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ABSTRACT

A deeper understanding of complex biological processes, including tu-
mor development and immune response, requires ultra high-plex, spatial
interrogation of multiple “omes”. Here we present the development and im-
plementation of a novel spatial proteogenomic (SPG) assay on the GeoMx
Digital Spatial Profiler platform with next-generation sequencing readout
that enables ultra high-plex digital quantitation of proteins (>100-plex) and
RNA (whole transcriptome, >18,000-plex) from a single formalin-fixed
paraffin-embedded (FFPE) sample. This study highlighted the high concor-
dance, R> 0.85 and<15% change in sensitivity between the SPG assay and
the single-analyte assays on various cell lines and tissues from human and
mouse. Furthermore, we demonstrate that the SPG assay was reproducible
across multiple users. When used in conjunction with advanced cellular
neighborhood segmentation, distinct immune or tumor RNA and protein
targets were spatially resolved within individual cell subpopulations in hu-

man colorectal cancer and non–small cell lung cancer. We used the SPG
assay to interrogate 23 different glioblastoma multiforme (GBM) samples
across four pathologies. The study revealed distinct clustering of both RNA
and protein based on pathology and anatomic location. The in-depth inves-
tigation of giant cell glioblastoma multiforme (gcGBM) revealed distinct
protein and RNA expression profiles compared with that of the more com-
mon GBM. More importantly, the use of spatial proteogenomics allowed
simultaneous interrogation of critical protein posttranslational modifica-
tions alongside whole transcriptomic profiles within the same distinct
cellular neighborhoods.

Significance:Wedescribe ultra high-plex spatial proteogenomics; profiling
whole transcriptome and high-plex proteomics on a single FFPE tissue sec-
tion with spatial resolution. Investigation of gcGBM versus GBM revealed
distinct protein and RNA expression profiles.

Introduction
The advancement of spatially resolved,multiplex proteomic and transcriptomic
technologies has revolutionized and redefined the approaches to complex bio-
logical questions pertaining to tissue heterogeneity, tumormicroenvironments,
cellular interactions, cellular diversity, and therapeutic response (1). These spa-
tial technologies, including the GeoMx Digital Spatial Profiler (DSP), can yield
spatially resolved proteomic and transcriptomic datasets from formalin-fixed
paraffin-embedded (FFPE) or fresh frozen samples. Most of these approaches
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are specific toward generating either proteomic or transcriptomic datasets.
Multiple studies have demonstrated a poor correlation between RNA expres-
sion and protein abundance in samples when each analyte is profiled, with
the most egregious of cases often owing to target- or tissue-specific posttran-
scriptional regulation (2–5). Despite our current understanding of the variety
of mechanisms surrounding transcriptional and translational regulation, target
turnover, posttranslational protein modifications, and protein activity, RNA is
still the primary analyte of choice in highly multiplexed studies. A workflow
that accurately measures RNA and protein simultaneously within a single sam-
ple and spatial context is critical to a fuller understanding of the global state of
the cell.

Previously, to understand proteomic and transcriptomic relationships, re-
searchers would acquire individual analyte-specific datasets, often employing
different technologies, and computationally integrate the data using various
multiomic approaches (refs. 6–9; Fig. 1A). While this workflow provides a
deeper understanding of the biological system under study, the potentially
confounding variables associated with variation stemming from employing
multiple technologies, section-to-section variability, or precisely matching
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FIGURE 1 Technical development of the SPG assay. A, Current proteogenomic approaches are multiomic which entails the integration of individual
-omic datasets and multimodal omics which involves the simultaneous, codetection of multiple “omes” in a single sample. B, Commercially available
GeoMx Assays currently enable high-plex, spatially resolved protein and RNA targets on individual tissue sections with nCounter or NGS quantitative
readout. C, Assessment of staining order on the number of protein targets above detection threshold (SNR ≥ 3). FFPE cell line, A431CA, was stained
with GeoMx Protein assays (59-plex) for nCounter readout and mock RNA probe (Buffer R only). D, Assessment of varying ProK on the performance of
the SPG assay. A 45-CPA was stained with 59-plex GeoMx NGS Protein modules (59-plex) and the GeoMx Whole Transcriptome Atlas (WTA) under
proteogenomic and standard assay conditions. E, Plots represent the number of targets above the detection threshold for Pearson correlation on
log2-transformed SNR data between the proteogenomic assay and the single-analyte controls along with the CCLE RNA-seq database. Circular ROIs of
200 μm diameter were selected for detailed molecular profiling with the GeoMx DSP. The signal was averaged across replicate AOIs and the SNR was
calculated. Protein (SNR ≥ 3; E) and true positives (F) in detectable WTA targets. G, GeoMx SPG workflow enables multimodal omic profiling on a
single slide.

