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Abstract

Data independent acquisition (DIA) proteomics techniques have matured enormously

in recent years, thanks to multiple technical developments in, for example, instrumen-

tation and data analysis approaches. However, there are many improvements that are

still possible for DIA data in the area of the FAIR (Findability, Accessibility, Interop-

erability and Reusability) data principles. These include more tailored data sharing

practices and open data standards since public databases and data standards for pro-

teomics were mostly designed with DDA data in mind. Here we first describe the

current state of the art in the context of FAIR data for proteomics in general, and

for DIA approaches in particular. For improving the current situation for DIA data,

we make the following recommendations for the future: (i) development of an open

data standard for spectral libraries; (ii) make mandatory the availability of the spec-

tral libraries used in DIA experiments in ProteomeXchange resources; (iii) improve the

support forDIA data in the data standards developed by the Proteomics Standards Ini-

tiative; and (iv) improve the support for DIA datasets in ProteomeXchange resources,

includingmore tailoredmetadata requirements.
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1 INTRODUCTION

Data independent acquisition (DIA) proteomics approaches have

rapidly grown in popularity in the last few years. The overarching prin-
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ciple is to generate fragmentation products from every peptide ion

that is sampled in theMS1 (Mass Spectrometry) scans. DIA proteomics

techniques can be further sub-categorized into related approaches,

mostly dependent upon the instrument type generating data. In some

schemes, there are multiple overlapping windows of say 10–25 Dal-

tons, as in SWATH-MS on SCIEX TripleTOF instruments [1], on Thermo

Orbitrap, and Bruker (via the “diaPASEF” method [2]), or the full mass

range, as in MSE and related approaches onWaters instruments. Most

medium to high-intensity precursor peptide ions generate measurable

fragment ions, thus giving the possibility, in theory at least, to identify
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the same peptides across every MS run. The aim is to overcome the

missing valueproblem,which can constituteoneof themaindrawbacks

of data dependent acquisition (DDA) approaches. This should lead to

more reproducible analyses and less technical variance between sam-

ples. However, DIA approaches have a different challenge: there is no

direct link between a fragment ion and the precursor ion fromwhich it

was generated.

There are two main modes of DIA computational analysis:

spectrum-centric and peptide-centric. Spectrum-centric methods

largely follow the DDA approach and attempt to generate “pseudo

MS/MS spectra” where fragment ions are specifically associated with

the precursor ion from which they are most likely derived. These

pseudo spectra can then be processed like DDA data, more often

through typical sequence database search tools, although the use of

otherDDAanalysis approacheswould also bepossible. Peptide-centric

methods rely instead on deciding in advance which peptidoforms may

be present in the sample, more often by using a spectral library, but it

is also possible to use sequence databases as an input for the analysis,

using software to make an in silico (predicted) spectral library [3].

Software packages can then attempt to match entries in, for exam-

ple, spectral libraries to the raw data, for example, by matching the

precursor mass/charge, the mass/charge (and potentially intensity) of

fragmentation peaks and the normalized retention time values to infer

a correct match.

For the creation of spectral libraries, we are aware of three typical

paradigms. First, some labs take the samples they plan to analyze and

perform a deeply fractionated DDA analysis first to create an exper-

imentally matched spectral library. This mode has the advantage that

retention times and fragment ion intensities should be most closely

matched to the DIA data generated. The obvious downside is the cost

of instrument time and that the sensitivity is ultimately limited by

the restrictions of the DDA methodology. Second, there are publicly

available libraries, created from a given type of samples, or simply a

“pan-species” library, assembled frommultiple runs ondifferent tissues

(e.g., [4, 5]). These libraries have the advantage that for new studies,

sample and instrument time do not need to be set aside for DDA runs

to create a new spectral library, and public libraries may contain a

wider range of the total observable peptidome. However, they have

the downside that peptide retention times and fragment ion intensities

will usually be less well matched to the new experiment. Third, soft-

ware packages contain artificial intelligence-trainedmodels, which can

be used to create in silico predicted spectral libraries, having learned

retention times and peptide intensities from past DDA datasets [6, 7].

If themodel is well trained, it can produce high-quality libraries entries

covering every possible peptide sequence. However, in practice there

is likely to be a trade-off in performance; using a public or experimen-

tal library contains peptidoforms likely to be present in the sample

(e.g., particular tissues or fluids), giving better statistical power, at the

expense of losing a few lowabundant peptidoforms absent fromaDDA

library. An in silico library could be orders of magnitude bigger, and

thusmaygive lower sensitivity of identificationoverall. Therehaveonly

been a fewbenchmarking efforts to compare the differentmodes [8, 9],

and there is no clear consensus yet.

Our focus in this Viewpointmanuscript is to considerwhat the rapid

growth in DIA proteomics means for data sharing and standardiza-

tion in proteomics. Public databases and data standards for proteomics

were mostly designed with DDA proteomics in mind, and do not yet

cater ideally for DIA.

