencing and methylation calling. Admixtures were 
computationally generated, and their proportions were 
estimated using our classification approach (Meth-
ods). We measured the classification accuracy against 
the ground truth based on the source of any given read 
(Fig.  2B). Performance was up to 97% sensitivity and 
specificity of 93% with an AUC of 0.951 when using 
stringent threshold cutoffs (immune threshold: < 0.1, 
cancer threshold: > 0.9, Additional file  1: Supplemen-
tary Fig. 11). There was a corresponding trade-off with 
a declining proportion of classified reads (Additional 
file 1: Supplementary Fig. 12); reads that could not be 
confidently classified as either type would be excluded 
from further analysis. Gene set enrichment of regions 
that were substantially different and were most predic-
tive of sample type were highly enriched in epithelial 
cytoskeletal remodeling and proliferation pathways 
(Additional file  1: Supplementary Fig.  13A,B). We 
also simulated varying number of reads and did not 
observe declines in quantification performance when 
using stringent cutoffs (Fig. 2C).

We also generated experimental admixtures where 
GP2D nucleosome DNA was added to donor nucleo-
some DNA while also varying the total quantity of 
DNA in the reaction. We observed a correspond-
ing increase in cancer-derived reads at higher GP2D 
admixture fractions with Pearson correlation coef-
ficients, ranging from 0.85 to 0.96 depending on 
the input amount (Additional file  1: Supplementary 
Fig. 14).

Longitudinal assessment of tumor burden with nanopore 
sequencing
For three patients (P4822, P6199, P6527) with different 
gastrointestinal cancers, we analyzed cfDNA from a lon-
gitudinal series of blood samples. The methylation pro-
files revealed responses to specific treatments and the 
emergence of treatment-resistant metastatic cancer. We 
performed nanopore sequencing on the set of patient-
matched tumor, peripheral blood, and longitudinal 
plasma samples and determined their methylation pro-
files (Fig. 2A, Additional file 1: Supplementary Table 1,2). 
Matched tumor and immune cells were sequenced up to 
28 × coverage. Their methylomes, intersected by genomic 
position and filtered by coverage, yielded tens of millions 
of CpG sites per patient.

We observed longitudinal trends that correlated with 
specific clinical events based on our analysis. For one 
patient (P6199) receiving treatment for metastatic colorec-
tal cancer, we sampled blood over approximately 600 days 
(Fig. 2D). After having undergone chemotherapy and sur-
gery, the patient had a period of stable disease. However, 
starting after day 400, the fraction of reads with tumor-
specific methylation changes dramatically increased. This 
change correlated with CT imaging which showed sub-
stantial metastatic progression in multiple organs. We 
also sought to determine overall gene-level methylation 
changes. As a baseline for comparison, we considered 
informative genes with differential methylation between 
tumor and immune cells as having the largest differences 
in overall methylation levels. Gene-level methylation anal-
ysis of this patient’s longitudinal cfDNA showed dynamic 
gene-level methylation changes also found in the matched 
tumor, such as the Wnt/β-catenin regulator TCIM [31] 
(Additional file 1: Supplementary Fig. 15A,B).

We performed similar analyses on two other patients 
with metastatic cancer. One patient (P4822) had meta-
static pancreatic neuroendocrine carcinoma and received 
multiple treatments, including targeted therapy, radia-
tion, and peptide receptor radionuclide therapy (PRRT) 
spanning over 1000  days (Fig.  3A). After each treat-
ment, there was a correlation between treatment effect 
and a drop in tumor-specific reads. The emergence of 
new metastases was reflected in a rise in reads with 

(See figure on next page.)
Fig. 2  Single-molecule methylated sequence classification. A Overview of method. For a given patient, matched primary tumor tissue and 
peripheral leukocytes were obtained as reference samples alongside longitudinal plasma samples. Methylation data from the cfDNA is then 
classified leveraging the methylation profile of the reference samples. B Classification accuracy. We used GP2D and healthy donor-derived 
nucleosome mixtures to validate the classification procedure. ROC curves are plotted, where each curve represents a distinct immune threshold 
score. The curve is plotted by varying the cancer threshold score. C Admixture validation. The proportion of reads classified as belonging to cell line 
reference is plotted as a function of the actual admixture ratio and sequencing depth. D Longitudinal methylation profiles of patient-derived cfDNA 
in colorectal cancer. The overall cfDNA sequencing yield (upper panel) is plotted against the number of reads with methylation profiles matching 
that of the matched tumor with a calculated score of > 0.9 (lower panel). Clinically relevant events are annotated; significant corresponding changes 
in tumor-specific cfDNA are marked with an asterisk. CT refers to computed tomography imaging
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tumor-specific methylation changes. Similar to patient 
P6199, increases in tumor-specific reads for various clini-
cal events were correlated with some gene-level changes 

in methylation. Specifically, we observed cfDNA meth-
ylation changes in tumor-specific differentially methyl-
ated genes (Fig.  3B, Additional file  1: Supplementary 