regions of interest (ROI) across multiple slides must be taken into consid-
eration when analyzing and interpreting the data. To control or eliminate
these potentially confounding technical variables, multimodal omics, defined
as the simultaneous codetection of multiple analytes (“omes”) in a single
sample, serves as an advantageous alternative approach (refs. 10–13; bioRxiv
2022.04.01.486788). In the emerging spatial biology field, there has been a
growing interest in the development of novel multimodal omic protocols to
detect RNA transcript levels and protein abundance within a single sample
while maintaining the spatial context within a tissue. These novel multimodal
omic datasets of protein and DNA or RNA have been termed “spatial pro-
teogenomics.” While mass spectrometry–based proteomics is the most widely
used approach for proteogenomic analysis, which enables the measurement
of >1,000 protein targets, antibody-based approaches usually involve lower
plex (<300 targets; refs. 12–17). However, until recently, spatial proteogenomic
(SPG) protocols with ultrahigh-plex, simultaneous codetection of analytes have

not been available (refs. 11–13, 18–27; bioRxiv 2022.04.01.486788). Many of
the protocols combine high-plex RNA with up to four fluorescent antibodies
utilized as morphology markers.

The GeoMx DSP enables spatially resolved, high-plex digital quantitation of
proteins (>100-plex) and RNA (whole transcriptome, >18,000-plex) from hu-
man and mouse tissues (28–31). Previous work has detailed proteomic or
transcriptomic single-analyte workflows using the GeoMx DSP technology
with unique affinity reagents (antibodies for protein or ISH probes for RNA)
coupled to photocleavable oligonucleotide barcodes (refs. 28, 29, 31; Fig. 1B).
Tissue samples are incubated with one of these affinity reagents, and oligonu-
cleotide barcodes are precisely liberated from an area of interest (AOI) with
UV light exposure. The released barcodes are then collected for quantifica-
tion with next-generation sequencing (NGS). While the assays were developed
for single-analyte analysis, there is no fundamental technical barrier to con-
currently profile protein and RNA targets on a single sample. However, the
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divergent sample preparation protocols for RNA and protein would hinder the
concurrent profiling of both analytes. Here we introduce a novel GeoMx DSP
SPG workflow that allows for the simultaneous codetection and quantification
of RNA transcripts and protein abundance in a defined cell population within
individual FFPE mouse and human tissues, using oligonucleotide-barcoded
affinity reagents and the GeoMx DSP platform and Illumina NGS readout. We
demonstrate the performance of the assay on various cell lines and tissues and
highlight its use in a biological context on various glioblastoma multiforme
(GBM) samples including giant cell glioblastoma multiforme (gcGBM).

Materials and Methods
All experiments were carried out using reagents recommended or provided by
NanoString Technologies and are summarized in Supplementary Tables S1 and
S2, respectively. A list of antibodies making up each of the Human and Mouse
GeoMx Protein Modules are summarized in Supplementary Tables S3 and S4,
respectively. All reagents and instruments are for Research Use Only and not
for use in diagnostic procedures.

FFPE Samples—Cell Lines
Sections of FFPE cell pellet arrays (CPA) and tissues, 5 μm in thickness, were
used in these studies. Two custom CPAs consisting of 11 and 45 human cell
lines were generated by Acepix. Each base cell line was procured from one of
three biobanks (ATCC, Deutsche Sammlung von Mikrooganism and Zellkul-
turen [DSMZ], or ECACC) and cell lines with stable overexpression of selected
targets were purchased from vendors (CrownBio). Base cell lines were thawed,
expanded, and embedded into FFPE between passages 2 and 4, within 8 weeks
of thawing. Mycoplasma testing and cell line authentication were performed
by ATCC, DSMZ, European Collection of Animal Cell Cultures (short tandem
repeat analysis), or CrownBio (FACS analysis) prior to purchase.

Cell lines stably overexpressing select targets (CrownBio) were authenticated
by vendor with FACS analysis of expression of the expected overexpressed
target. NoMycoplasma testing is described by CrownBio and no additionalMy-
coplasma testing was done by NanoString Technologies or Acepix during cell
expansion and FFP-embedding procedures. Passage numbers for each of the
above cell lines did not exceed 4.

A431, SH-SY5Y, and SKBR3 cells were thawed, expanded, and treated with Ca-
lyculin A (TOCRIS, catalog no. 1336, 100 nmol/L, 30 minutes) prior to fixation
and embedding. No additional Mycoplasma testing was done by NanoString
Technologies or Acepix during cell treatment, expansion, and FFP-embedding
procedures. Passage numbers for each of the treated cell lines did not exceed 4.

Cells were FFPE and assembled in theCPAs (Acepix)within 6months of receipt
and/or production from the respective biobanks (ATCC, DSMZ, or ECACC),
vendors (CrownBio), and in house treated cell lines (NanoString). The FFPE
CPAs were built between 2019 and 2022.

The complete list of cell lines (Biobank, catalog no., RRID) within the CPAs can
be found in Supplementary Tables S5 and S6.