1.1 Data sharing and FAIR data in proteomics

Since 2002, the Proteomics Standards Initiative (PSI) has developed

standards covering various stages within a proteomics pipeline [10]

(as well as molecular interactions [11]), including mzML for raw data

or peak picked spectra [12], mzIdentML for peptide and protein iden-

tification data [13] and mzTab for a simple view of identification and

quantification of peptides and proteins [14]. Various other formats and

standards have been developed including the recent Universal Spec-

trum Identifier (USI) standard for referring to one specific spectrum

and its interpretation in apublic database [15]. In termsof public access

to proteomics data, the ProteomeXchange (PX) consortiumwas estab-

lished [16], originally with founder databases PRIDE and PeptideAtlas

to harmonize deposition and access to proteomics data. PX expanded

to include MassIVE, PanoramaPublic, iProX, and jPOST. The current

situation is that a large proportion of published studies in biological

journals are accompanied by data deposition into PX repositories. This

has driven open science practices in the field and, as a consequence,

software producers and PX resources are increasingly aligned with

the FAIR data principles (Findability, Accessibility, Interoperability and

Reusability [17]).

In this section, we cover how these principles are generally covered

for proteomics, and then in the following section, describe some of the

challengesmaking DIA proteomics data FAIR.

Findability and accessibility. Datasets submitted to any of the PX

databases, can be searched and accessed from those databases via

their web and in most cases, also via their programmatic interfaces

like, for example, the PRIDE API (Application Programming Interface).

There is also available software that can facilitate access to pub-

lic datasets via these APIs (e.g., https://github.com/PRIDE-Archive/

pridepy, or the ppx Python package [18]). Additionally, Proteome-

Central (http://proteomecentral.proteomexchange.org/) – provides a

harmonized data access portal for PX datasets from all PX resources,

supporting RSS feed and advanced search mechanisms. Furthermore,

PX datasets are available in other resources such as OmicsDI [19],

which integrates and can be used to access public datasets from dif-

ferent omics approaches. It is worth highlighting that all public data in

PX resources is accessible without the need of account registrations,

and the data licenses are very permissive (the current default is a Cre-

ative Commons CC0 license). As a consequence, multiple sites around

the world can automatically download, integrate and reprocess public

datasets.

All datasets submitted to a PX repositorymust include raw data and

the processed identification results at the veryminimum (“Partial” sub-

mission). If peptide/protein identification data are provided in a PSI

standard format (mzIdentML or mzTab) together with an open peak

https://github.com/PRIDE-Archive/pridepy
https://github.com/PRIDE-Archive/pridepy
http://proteomecentral.proteomexchange.org/
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list format (e.g., mzML or mgf files), the processed results data can be

parsed and linked to the corresponding mass spectra. In those cases,

the dataset is considered a “Complete” submission. Complete submis-

sion is ideal since identification data is then easier to assess, re-use, and

propagate into other resources. The inclusion of the peak list formats

is also useful because this captures the peak picking done. In prac-

tice, a large proportion of the submitted datasets to PX resources are

partial, including the raw data in a vendor-specific binary format, and

often some non-standardized text files containing protein identifica-

tion and quantification files, such as the output text files produced by

popular software such asMaxQuant.

Interoperability. Interoperability between software tools and

resources is generally driven by the use of PSI standards, such asmzML

and mzIdentML. There are multiple software (including parsers and

converters) and analysis tools that support reading and/or writing

PSI open formats (see e.g., https://www.psidev.info/mzML for mzML

files, and https://www.psidev.info/tools-implementing-mzidentml for

mzIdentML files). The key advantage is that PSI open data formats can

be used in any operating system and/or platform.

Despite the reasonable success of PSI standards, they are still not

completely adopted, for several reasons. First, mzML files are generally

larger in size, sometimes much larger (for SWATH-MS and ion mobil-

ity data) than vendor raw files, adding a significant cost in data storage

and transfer times. Compression protocols for mzML files have been

suggested, but none has become a widely accepted standard yet [20].

Second, if software supports vendor raw files as the expected main

input, there is often not seen a particular reason to convert to mzML,

since it is considered as a redundant step. This means that proteomics

data is not yet, and may never be, fully interoperable, as different

software packages are often designed to fulfill only a given niche, for

example, supporting some technologies and vendor raw files but not

others, and in some particular operating systems only.

Another factor to consider is that the majority of data in the public

domain is derived fromThermo (ThermoFisher Scientific) instruments.

The Thermo API is currently available for free, and embedded into

other software applications, including ProteoWizard’sMSConvert [21]

and ThermoRawFileParser [22], including the vendor’s own routine

for peak picking. In practice, this means that given a raw MS file, one

could read the data and reprocess it, reproducing the results if desired,

assuming the corresponding article sufficiently describes theused soft-

ware parameters. However, unlike PSI formats, it is possible in the

future that vendor libraries are no longer supported or do not work on

some operating systems, meaning that raw files cannot be guaranteed

as accessible in the future. For data fromother instrument vendors, the

situation is often less straightforward. Peak picking for raw data from

other instrument vendors is not always available, and thus in these

cases, a Partial submission is much less useful and data may not in fact

be “accessible,” even if deposited in PX. It is worth noting that SCIEX

provides support for peak picking in their own converter (https://sciex.

com/support/software-support/software-downloads), but it works in

Windows only. For DIA data, the situation is yet more complex, and

addressed in a later section.

Another key point is the use of controlled vocabularies (CVs) and

ontologies for enabling the interoperability of metadata between tools

and databases [23]. The PSI has developed several CVs (which are

updated continuously) for supporting the open formats, including,

for example, the PSI-MS [24] (for all types of MS-related data), and

PSI-MOD [25] (for protein modification data).