Fig. 2  (See legend on previous page.)
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Fig.  16). For another patient (P6527) with metastatic 
cholangiocarcinoma, resistance to the initial chemo-
therapy with gemcitabine was evident, but disease was 
reduced under a dual chemotherapy treatment (Fig. 3C). 
Disease progression was noted up to 100  days into the 
study and was confirmed by both tumor-specific read 
counts and changes in tumor-specific gene-level meth-
ylation (Fig. 3D, Additional file 1: Supplementary Fig. 17). 
The patient underwent extensive surgical resection of 
the primary tumor and liver metastases, as reflected in 
the immediate drop in tumor-specific reads. However, a 
subsequent rise in tumor-specific reads coincided with 
metastatic cancer recurrence.

Discussion
We demonstrated a single-molecule approach for effi-
ciently analyzing methylomes from cfDNA at scale. 
Improving on existing approaches by approximately an 

order of magnitude, our method yielded over 1 billion 
total aligned reads across our cancer cohort when using 
small amounts of cfDNA. We detected cancer-associated 
methylation profiles with distinguishing epigenetic char-
acteristics and provided a measurement of tumor burden 
that corresponded to clinical events.

Our work demonstrated streamlined methylation 
analysis of cfDNA with significantly fewer experimental 
procedures and bottlenecks than short-read sequenc-
ing (Additional file  1: Supplementary Table  5). Specifi-
cally, other cfDNA sequencing workflows may involve 
treatment of canonical cytosine conversion reagents 
such as bisulfite and require target enrichment and PCR 
steps, and extensive assay cleanups that can reduce yield. 
Several studies investigating whole-genome bisulfite 
sequencing have identified significant issues that may 
impact data quality [9, 32], including DNA degradation 
after cytosine conversion, substantial amplification bias 

Fig. 3  Longitudinal methylation profiles of patient-derived cfDNA in other malignancies. A Assessing tumor burden in patient P4822 with 
metastatic pancreatic neuroendocrine carcinoma. The overall cfDNA sequencing yield (top) is plotted against the number of reads with methylation 
profiles matching the primary tumor with a tumor score of > 0.9 (bottom). Clinically relevant events are annotated. Clinically relevant events 
are annotated. Everolimus and peptide receptor radionuclide therapy (PRRT) was used for treatment of the metastatic neuroendocrine cancer. 
Positron-emission tomography (PET) was combined with CT imaging. B Longitudinal gene-level analysis of cfDNA changes in P4822. The number 
of tumor-specific differentially methylated genes found to be matching in cfDNA is shown for each time point. Differentially methylated genes were 
identified as those with the largest difference in methylation between the primary tumor and immune cells. Such methylated genes observed in 
cfDNA are defined as matching the primary tumor when its methylation state (e.g., hypermethylation or hypomethylation) is concordant. Specific 
time points are annotated with asterisks to denote clinical events with significant changes in methylation. C Assessing tumor burden in patient 
P6527 with metastatic cholangiocarcinoma. The overall cfDNA sequencing yield (top) is plotted against the number of reads with methylation 
profiles matching the primary tumor with a tumor score of > 0.9 (bottom). Clinically relevant events are annotated. Treatment included gemcitabine 
and a chemotherapy combination of 5-fluouracil and oxaliplatin (FOLFOX) was used for treatment of the cholangiocarcinoma. D Longitudinal 
gene-level analysis of cfDNA changes in P6527. The number of tumor-specific differentially methylated genes found to be matching in cfDNA is 
shown for each time point. Differentially methylated genes were identified as those with the largest difference in methylation between the primary 
tumor and immune cells. Such methylated genes observed in cfDNA are defined as matching the primary tumor when its methylation state (e.g., 
hypermethylation or hypomethylation) is concordant. Specific time points are annotated with asterisks to denote clinical events with significant 
changes in methylation
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during PCR, and incomplete conversion of canonical 
cytosine bases. Our workflow is a ligation-based protocol 
that can be completed with less than 8 h of total hands-
on time with a single overnight incubation step, which 
effectively reduces the potential for sample loss. Despite 
the lack of PCR amplification, our method robustly cap-
tures methylation profiles of cfDNA; improvements in 
nanopore sequencing chemistry as well as utilization of 
larger amounts of plasma are anticipated to substantially 
increase data yields. Although originally conceived as a 
long-read sequencing platform, we demonstrated that 
nanopore sequencing could be robustly used for small 
cfDNA fragments with significant potential for clinical 
utility. In particular, our study shows clear potential for 
large cfDNA cohorts to be nanopore sequenced, thus 
potentially enabling new applications in the area of can-
cer screening.