FFPE Samples—Tissues
FFPE sections of human colorectal cancer were from either BioChain (catalog
no.: T22235090-1) or ProteoGenex (catalog no.: 025562T2). Human FFPE non–
small cell lung cancer (NSCLC) was fromUS BioMax (catalog no.: HuCAT231)
or ProteoGenex (catalog no.: 041556T2). Mouse multiorgan tissue microar-

ray (TMA) was from SuperBiochips (catalog no.: ZE1; ICR mice, 8 weeks old)
and human brain glioblastoma tissue array was from US Biomax (catalog no.:
GL806g).

GeoMx Single-analyte Protein and RNA Assay
For protein only control, slides were manually processed according to the
Protein FFPE Manual Slide Preparation Protocol in the GeoMx-NGS Slide
PreparationUserManual (MAN-10150) and associated publishedmaterial (29).

RNA only control slides were processed according to the RNAFFPE BONDRX
Slide Preparation Protocol in the GeoMx-NGS Slide Preparation User Manual
for FFPE (MAN-10151) and associated published materials (28, 29, 31).

GeoMx SPG Assay Sample Preparation
SPG slides were processed according to the GeoMx DSP SPG Protocol (MAN-
10158) and Quick guide (Supplementary Method S1).

GeoMx DSP Experiments—ROI Selection and Collection
For the SPG slides, GeoMxDigital Spatial Profilingwas carried out according to
GeoMx-DSP SPG Protocol (MAN-10158); whereas the control slides were pro-
cessed according to GeoMx-NGS DSP Instrument User Manual (MAN-10152)
and as described by Merritt and colleagues (29, 31). For CPAs, two geometric
ROIs of 200 μm in diameter were profiled per cell line.

Tissue sections were stained with fluorescent morphology markers and nu-
clear counterstain (Syto-13) to aid in the selection of AOIs. Human colorectal
cancer, human NSCLC, and a mouse multiorgan tissue array were stained
with the GeoMx Solid Tumor TME Morphology Kit (NanoString, GMX-
PRO-MORPH-HST-12 and GMX-RNA-MORPH-HST-FFPE-12, for human
and mouse, respectively) to aid in the visualization of immune (CD45+) and
epithelial/tumor (PanCK+) enriched regions. Human brain glioblastoma with
normal brain TMA was stained with the GeoMx Solid Tumor TME Mor-
phology Kit and anti-GFAP AF647 antibody (astrocytes, Novus Biologicals,
NPB2-33184AF647, RRID:AB_2935766).

In human tissues, circular geometric ROIs of 100 μm in diameter were col-
lected for each morphology marker-specific ROI. In the mouse multiorgan
array, anatomically distinct regions were selected for specific tissue and then
sampled with 100 μm diameter circular geometric ROIs. Two to three regions
were selected for each tissue. For each tissue type, ROIs were matched across
all test slides under study. An advanced ROI selection strategy (segmentation)
was implemented on colorectal cancer, NSCLC, and GBM. For segmenta-
tion experiments, circular ROIs of 300 μm in diameter were segmented into
marker-specific AOIs using the GeoMx autosegmentation tool (32).

NGS and Data Analysis
Library preparations were carried out according to the GeoMx-DSP SPG Pro-
tocol (MAN-10158). Libraries were sequenced on an Illumina NextSeq2000 or
NovaSeq6000 according to the manufacturer’s instructions.

The resulting FASTQ files were processed along with a modified GeoMx
NGS Pipeline config file using the NanoString GeoMx NGS Pipeline v2.0 or
v2.3 according to the GeoMx DSP NGS Readout User Manual (MAN-10153).
As recommended in MAN-10158, proteogenomic data were processed and
analyzed using GeomxTools (v3.1.1; https://github.com/Nanostring-Biostats/
GeomxTools/; RRID:SCR_023424) in R separately for the protein and RNA
analytes. AOIs with low reads sequenced, low saturation, and low area were
removed from analysis.
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Limit of Quantification (LoQ) is calculated for raw data based on the distribu-
tion of the negative control probes (“NegProbe”) and is used as an estimation
for the quantifiable limit of gene expression per AOI (31). Using the geometric
mean and geometric SD of the negative control probes, LoQ for the ith AOI is
calculated as follows:

LoQ = geoMean
(
NegProbei

) ∗ geoSD
(
NegProbei

)2

A gene is considered detected within a specific AOI if its expression is above
the LoQ for that AOI. For tissues, AOIs where less than 5% of the genes were
above LoQ were removed. Unless stated otherwise, genes were included in the
analysis if it was above the LoQ in >15% AOIs profiled in a specific tissue.

For both analytes, the signal-to-noise ratio (SNR) for each target was calculated
and used to represent the normalized gene or protein expression in downstream
analyses. For RNA, the SNR was calculated by dividing each gene count in an
AOI by the geometric mean of the negative probes in that AOI. For protein, the
SNR was calculated by dividing the protein count by the geometric mean of the
three IgG negative controls (mouse IgG1 and IgG2a, and rabbit IgG).