Reusability. The large growth of datasets available in PX has led to a

significant amount of data reuse and repurposing, including, for exam-

ple, software benchmarking efforts, “big data” approaches that make

use of artificial intelligence techniques [26], proteogenomics (finding

MS evidence to support annotation of gene models as coding) [27, 28],

creation of tissue atlases [29,30] and discovery and annotation of post-

translational modifications (PTMs) [31, 32], among others. Most reuse

of proteomics data is based on the reprocessing of DDA data since this

has been the dominant approach with large volumes of data in PX, and

they are easiest to reprocess using freely available popular software.

1.2 Other existing bottlenecks

There are additional bottlenecks preventing proteomics data and tools

becoming more “FAIR.” This applies to both DDA and DIA approaches.

First of all, regrettably, the field has not yet agreed on the adoption

of an open standard format that can be used to encode quantifica-

tion data (i.e., expression matrixes). The mzTab format was originally

developed with this idea in mind, but it has been mostly used so far for

identification data only, and it has some shortcomings.

In the context of data sharing, historically there has been very

limited (standardized) samplemetadata and experimental design infor-

mation in PX resources. When PX was established, the focus was put

onmaking data sharing popular in the field, so the requirements in this

context were not very high. Only recently, the MAGE-TAB-Proteomics

format has been developed to enable a standard encoding of sample

metadata in public datasets, including the experimental design [33].

The format has two components: (i) the Identification Definition For-

mat (IDF), which contains information at the level of the dataset (data

already available in all PX datasets); and (ii) the SDRF (Sample and

Data Relationship Format)-Proteomics file, which contains the map-

pings between the raw files and samples. As of August 2022, around

450 datasets have already this type of information in PRIDE. However,

for the submission of SDRF-Proteomics files to become mandatory, it

will be required that popular software tools support and export the

format.

1.3 What does FAIR data mean for DIA
proteomics?

There are some aspects of DIA proteomics data that are unique, and

provide extra challenges for data sharing, and making data FAIR. Here

we describe aspects of “FAIRness” for DIA data, as summarized in

Figure 1.

https://www.psidev.info/mzML
https://www.psidev.info/tools-implementing-mzidentml
https://sciex.com/support/software-support/software-downloads
https://sciex.com/support/software-support/software-downloads
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F IGURE 1 Graphical summary of the issues and recommendations related to DIA proteomics

Findability. At present, metadata and hence search facilities at PX

databases do not easily record the width of the fragmentation window

– the key parameter governing whether this can be viewed as a DIA

or DDA approach. If a user wished to find all DIA datasets on a given

sample type or species in all PX resources, it would not be straightfor-

ward to locate these datasets, without trawling through lots of records

and reading associated manuscripts. In PRIDE it is possible to label

all submitted datasets using different sub-types of DIA approaches

(e.g. SWATH-MS, MSE, etc) but this labeling needs to be standardized

between all PX resources, and also the information be accessible via

ProteomeCentral.

Accessibility and reusability. DIA data is being submitted to PX,

using the same mechanism of “Partial” or “Complete” submissions.

In practice, most submissions are “Partial” at present, since it would

be challenging to create sensible mzIdentML/mzTab files, which were

mostly designed with sequence database search methods in mind. It

should be noted that MaxQuant (from version 2.0) can export mzTab

coming from both DDA and DIA approaches, but so far contains

identification information only [34].

Many SWATH-MS datasets often do get converted to mzML when

processed with popular software such as OpenSWATH [35], and

MSConvert can generate valid mzML files for DIA data just as well as

for DDA data. However, SWATH-MS data is also commonly processed

with the SCIEX Vendor software PeakView. Via this route, PX sub-

mitted datasets tend to include raw data in SCIEX “wiff” and “scan”

formats, which are generally not natively supported by open-source

applications. Similarly, labs performing DIA analysis via the Bruker dia-

PASEF technology, generate and analyze data from the Bruker “.d”

folder file format, and most current PX diaPASEF submitted datasets

have deposited data in this raw format. There is support for wiff and

“.d” formats in MSConvert (although as noted above, depending on

the age of the instrument, we believe “vendor” peak picking does not

always function in MSConvert), and natively in some free DIA analysis

software, such as DIA-NN [36] and commercial software such as Spec-

tronaut (Biognosis). The Thermo DIA technologies use the same raw

file format and APIs as in DDA, so open-source support is quite good.

This means that currently deposited raw data can usually be opened,

visualized, and in theory, reprocessed. However, there are some major

holes in the current data-sharing landscape for DIA proteomics, which

make this very challenging in practice.

As explained above, in most DIA approaches, a spectral library

is used for identification and assignment of peaks within raw data

to peptidoforms, although pseudo-spectra are sometimes used. For

the pseudo-spectra approach, the generated peak list could be con-

verted to mzML (or a simple open format like MGF), and submitted

to PX, but in practice, this is rarely, if ever done. For data types such

as Waters MSE, a person interested in performing data reuse would

likely need some commercial vendor software to easily reprocess the

data. For spectral library-based approaches, data reuse is possible but

reproducibility is dependent on the availability of the actual spec-

tral library used in the original study. Spectral libraries are sometimes

sourced from an existing repository of libraries, such as SWATHAtlas

[37] (http://www.swathatlas.org/), which contains spectral libraries in

open text-based formats including some metadata describing how the

library was generated. Importantly, SWATHAtlas also references the

source of the DDA data used to generate the library.