Methylation detection is performed through the use 
of machine learning models on raw electrical signals 
from nanopore sequencing data. By archiving this data, 
future improvements in basecalling and machine learn-
ing models can be leveraged to detect other types of 
epigenetic biomarkers. Newer machine learning models 
that incorporate the detection of other modified bases 
such as 5-hydroxymethylcytosine (5hmC) methylation 
can be applied in future studies to further explore cfDNA 
methylation profiles in cancer without performing more 
experiments on precious material.

We also demonstrated a proof-of-concept implemen-
tation of a single-molecule methylation-based classifier 
using matched tumors and blood as reference profiles. It 
relies on detecting statistically significant differences in 
methylation between samples. To validate this approach, 
we used admixtures of nucleosomes from healthy 
immune cells and cancer cell lines. While this system 
provides a clean model for ascertainment of cancer quan-
tification, methylation profiles in primary tumors are 
confounded by intratumoral heterogeneity and mixtures 
with other cell types. This can impact the extent to which 
individual molecules can be successfully classified. None-
theless, as a proof-of-concept application to demonstrate 
possible clinical utility, we monitored cfDNA methyla-
tion dynamics over the course of treatment in a number 
of patients, with cancer-specific cfDNA molecules cor-
relating with clinical events such as tumor response and 
recurrence. As a further area of study, more time points 
and more plasma will need to be sequenced to further 
validate the clinical utility of the longitudinal approach. 
We also envision that this approach can also be applied 
for patients receiving treatment without a matched 
tumor, provided a reference methylome database of 

immune cells, normal tissues, and primary tumors can 
be used to match individual cfDNA reads. Specifically, 
genomic DNA from healthy blood and primary tumors 
of specific cancer types could be sequenced. After deter-
mining statistically significant differences, nanopore 
sequencing could be performed on cancer patient cfDNA 
and then quantified for the extent of tumor burden. We 
also envision that reference methylome datasets would 
also be immensely useful for disentangling cell type-spe-
cific methylation versus tumor-specific methylation in 
liquid biopsy applications.

Recently, another publication demonstrated the use 
of nanopore sequencing for analyzing cfDNA methyl-
omes in cancer patients [33]. It demonstrated significant 
capabilities in nucleosome footprinting, cell-of-origin 
determination, and integration with copy number profil-
ing using nanopore sequencing. Our work is distinct in 
several ways. First, we developed significant advances in 
sequencing capacity by improving library yields by up 
to an order of magnitude—this enables robust sequenc-
ing yields from less than a milliliter of plasma. Current 
methods typically use at least 4–5 ml of plasma (an entire 
blood collection tube) for extraction of cfDNA material. 
Second, we leveraged high-throughput sequencing on the 
PromethION instrument to enable cohort-level sequenc-
ing of cancer patient cfDNA alongside healthy controls. 
Third, we built a single-molecule classifier for tumor 
burden quantification, versus bulk-level deconvolution. 
Lastly, we leveraged all of these innovations for compre-
hensive longitudinal monitoring in cancer patients for up 
to 1000 days. Nonetheless, that particular work and our 
work are complementary and demonstrate the poten-
tial for nanopore-based methylome characterization to 
advance the liquid biopsy field.

Conclusions
In summary, we describe a single-molecule sequencing 
method that enables the analysis of cfDNA methylation. 
We improved sequencing yields by an order of magni-
tude, applied it to cohort-level analyses, and developed 
a single-molecule classifier. We also applied these meth-
ods to longitudinally monitor cancer treatment. This 
approach has the potential to impact liquid biopsy diag-
nostics for cancer detection and characterization.
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