Advanced analysis was carried out on protein and gene targets with an SNR ≥
3 and ≥4, respectively. Cluster heatmaps were generated with the pheatmap R
package (RRID:SCR_016418). Clustering was carried out on log-transformed
scaled counts using the pheatmap “correlation” method. For tissue, differential
expression (DE) analysis between different populations of cells was performed
for each analyte using a two-sided, unpaired t test from rstatix R package
(RRID:SCR_021240). The threshold for significance was set at P value <0.05
and adjusted for multiple comparisons (or multiple hypothesis testing) using
the Benjamini–Hochberg method. The estimated fold changes (log2FC) in the
SNR and P values for both analytes were summarized in a single volcano plot
using R ggplot2 package (RRID:SCR_014601).

Data Normalization for GBM Studies
Proteogenomic data generated from the GBM studies were processed and an-
alyzed using GeomxTools (v3.1.1) in R separately for the protein and RNA
analytes as noted above. For the protein analyte, proteogenomic data underwent
SNR normalization using the geometric mean of three IgG negative controls.
For RNA, we calculated the LoQ for each AOI and first removed segments
where less than 5% of the genes were above LoQ. We then removed genes that
were below the LoQ in at least 10%of theAOIs. After segment and gene filtering,
the data underwent SNR normalization.

Statistical Analyses for GBM Studies
All analyses were performed in R (v 4.1.2). Uniform Manifold Approximation
and Projection (UMAP) plots were generated with normalized expression data
using the umap packages (v0.2.8.0; RRID:SCR_018217) using default settings.
Coefficients of variation (CV) were calculated for each protein or gene (CVg =
SDg/meang). The genes with the highest CVs were filtered and plotted as a
heatmap using unsupervised hierarchical clustering based on Pearson distance.
Heatmaps were generated using the ComplexHeatmap (33) package (v2.10.0;
RRID:SCR_017270).

DE analysis was performed on a per-gene basis where the normalized expres-
sion was modeled using a linear mixed-effect model to account for multiple
sampling of ROI/AOI segments per tissue. DEwas performed using themixed-
ModelDE function from the GeomxTools package (v3.1.1). DE results were
visualized in volcano plots and violin plots using the ggplot2 package (v3.3.6;
RRID:SCR_014601). Volcano plots are used to visualize the overall results of DE

with estimated fold changes (log2FC) in the SNR and P values plotted for each
contrast. Violin plots highlight features of interest and the most differentially
expressed genes or proteins in a comparison, visualized using SNR.

Data Availability
All raw and processed data used in this article will be available upon request in
writing to the corresponding author.

Results
SPG Assay Development
Multiomic profiling of RNA and Protein generally requires two serial tissue
sections (Fig. 1A). Serial sections often include similar, but not identical, cell
populations and thus do not provide the optimal measurement of the relation-
ship between gene expression and protein abundance. Therefore, we set out to
develop a novel high-plex spatial multimodal assay on the GeoMx DSP plat-
form with NGS readout (Fig. 1A and B), which allows for the simultaneous
profiling of high-plex RNA transcripts and proteins from a defined cell pop-
ulation within individual AOI on a single FFPE tissue section. We named this
assay the GeoMx Spatial Proteogenomic assay or SPG for short.

For the individual GeoMx NGS Protein assay and GeoMx NGS RNA assay,
sample preparation protocols are nearly identical to standard IHC or ISH
methodologies, respectively. The GeoMx NGS Protein assay uses a single anti-
gen retrieval process of a slightly acidic heat-induced epitope retrieval (HIER)
buffer (pH 6.0) under high pressure. The GeoMx NGS RNA assay uses a two-
step, tissue-dependent epitope retrieval process with a basic HIER buffer (pH
9.0) followed by a proteolytic-induced epitope retrieval (PIER) step. Given two
analytes that required distinct and disparate antigen retrieval conditions, we
first optimized sample treatment conditions compatible with both analytes:
staining, epitope retrieval, and Proteinase K (ProK) digestion.

Staining Strategy
Sample preparation for ISH normally involves harsh conditions, such as high
salt concentrations and prolonged exposure to formamide at elevated tempera-
tures, all of which may disrupt the antigen–antibody complex and thus reduce
protein detection in FFPE tissue samples. To investigate the impact of ISH con-
ditions on protein antigen detection, we first evaluated two sequential staining
strategies: ISH staining followed by IHC staining (ISH > IHC) and in the re-
verse order (IHC > ISH). After implementing both staining steps, slides were
subsequently processed on the GeoMx platform. We hypothesized ISH > IHC
would result in optimal protein detection when compared with the reverse
order. When IHC staining was performed first, followed by ISH, we found a
slightly lower correlation (R = 0.86) and a 36% decrease in sensitivity when
compared with single-analyte protein control (Fig. 1C; Supplementary Fig. S1).
In contrast, carrying out ISH first, followed by IHC staining, had only a minor
impact on protein correlation (R = 0.95) and sensitivity (5% decrease).