A key component of the evidence trail is that some peaks within

DIA data have been matched to an entry in a spectral library, working

http://www.swathatlas.org/
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under the assumption that the library entry has been annotated with

the correct peptidoform. If the library entry is incorrectly annotated,

for example, because of inadequate statistical control when process-

ing DDA data, the use of a poorly tailored theoretical proteome, or

worse, by a deliberate manipulation (in potential cases of scientific

fraud), then quantitative data assigned to a given peptidoform and pro-

tein, will be incorrect. It is then essential that a full evidence trail back

to the source of library entry is also provided. However, the existing

data formats for spectral libraries do not have a standard method for

representing the actual source spectrum. Worse, most library formats

created from experimentally matched DDA data, do not contain any

reference back to the spectra themselves. There are only a handful

of current PX datasets that contain both DIA data and the DDA data

on which the library was generated. However, even in those cases,

it is common practice that either the library is provided in a vendor

binary format or the library is provided in a simple tab-separated for-

mat containing only the masses and assumed identities of peaks, but

nometadata about source spectra, or key information such as theDDA

analysis pipeline used including the FDR (FalseDiscovery Rate) control

applied, etc. Furthermore, most DIA datasets in the public domain do

not include any spectral library at all. In these cases, whileDIA rawdata

may be submitted, data reuse is challenging and full reproducibility

becomes impossible. In the Recommentations section below, we return

to this point to cover newdevelopments planned in the coming years to

improve this situation.

In this context of reusability, it is worth highlighting that at least

there have been some initial attempts to develop guidelines for

enabling the reproducibility of DIA published results [38], including

the submission of all the relevant data including spectral libraries and

related data to PX resources.

Interoperability. Raw DIA data is mostly as interoperable (or not)

as regular DDA data, as discussed above. However, the current lack

of interoperability for software in DIA is mostly driven by a lack of

standardization or sharing of spectral libraries. The upshot is that

there is very little independent re-analysis of DIA data or attempts to

reproduce published analyses with the same or different tools, with a

few recent exceptions, for example [39], where a pan-human spectral

librarywas used for the reanalysis, and therefore, reproducibility of the

originally reported results was limited. This is bad for reproducibility

of study outcomes, especially since it took many years for statistical

methods to become robust and well embedded for controlling FDR

in DDA proteomics. It is possible that with the use of inappropriate

spectral libraries, and/or inappropriate FDR control, studies are being

published reporting high proportions of incorrectly identified proteins.

1.4 Recommendations

We foresee an increasing flood of DIA proteomics studies in the lit-

erature, as many labs transition from DDA methods over to DIA on a

large scale.We believe that there is some urgency to improve bioinfor-

matics infrastructure and current practices in several areas for making

DIA data more “FAIR,” to support making scientific outputs open, and

to ensure the field develops high-quality and reproducible analyses.

These are our recommendations in different areas.

Open data standard for spectral libraries. There are different spectral

library data formats, including among others the NIST (National Insti-

tute of Standards and Technology) MSP format, the SpectraST splib

format, the Bibliospec blib format, and the SCIEX Peakview format.

Asmentioned above, while each of these formats performs adequately

for storing the spectra and it is relatively easy to interconvert spectra

between them, it is widely agreed that none of the formats captures

important metadata about the collections of spectra themselves, and

about the provenance of the spectra contained in the library. In order

to advance the “FAIRness” of libraries, the field would greatly bene-

fit from a community standardized spectral library format where the

ability to encode complete metadata using CV terms was a central

feature. The PSI is in the advanced stages of designing a new open

spectral library format called mzSpecLib (https://github.com/HUPO-

PSI/mzSpecLib) where provenance and spectrum, analyte, and library

metadata [40] are key components.

Improvements in data provenance and sharing of spectral libraries in PX

resources. All labs publishing manuscripts that present DIA proteomics

should perform data submissions to PX. Even if the submitted datasets

are “Partial,” the sharing of spectral libraries used, ultimately ideally in

mzSpecLib, but even within common open text-based formats, would

be a big improvement. This would facilitate other groups to bench-

mark different software packages, and even more importantly, to test,

for example, whether using public libraries or in silico approaches can

give better performance than experimentally matched libraries. Since

so few experimentally matched libraries are publicly available, such

comparisons are currently very limited. In due course, PX should then

formalize mechanisms for submitting spectral libraries, so that they

could be findable in an analogous manner to datasets, for example,

by having their own identifiers, and including a clear link from library

entries back to the originating individual spectra, by using, for example,

the USI system.

It should also be noted that some DIA analysis tools produce in sil-

icopredicted spectral libraries “on-the-fly,”whichareneverwritten toa

file. In this case, two alternatives would be possible. As a starting point,

it would be mandatory to share all inputs needed for the software to

run (e.g., sequence database), and provide the exact version of the soft-

ware. This would require some extra work for the repositories, and it

would make DIA datasets different depending on the tool and the type

of analysis of approach used. In the medium term, once there is more

experience working with these tools, software developers could con-

sider enabling oneoption to export the predicted spectral libraries (and

in fact most software tools already have this option).

Finally, it is worth mentioning this recommendation would also

apply for relevant DDA datasets, that make use of spectral libraries in

their analysis. The lack of spectral libraries has not been so critical so

far for DDA approaches because the use of these approaches is quite

small, when comparedwith sequence database-basedmethods.

Improved support for DIA data in PSI standards. Many of the exist-

ing PSI data standards (e.g., mzML, mzIdentML, mzTab) were designed

(at least originally) for DDA approaches. As DIA approaches mature,

https://github.com/HUPO-PSI/mzSpecLib
https://github.com/HUPO-PSI/mzSpecLib
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data standards and guidelines should be extended to better support

DIA approaches. One recent example is the USI specification, which

is centered around DDA fragmentation spectra and only includes an

initial draft describing how to encode DIA spectra. Additionally, as

noted above, there remains no widely accepted standard format for

quantitative results in proteomics (for DDA or DIA data), and this

needs to improve. However, it is important to highlight that, since

DIA proteomics is still a relatively young field, new (improved) anal-

ysis software is being developed at a very high pace. As these tools

often use novel approaches and/or methodology, data standardization

is especially challenging.

There would be multiple advantages of having more tailored

open data standards for DIA, considering some of the general ben-

efits, as outlined above. One more concrete application would be

the widespread availability of visualization software to enable man-

ual inspection of peak groups for the peptide precursors identified.

This functionality is offered at present by, for example, Skyline [41],

but the availability of well-adopted standards would enable that

this functionality would be available in a much more widespread

manner.

Improved support for DIA datasets in PRIDE and other PX resources.

The original distinction between “Complete” and “Partial” datasets is

tailored to DDA datasets. For DIA datasets a different categorization

of datasets should be implemented, including criteria such as the for-

mat in which the spectral library is made available, and the compliance

with some additional metadata annotation requirements. There is also

the need to improve and standardize the linking betweenDIA datasets

and theDDA ones that contained the source data for the generation of

the libraries.

We would like to finish by highlighting that many of the points cov-

ered in this article do not only apply to proteomics. DIA techniques are

also increasingly used in other fields where MS is used as an analyti-

cal technique (e.g., metabolomics, lipidomics, glycomics, etc). Many of

the recommendations included here would indeed also be applicable

to improve the “FAIRness” of data coming from those approaches.

Our teams will indeed contribute to these efforts via PSI and PX,

but very importantly, these recommendationswill also require the sup-

port of the proteomics community, for example, to take the extra effort

to format and submit spectral libraries to PX. We would like to start

further conversations in these areas, and welcome participation in PSI

meetings and contributions to standards development discussions.

ACKNOWLEDGMENTS

EWD was funded in part by the National Institutes of Health

grants R01GM087221, R24GM127667, U19AG023122, and by

the National Science Foundation grants DBI-1933311, and IOS-

1922871. JAV wants to acknowledge BBSRC grants BB/P024599/1

and BB/T019670/1, EU H2020 grant “EPIC-XS” [grant number

823839], Wellcome grant 223745/Z/21/Z and EMBL core funding.

ARJ would like to acknowledge BBSRC grant BB/T019557/1.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

JuanAntonioVizcaíno https://orcid.org/0000-0002-3905-4335

REFERENCES

1. Gillet, L. C.,Navarro, P., Tate, S., Röst,H., Selevsek,N., Reiter, L., Bonner,

R., & Aebersold, R. (2012). Targeted data extraction of the MS/MS

spectra generated by data-independent acquisition: A new concept

for consistent and accurate proteome analysis. Molecular & Cellular
Proteomics, 11(6), O111.016717. https://doi.org/10.1074/mcp.O111.

016717

2. Meier, F., Brunner, A. D., Frank, M., Ha, A., Bludau, I., Voytik, E.,

Kaspar-Schoenefeld, S., Lubeck, M., Raether, O., Bache, N., Aebersold,

R., Collins, B. C., Röst, H. L., & Mann, M. (2020). diaPASEF: Parallel

accumulation-“serial fragmentation combined with data-independent

acquisition. Nature Methods, 17(12), 1229–1236. https://doi.org/10.
1038/s41592-020-00998-0

3. Ting, Y. S., Egertson, J. D., Bollinger, J. G., Searle, B. C., Payne, S. H.,

Noble, W. S., & Maccoss, M. J. (2017). PECAN: Library-free peptide

detection for data-independent acquisition tandem mass spectrom-

etry data. Nature Methods, 14(9), 903–908. https://doi.org/10.1038/
nmeth.4390

4. Rosenberger, G., Koh, C. C., Guo, T., Röst, H. L., Kouvonen, P., Collins, B.

C., Heusel, M., Liu, Y., Caron, E., Vichalkovski, A., Faini, M., Schubert, O.

T., Faridi, P., Ebhardt,H. A.,Matondo,M., Lam,H., Bader, S. L., Campbell,

D. S., Deutsch, E. W., . . . Aebersold, R. (2014). A repository of assays

to quantify 10,000 human proteins by SWATH-MS. https://doi.org/10.

1038/sdata.2014.31

5. Zhu, T., Zhu, Y., Xuan, Y., Gao, H., Cai, X., Piersma, S. R., Pham, T. V.,

Schelfhorst, T., Haas, R. R. G. D., Bijnsdorp, I. V., Sun, R., Yue, L., Ruan,

G., Zhang, Q., Hu, M., Zhou, Y., Van Houdt, W. J., Le Large, T. Y. S.,

Cloos, J., . . . Guo, T. (2020).DPHL:ADIApan-humanproteinmass spec-

trometry library for robust biomarker discovery. Genomics, Proteomics
& Bioinformatics, 18(2), 104–119. https://doi.org/10.1016/j.gpb.2019.
11.008

6. Gessulat, S., Schmidt, T., Zolg, D. P., Samaras, P., Schnatbaum, K.,

Zerweck, J., Knaute, T., Rechenberger, J., Delanghe, B., Huhmer, A.,

Reimer, U., Ehrlich, H. C., Aiche, S., Kuster, B., & Wilhelm, M. (2019).