We also evaluated a simultaneous strategy, concurrently stainingwith both anti-
bodies (for IHC) andRNAprobes (for ISH) under conditionswhere formamide
was reduced 5-fold. For this experiment, we evaluated the impact of the simul-
taneous staining conditions on protein detection in absence of RNA probes.
While formamide allows for the hybridization to occur at lower temperatures
and reduces the nonspecific binding of RNA probes, it can disrupt antibody–
antigen interactions, and thus the quality of antibody-based protein detection
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(11, 34). With the simultaneous staining strategy, we observed a 45% decrease
in protein target detection, indicating disruption of antibody-antigen binding
even in the reduced formamide concentration (Fig. 1C; Supplementary Fig. S1).
Therefore, we concluded that the optimal strategy for dual detection of RNA
and protein targets was sequential staining with ISH followed by IHC.

Impact of Epitope Retrieval Conditions
Next, we sought to identify the optimal epitope retrieval conditions for the SPG
assay. The standard GeoMx RNA and Protein assays are designed to perform
at opposing HIER conditions, basic and slightly acidic conditions, respectively,
whereas the SPG assayworkflow calls for a single epitope retrieval condition. To
optimize the HIER conditions specifically for the SPG assay, 11 FFPE CPA sec-
tions were pretreated under basic or slightly acidic HIER conditions followed
by PIER with 1μg/mL of ProK. The CPA sections provide a uniform set of cells
with known RNA expression levels as defined by the Cancer Cell Line Ency-
clopedia (CCLE) RNA sequencing (RNA-seq) dataset (35). Pretreated sections
were then stained in a sequential fashionwith theGeoMxHumanCancer Tran-
scriptome Assay (GeoMx CTA;∼1,800 protein-coding genes) followed by a set
of modular GeoMxHumanNGS Protein panels (59-plex; Supplementary Table
S2). For each cell line, the signal was averaged across biological replicate ROIs
and the SNR was calculated for protein and RNA targets. The performance of
the SPG assay was compared with the single-analyte assay control slides.

When the SPG assay data on FFPE cell lines were compared with the single-
analyte RNA assay controls, we observed a strong correlation (R > 0.94)
regardless of slightly acidic or basic HIER pretreatment conditions (Supple-
mentary Fig. S2A and S2B). In addition, HIER pretreatment conditions had
little impact on the correlation between the SPG assay data and the CCLERNA-
seq data (R > 0.84; ref. 35; Supplementary Fig. S2C). From the CCLE RNA-seq
dataset, we identified a true set of expressed genes (TPM > 1) that was used to
calculate the true positive rate (sensitivity) and false positive rate (FPR, speci-
ficity) with respect to assessed RNA targets. The FPR of the SPG assay under
basic HIER conditions was <10% (Supplementary Fig. S2D). In contrast, for
the assay under slightly acidic HIER conditions, the FPR increased to 30%. The
high FPR associated with slightly acidic HIER conditions is consistent with the
previous observation: an increase in nonspecific hybridization when epitope
retrieval was performed under slightly acidic conditions (31).

The SPG assay was then compared with the single-analyte protein assay from
FFPE cell lines. The pretreatment of samples with slightly acidic HIER demon-
strated a higher correlation (R= 0.86) to the protein assay control thanwith the
basic HIER treatment (R = 0.77; Supplementary Fig. S3A and S3B). Thus, the
evaluation of epitope retrieval methods indicated the optimal detection of pro-
tein under slightly acidic HIER conditions and the optimal detection of RNA
under basic conditions, which is consistent with the standard GeoMx single-
analyte workflows. While detection sensitivity for protein decreased when
slides were pretreated under basic conditions followed by ProK, nonspecific
binding for RNA increased under slightly acidic conditions. To move forward,
we chose to maintain RNA detection specificity and refine protein sensitivity
by titrating ProK concentrations under basic HIER conditions.

Impact of ProK Concentrations
We noted the relatively high concentration of ProK (1μg/mL) used in the PIER
step drove protein target detection loss due to antigen digestion (Supplemen-
tary Fig. S3C). Thus, we assessed the effects of ProK concentration under basic
HIER on protein and RNA target detection in the SPG assay. To evaluate the

effects of various concentrations of ProK, 45 FFPE CPA sections were stained
with the GeoMx Human Whole Transcriptome Atlas (GeoMx Human WTA;
>18,000 protein-coding genes) probe set and a 59-plex set of GeoMx Human
NGS Protein panels. FFPE cell lines were assessed under basic HIER condi-
tions followed by PIER with varying concentrations of ProK.When comparing
the single-analyte protein control with the SPG assay, the SNR correlations
between these two assays remained relatively strong (R = 0.83–0.86; Fig. 1D;
Supplementary Fig. S4A–S4D) and FPR remained <10%, regardless of ProK
concentrations (Supplementary Fig. S4E). However, the levels of protein tar-
get detection significantly decreased (>37%) at ProK concentrations≥1μg/mL
(Fig. 1E). At 0.1 μg/mL ProK, the number of detected protein targets by the
SPG assay was comparable (∼13% decrease in detection) to the single-analyte
protein control.