Prosit: Proteome-wide prediction of peptide tandem mass spectra

by deep learning. Nature Methods, 16(6), 509–518. https://doi.org/10.
1038/s41592-019–0426–7

7. Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS2PIP

web server delivers fast and accurate MS2 peak intensity prediction

for multiple fragmentation methods, instruments and labeling tech-

niques. Nucleic Acids Research, 47(W1), W295–W299. https://doi.org/

10.1093/nar/gkz299

8. Gotti, C., Roux-Dalvai, F., Joly-Beauparlant, C., Mangnier, L., Leclercq,

M., & Droit, A. (2021). Extensive and accurate benchmarking of DIA

acquisition methods and software tools using a complex proteomic

standard. Journal of ProteomeResearch,20(10), 4801–4814. https://doi.
org/10.1021/acs.jproteome.1c00490

9. Fröhlich,K., Brombacher, E., Fahrner,M., Vogele,D., Kook, L., Pinter,N.,

Bronsert, P., Timme-Bronsert, S., Schmidt, A., Bärenfaller, K., Kreutz,

C., & Schilling, O. (2022). Benchmarking of analysis strategies for

data-independent acquisition proteomics using a large-scale dataset

comprising inter-patient heterogeneity. Nature Communication, 13(1),
2622. https://doi.org/10.1038/s41467-022-30094-0

10. Deutsch, E. W., Albar, J. P., Binz, P. A., Eisenacher, M., Jones, A. R.,

Mayer, G., Omenn, G. S., Orchard, S., Vizcaíno, J. A., & Hermjakob, H.

(2015). Development of data representation standards by the human

proteome organization proteomics standards initiative. Journal of the
American Medical Informatics Association, 22(3), 495–506. https://doi.
org/10.1093/jamia/ocv001

11. Sivade, M., Alonso-López, D., Ammari, M., Bradley, G., Campbell, N.

H., Ceol, A., Cesareni, G., Combe, C., De Las Rivas, J., Del-Toro, N.,

https://orcid.org/0000-0002-3905-4335
https://orcid.org/0000-0002-3905-4335
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.1038/s41592-020-00998-0
https://doi.org/10.1038/s41592-020-00998-0
https://doi.org/10.1038/nmeth.4390
https://doi.org/10.1038/nmeth.4390
https://doi.org/10.1038/sdata.2014.31
https://doi.org/10.1038/sdata.2014.31
https://doi.org/10.1016/j.gpb.2019.11.008
https://doi.org/10.1016/j.gpb.2019.11.008
https://doi.org/10.1038/s41592-019-0426-7
https://doi.org/10.1038/s41592-019-0426-7
https://doi.org/10.1093/nar/gkz299
https://doi.org/10.1093/nar/gkz299
https://doi.org/10.1021/acs.jproteome.1c00490
https://doi.org/10.1021/acs.jproteome.1c00490
https://doi.org/10.1038/s41467-022-30094-0
https://doi.org/10.1093/jamia/ocv001
https://doi.org/10.1093/jamia/ocv001


7 of 8

Heimbach, J., Hermjakob, H., Jurisica, I., Koch, M., Licata, L., Lovering,

R. C., Lynn, D. J., Meldal, B. H. M., Micklem, G., . . . Orchard, S. (2018).

Encompassing new use cases - level 3.0 of the HUPO-PSI format for

molecular interactions. Bmc Bioinformatics [Electronic Resource], 19(1),
134. https://doi.org/10.1186/s12859-018–2118-1

12. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F.,

Shofstahl, J., Tang, W. H., Römpp, A., Neumann, S., Pizarro, A. D.,

Montecchi-Palazzi, L., Tasman, N., Coleman, M., Reisinger, F., Souda, P.,

Hermjakob,H., Binz, P.A., &Deutsch, E.W. (2011).mzML–acommunity

standard for mass spectrometry data. Molecular & Cellular Proteomics,
10(1), R110.000133.

13. Vizcaíno, J. A., Mayer, G., Perkins, S., Barsnes, H., Vaudel, M., Perez-

Riverol, Y., Ternent, T., Uszkoreit, J., Eisenacher, M., Fischer, L.,

Rappsilber, J., Netz, E.,Walzer,M., Kohlbacher,O., Leitner, A., Chalkley,

R. J., Ghali, F., Martínez-Bartolomé, S., Deutsch, E. W., & Jones, A.

R. (2017). The mzIdentML data standard version 1.2, supporting

advances in proteome informatics. Molecular & Cellular Proteomics,
1275–1285. https://doi.org/10.1074/mcp.M117.068429

14. Griss, J., Jones, A. R., Sachsenberg, T., Walzer, M., Gatto, L., Hartler,

J., Thallinger, G. G., Salek, R. M., Steinbeck, C., Neuhauser, N., Cox,

J., Neumann, S., Fan, J., Reisinger, F., Xu, Q. W., Del Toro, N., Pérez-

Riverol, Y., Ghali, F., Bandeira, N., . . . Hermjakob, H. (2014). The mzTab

data exchange format:Communicatingmass-spectrometry-basedpro-

teomics and metabolomics experimental results to a wider audience.

Molecular &Cellular Proteomics,13(10), 2765–2775. https://doi.org/10.
1074/mcp.O113.036681

15. Deutsch, E. W., Perez-Riverol, Y., Carver, J., Kawano, S., Mendoza,

L., Van Den Bossche, T., Gabriels, R., Binz, P. A., Pullman, B., Sun, Z.,

Shofstahl, J., Bittremieux, W., Mak, T. D., Klein, J., Zhu, Y., Lam, H.,

Vizcaíno, J. A., & Bandeira, N. (2021). Universal Spectrum Identifier

for mass spectra. Nature Methods, 18(7), 768–770. https://doi.org/10.
1038/s41592-021-01184-6

16. Vizcaíno, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Ríos,

D., Dianes, J. A., Sun, Z., Farrah, T., Bandeira, N., Binz, P. A., Xenarios,

I., Eisenacher, M., Mayer, G., Gatto, L., Campos, A., Chalkley, R. J.,

Kraus, H. J., Albar, J. P., . . . Hermjakob, H. (2014). ProteomeXchange

provides globally coordinated proteomics data submission and dis-

semination. Nature Biotechnology, 32(3), 223–226. https://doi.org/10.
1038/nbt.2839

17. Wilkinson,M.D., Dumontier,M., Aalbersberg, I. J., Appleton, G., Axton,

M., Baak, A., Blomberg, N., Boiten, J. W., Da Silva Santos, L. B., Bourne,

P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,

O., Edmunds, S., Evelo, C. T., Finkers, R., . . . Mons, B. (2016). The FAIR

Guiding Principles for scientific data management and stewardship.

Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
18. Fondrie, W. E., Bittremieux, W., & Noble, W. S. (2021). ppx: Pro-

grammatic access to proteomics data repositories. Journal of Proteome
Research, 20(9), 4621–4624. https://doi.org/10.1021/acs.jproteome.

1c00454

19. Perez-Riverol, Y., Bai, M., Da Veiga Leprevost, F., Squizzato, S., Park,

Y. M, Haug, K., Carroll, A. J., Spalding, D., Paschall, J., Wang, M., Del-

Toro, N., Ternent, T., Zhang, P., Buso, N., Bandeira, N., Deutsch, E. W.,

Campbell, D. S., Beavis, R. C., Salek, R.M., . . . Hermjakob,H. (2017). Dis-

covering and linking public omics data sets using the Omics Discovery

Index. Nature Biotechnology, 35(5), 406–409. https://doi.org/10.1038/
nbt.3790

20. Bhamber, R. S., Jankevics, A., Deutsch, E. W., Jones, A. R., & Dowsey,

A.W. (2021). mzMLb: A future-proof rawmass spectrometry data for-

mat based on standards-compliantmzML and optimized for speed and

storage requirements. Journal of Proteome Research, 20(1), 172–183.
https://doi.org/10.1021/acs.jproteome.0c00192

21. Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.

L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K.,

Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak,

M., Paulse, C., Creasy, D., . . . Mallick, P. (2012). A cross-platform toolkit

for mass spectrometry and proteomics. Nature Biotechnology, 30(10),
918–920. https://doi.org/10.1038/nbt.2377

22. Hulstaert, N., Shofstahl, J., Sachsenberg, T., Walzer, M., Barsnes,

H., Martens, L., & Perez-Riverol, Y. (2020). ThermoRawFileParser:

Modular, scalable, and cross-platform RAW file conversion. Journal
of Proteome Research, 19(1), 537–542. https://doi.org/10.1021/acs.
jproteome.9b00328

23. Mayer, G., Jones, A. R., Binz, P.-A., Deutsch, E. W., Orchard, S.,

Montecchi-Palazzi, L., Vizcaíno, J. A., Hermjakob, H., Oveillero, D.,

Julian, R., Stephan,C.,Meyer,H. E., &Eisenacher,M. (2014). Controlled

vocabularies and ontologies in proteomics: Overview, principles and

practice. Biochimica Et Biophysica Acta, 1844(1 Pt A), 98–107. https://

doi.org/10.1016/j.bbapap.2013.02.017

24. Mayer, G., Montecchi-Palazzi, L., Ovelleiro, D., Jones, A. R., Binz, P. - A.,

Deutsch, E. W., Chambers, M., Kallhardt, M., Levander, F., Shofstahl, J.,

Orchard, S., Antonio Vizcaino, J., Hermjakob, H., Stephan, C., Meyer,

H. E., & Eisenacher, M. (2013). The HUPO proteomics standards

initiative-mass spectrometry controlledvocabulary.Database (Oxford),
2013, bat009. https://doi.org/10.1093/database/bat009

25. Montecchi-Palazzi, L., Beavis, R., Binz, P.-A., Chalkley, R. J., Cottrell, J.,

Creasy, D., Shofstahl, J., Seymour, S. L., & Garavelli, J. S. (2008). The

PSI-MOD community standard for representation of protein modifi-

cation data. Nature Biotechnology, 26(8), 864–866. https://doi.org/10.
1038/nbt0808-864

26. Mann,M., Kumar,C., Zeng,W.-F., &Strauss,M. T. (2021). Artificial intel-

ligence for proteomics and biomarker discovery. Cell Systems, 12(8),
759–770. https://doi.org/10.1016/j.cels.2021.06.006

27. Ren, Z., Qi, D., Pugh, N., Li, K., Wen, B., Zhou, R., Xu, S., Liu, S., & Jones,

A. R. (2019). Improvements to the rice genome annotation through

large-scale analysis of RNA-Seq and proteomics data sets.Molecular &
Cellular Proteomics,18(1), 86–98. https://doi.org/10.1074/mcp.RA118.