For RNA targets, the correlation between the SPG assay and the RNA single-
analyte control was higher when the samples were treated with increased ProK
concentrations as expected (R= 0.86 for 0μg/mL ProK, R= 0.88–0.91 for 0.1–
1.0 μg/mL ProK; Fig. 1D; Supplementary Fig. S5A–S5D). A similar trend was
observed when we compared the SPG assay data of RNA targets with the CCLE
RNA-seq data (R = 0.77 for 0 μg/mL ProK, R = 0.8–0.83 for 0.1–1.0 μg/mL
ProK; Fig. 1D; Supplementary Fig. S5E). Using the CCLE RNA-seq dataset, we
identified a true set of expressed genes (TPM > 1) that was used to calculate
the number of true positives. In our analysis, the number of true positives in-
creased with higher concentrations of ProK (Fig. 1F; Supplementary Fig. S5F).
These results demonstrate the critical balance between ProK proteolytic di-
gestion and optimal RNA detection. Even at the lowest ProK concentrations,
the digestion of critical protein epitopes was detectable. Particularly, the de-
tection of low-abundance protein and RNA targets was the most affected by
ProK.

GeoMx SPGWorkflow
After optimizing the staining strategy for the SPG assay, including the epitope
retrieval conditions and ProK concentrations on sensitivity and specificity for
protein and RNA detection, we established the optimal GeoMx SPG workflow.
This workflow consists of a sequential staining strategy of ISH followed by IHC
under basic (pH 9.0) HIER conditions with the ProK digestion (PIER) step at a
low concentration (0.1 μg/mL). The optimized GeoMx SPG workflow requires
a total of 4 days to complete from the slide preparation step to the data ac-
quisition and analysis, which is described below. The GeoMx SPG workflow
is compatible only with NGS readout including custom NGS probes and not
compatible with nCounter readout (Fig. 1G).

The overall SPG workflow for FFPE samples is as follows:

i. Day : A two-step epitope retrieval process involving HIER under ba-
sic (pH 9.0) conditions followed by a PIER step using 0.1 μg/mL ProK.
Samples are then incubated with the GeoMxWTA or GeoMx CTA RNA
probe cocktails overnight for hybridization at 37°C.

ii. Day : Samples are washed under stringent conditions in the presence
of 50% formamide and subsequently treated with a blocking solution
to prevent nonspecific antibody binding. After blocking, samples are
stained with one ormore GeoMxNGS Protein panel(s) overnight at 4°C.
Fluorophore-conjugated primary antibodies may be added at this step to
visualize tissue morphology.

iii. Day : After fixing with 4% paraformaldehyde and staining with a nu-
clear marker (Syto13), samples are processed on the GeoMx DSP and
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then sequenced on the Illumina NextSeq2000 or Illumina NovaSeq6000
as noted in Materials and Methods.

iv. Day : Process data with the GeoMx NGS Pipeline as described in
Materials and Methods.

The GeoMx platform offers the researcher the ability to profile different sizes
(minimum of 5 μm × 5 μm to maximum of 660 μm × 785 μm) and shapes
(circular, rectangles, squares, polygons) of ROIs. The approximate number of
cells captured by various ROI sizes have been determined and are follows: 50
μm (15 cells), 100–200 μm (100 cells), 250 μm (250 cells), 400 μm (480 cells;
refs. 29, 31, 36). A maximum number of ROIs that can be placed on a single
scan is 380.

The recommendedROI size for optimal detection of protein andRNAusing the
Proteogenomic GeoMx assay are as follows: nonsegmented geometric ROIs of
50–200 μm diameter circles and segmented ROIs of 50–300 μm diameter cir-
cles. It should be noted that smaller size ROIs (50 μm; ∼15 cells) will provide
insight into medium- and high-expressing targets and subsequent pathway en-
richment analysis. For the detection of low expressors andmore robust analysis
such as cell type deconvolution and DE analysis, ROIs > 100 μm (>50 and
>100 cells for protein and RNA, respectively) are recommended.

Profiling of Cell Lines Using the Optimized GeoMx
SPGWorkflow
Using the optimized GeoMx SPG assay workflow, we profiled FFPE CPA sec-
tions using the GeoMxHumanWTA and the 15-modular GeoMxHumanNGS
Protein panel simultaneously (147-plex; Supplementary Table S3). The GeoMx
Human Protein Assays with NGS readout enables to profile of up to 144 protein
targets (plus additional three IgG controls) simultaneously. As protein andRNA
controls, CPAs were independently stained with the standard single-analyte
GeoMx Human NGS Protein panel (147-plex) or with the standard single-
analyte GeoMx HumanWTA, respectively.

During the technical development of the SPG assay, we used a combination of
59-plex Human NGS protein panels (including IgG controls). Once the SPG
assay was developed, we increased the number of panels to 15, composed of 147
proteins (147-plex, including IgG controls). By profiling FFPE samples of 45 dif-
ferent cell lines, the correlation of these two assays was tested. The SNRs of the
SPG assay data using the 147-plex protein panel demonstrated a strong correla-
tion (R = 0.92) between proteins that overlap with the original 59-plex protein
panel (Fig. 2A). This finding suggests that more than doubling the number of
proteins measured had little impact on assay performance.

Using the 147-plex Human NGS protein panel, we compared the performance
of the SPG assay with the protein control assay. There was a strong correla-
tion (R = 0.92) and the distribution of SNR counts were comparable between
the two workflows (Fig. 2B; Supplementary Fig. S6A). Furthermore, both the
single-analyte protein and SPG assay was reproducible across multiple users
and instruments, where a very strong correlation (R = 0.99) was observed
(Fig. 2C; Supplementary Fig. S6B). A pairwise correlation analysis was per-
formed across 37 cell lines and all detectable targets (SNR≥ 3). In the cell line to
cell line comparison, the Pearson R was calculated between each cell line from
the SPG assay against all cell lines in the single-analyte control. A dot plot was
generated showing the Pearson R distribution for each cell line. There was a
high correlation between the same cell lines in these two assays (Fig. 2D). In
addition, we observed a high correlation between protein targets regardless of
assay type in the target-to-target comparison across cell lines (Supplementary

Fig. S7). To preserve the phosphorylation state of phosphorylated proteins, cell
lines SKBR3, A431, and SH-SY5Y, making up the 45 CPAs, had been treated
with a phosphatase inhibitor prior to paraformaldehyde fixation. The inhibitor
treatment of cell lines partially drives a high correlation among phospho-
specific antibodies as observed in the target-to-target heatmap (Supplementary
Fig. S7).

For cellular activities, protein phosphorylation plays a critical role in the reg-
ulation of various cellular processes including cell signaling, gene expression,
and cell growth and differentiation. Aberrant phosphorylation events are as-
sociated with several diseases including cancer, neurodegenerative disorders,
and metabolic disorders. While transcriptomics enables the comprehensive
profiling of cell and tissue specific gene expression, it is unable to decipher
the phosphorylation state of key proteins. To study phosphorylation-related
diseases and biological activities, using phospho-specific antibodies is one
way to capture the phosphorylation state of the proteins. Approximately
12% of the antibody content in the proteomic portion of the SPG assay
includes a number of phospho-epitope–specific antibodies, important for
the exploration of signaling pathways (MAPK and PI3K) and neuropathol-
ogy (hyperphosphorylated Tau). The performance of the phospho-specific
protein detection from FFPE cell lines under SPG assay conditions was sim-
ilar to the single-analyte protein control (R = 0.91; Fig. 2E; Supplementary
Fig. S8). Furthermore, the performance of the phospho-specific detection with
the SPG assay was reproducible across multiple users and instruments (R =
0.99; Fig. 2F; Supplementary Fig. S8).

We evaluated the change in sensitivity, as denoted by the average change in re-
gression line slope, of the SPG assay compared with the single-analyte protein
control (Fig. 2G). Using homogenous cell pellets minimized the confounding
variables associated with section-to-section variability and precisely match-
ing ROIs across multiple tissue samples. In our analysis, we observed an 11%
decrease in sensitivity for the SPG assay.

In addition to evaluating the detection of protein targets, we examined the data
quality of the RNA targets detected with the SPG assay in comparison with the
RNA control and the CCLE RNA-seq dataset. A strong correlation (R = 0.86)
was observed when comparing the single-analyte RNA control with the SPG
assay (Fig. 2H). In the violin plots, a slight decrease in sensitivity was observed
for the SPG assay (Supplementary Fig. S9A). As with the protein analyte, there
was a high correlation (R ≥ 0.86) between multiple users and instruments for
both the SPG and the single-analyte RNA assay (Fig. 2I; Supplementary Fig.
S9B). Furthermore, we observed a 15% decrease in sensitivity for SPG assay
compared with the single-analyte control (Fig. 2G). For all overlapping targets
between the GeoMx Human WTA and the CCLE RNA-seq dataset, each cell
line in the proteogenomic assay and the RNA control were correlated to every
cell line in the CCLE dataset (1,012 cell lines). For both the SPG and RNA con-
trol assays, we observed the highest correlation between matched cell lines to
the CCLE RNA-seq dataset (Fig. 2J). The target-to-target comparison of single-
analyteWTA control with SPGWTA data indicated a high correlation between
RNA targets between assay types (Fig. 2K).