000832

28. Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M.,

Harrow, J., Vazquez, J., Valencia, A., & Tress, M. L. (2014). Multiple

evidence strands suggest that there may be as few as 19,000 human

protein-coding genes. Human Molecular Genetics, 23(22), 5866–5878.
https://doi.org/10.1093/hmg/ddu309

29. Lautenbacher, L., Samaras, P., Muller, J., Grafberger, A., Shraideh, M.,

Rank, J., Fuchs, S. T., Schmidt, T. K., The, M., Dallago, C., Wittges, H.,

Rost, B., Krcmar, H., Kuster, B., & Wilhelm, M. (2022). ProteomicsDB:

Toward a FAIR open-source resource for life-science research.Nucleic
Acids Research, 50(D1), D1541–d1552. https://doi.org/10.1093/nar/
gkab1026

30. Moreno, P., Fexova, S., George, N.,Manning, J. R., Miao, Z., Mohammed,

S., Muñoz-Pomer, A., Fullgrabe, A., Bi, Y., Bush, N., Iqbal, H., Kumbham,

U., Solovyev, A., Zhao, L., Prakash, A., García-Seisdedos, D., Kundu, D.

J., Wang, S., Walzer, M., . . . Papatheodorou, I. (2022). Expression Atlas

update: Gene and protein expression in multiple species. Nucleic Acids
Research,50(D1), D129–d140. https://doi.org/10.1093/nar/gkab1030

31. Ramasamy, P., Turan, D., Tichshenko, N., Hulstaert, N., Vandermarliere,

E., Vranken, W., & Martens, L. (2020). Scop3P: A comprehensive

resource of human phosphosites within their full context. Journal
of Proteome Research, 19(8), 3478–3486. https://doi.org/10.1021/acs.
jproteome.0c00306

32. Ochoa, D., Jarnuczak, A. F., Viéitez, C., Gehre, M., Soucheray, M.,

Mateus, A., Kleefeldt, A. A., Hill, A., Garcia-Alonso, L., Stein, F., Krogan,

N. J., Savitski, M. M., Swaney, D. L., Vizcaíno, J. A., Noh, K. M., &

Beltrao, P. (2020). The functional landscape of the human phosphopro-

teome.Nature Biotechnology,38(3), 365–373. https://doi.org/10.1038/
s41587-019–0344-3

33. Dai, C., Füllgrabe, A., Pfeuffer, J., Solovyeva, E. M., Deng, J., Moreno,

P., Kamatchinathan, S., Kundu, D. J., George, N., Fexova, S., Grüning, B.,

Föll, M. C., Griss, J., Vaudel, M., Audain, E., Locard-Paulet, M., Turewicz,

M., Eisenacher, M., Uszkoreit, J., . . . Perez- Riverol, Y. (2021). A pro-

teomics sample metadata representation for multiomics integration

https://doi.org/10.1186/s12859-018-2118-1
https://doi.org/10.1074/mcp.M117.068429
https://doi.org/10.1074/mcp.O113.036681
https://doi.org/10.1074/mcp.O113.036681
https://doi.org/10.1038/s41592-021-01184-6
https://doi.org/10.1038/s41592-021-01184-6
https://doi.org/10.1038/nbt.2839
https://doi.org/10.1038/nbt.2839
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1021/acs.jproteome.1c00454
https://doi.org/10.1021/acs.jproteome.1c00454
https://doi.org/10.1038/nbt.3790
https://doi.org/10.1038/nbt.3790
https://doi.org/10.1021/acs.jproteome.0c00192
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1021/acs.jproteome.9b00328
https://doi.org/10.1021/acs.jproteome.9b00328
https://doi.org/10.1016/j.bbapap.2013.02.017
https://doi.org/10.1016/j.bbapap.2013.02.017
https://doi.org/10.1093/database/bat009
https://doi.org/10.1038/nbt0808-864
https://doi.org/10.1038/nbt0808-864
https://doi.org/10.1016/j.cels.2021.06.006
https://doi.org/10.1074/mcp.RA118.000832
https://doi.org/10.1074/mcp.RA118.000832
https://doi.org/10.1093/hmg/ddu309
https://doi.org/10.1093/nar/gkab1026
https://doi.org/10.1093/nar/gkab1026
https://doi.org/10.1093/nar/gkab1030
https://doi.org/10.1021/acs.jproteome.0c00306
https://doi.org/10.1021/acs.jproteome.0c00306
https://doi.org/10.1038/s41587-019-0344-3
https://doi.org/10.1038/s41587-019-0344-3


8 of 8

and big data analysis. Nature Communication, 12(1), 5854. https://doi.
org/10.1038/s41467-021-26111-3

34. Sinitcyn, P., Hamzeiy, H., Salinas Soto, F., Itzhak, D., Mccarthy,

F., Wichmann, C., Steger, M., Ohmayer, U., Distler, U., Kaspar-

Schoenefeld, S., Prianichnikov, N., Yılmaz, Ş., Rudolph, J. D., Tenzer, S.,
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