GeoMx SPG Assay in Human Tissue
Having validated the SPG assay on idealized cell pellet samples, we sought to
evaluate the assay on human colorectal cancer samples. We profiled matched
immune (CD45+) and tumor (PanCK+) regions in serial FFPE tissue sections
stained with the GeoMx Human WTA and/or the 147-plex modular GeoMx
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FIGURE 2 Assessment of SPG data quality versus the respective RNA and Protein control data. Assay correlation with respect to the protein analyte
comparing 147-plex and 59-plex protein panel (A), protein control and proteogenomic workflows (B), and user-to-user and instrument-to-instrument
reproducibility (C). D, Cell line to cell line comparison of protein control with proteogenomic protein data. For protein targets with SNR ≥ 3, the
Pearson R was calculated between each cell line from the Protein Control slide against all the cell lines in the SPG slide. The max R cell line between the
SPG and Protein control is labeled and highlighted green. Assay correlation of 17 phospho-specific antibodies between protein control and
proteogenomic workflows (E) and user-to-user and instrument-to-instrument reproducibility (F). G, Assay correlation with respect to the RNA analyte
comparing summary of Pearson R, the slope of linear regression, and change in sensitivity between workflows. The change in sensitivity corresponds
to the average change in regression line slope between the SPG and the single-analyte control assay. RNA control and proteogenomic workflows (H)
and user-to-user and instrument-to-instrument reproducibility (I). J, Cell line to cell line comparison of WTA control and proteogenomic WTA data to
the entire CCLE RNA-seq dataset. For all overlapping targets between the CCLE and WTA data, the Pearson R in the protein control and SPG WTA data
were calculated against all cell lines in the CCLE RNA-seq. Cell line labels in the plot correspond to SPG or GeoMx WTA cell lines with the highest R
correlation to the CCLE data. K, Target-to-target comparison of WTA control to proteogenomic WTA data. For each RNA target with SNR ≥ 4, the
Pearson R was calculated between WTA control log2 SNR transformed data and the respective proteogenomic WTA log2 SNR transformed data.
Histogram shows the distribution of Pearson R.

Human NGS Protein panels. For these experiments, geometric ROIs (100 μm
diameter circles) were collected for each morphology-specific regions (Fig. 3A;
Supplementary Fig. S10A and S10B). In colorectal cancer samples, we observed
a high correlation (R ≥ 0.80) across ROIs between the SPG assay as compared
with the single-analyte protein (Fig. 3B) and RNA assays (Fig. 3C). The corre-
lations were higher in cell lines; however, this is to be expected given variables
associated with section-to-section variability or preciselymatching ROIs across

multiple slides.We then performed a correlation analysis on all CD45-enriched
or PanCK-enriched ROIs between the SPG assay and the single-analyte pro-
tein or RNA assays. Protein targets with SNR ≥ 3 and WTA RNA targets with
SNR ≥ 4 were used in the analysis. A dot plot was generated showing the
Pearson R distribution for each ROI. In this analysis, we observed a high cor-
relation between immune ROIs and between tumor ROIs from the SPG and
single-analyte controls (Supplementary Fig. S11A and S11B).
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FIGURE 3 Assessment of SPG performance on human tissue. FFPE colorectal cancer sections were stained with the GeoMx NGS Human Protein
modules (147-plex), WTA, and antibodies against PanCK (Tumor) and CD45 (Immune). A, Representative image of colorectal cancer sample used in
the assessment of SPG data quality versus the respective RNA and Protein control data. Two ROIs showing strong enrichment of immune cells (CD45;
magenta) and tumor cells (PanCK, green). Concordance between the proteogenomic assay and single analyte protein (B) and RNA controls (C).
Concordance between the initial and stored proteogenomic slide for protein (D) and RNA analytes (E). F, Multiplexed protein and RNA characterization
of colorectal cancer sample with representative images highlighting the segmentation of 300 μm circular ROIs into tumor- (PanCK+) and immune-
(CD45+) enriched regions. Segments illuminated in white were collected, black regions were not. Protein targets with SNR ≥ 3 and WTA RNA targets
with SNR ≥ 4 were used in the analysis. Unsupervised hierarchical clustering of top 250 differentially expressed RNA (G) and detect protein targets for
colorectal cancer (H). I, Combined volcano plot of Protein and RNA expression in colorectal cancer. A subset of differentially expressed genes is
labeled with colors matching their analyte.

We were also interested in the ability to profile colorectal cancer samples that
had been stored in 1X TBS-T at 4°C, protected from light for 1-week post-initial
DSP collection. One of the key benefits of using the GeoMx DSP platform for
spatial profiling is that it entails a nondestructive process where tissue sec-
tions can be stored and reprofiled on additional ROIs (29). In this experiment,
each sample slide contained two FFPE colorectal cancer tissue serial sections,
one of which was used in the initial DSP profiling. We matched ROIs from
the initial collection onto the unprofiled section without a stripping/reprobing
process. As expected, profiling of the SPG assay slide post-1-week storage
provided a high correlation to the initial profiling data for both the pro-
tein (R = 0.97) and RNA (R = 0.80) analytes (Fig. 3D and E). Together,
we demonstrated high concordance between ROIs across serial sections and
slides; more importantly, samples can be stored for additional DSP profiling
runs.

Optical Segmentation with SPG Assay
We then explored the optical dissection capabilities of the GeoMx segmenta-
tion function using the SPG assay. The ability to optically dissect a tissue based
on morphologic or biological features is an advantage for profiling protein and
RNA targets in the distinct spatial context and within specific cell subpopu-
lations. Using the segmentation strategies of the GeoMx DSP, we assessed the
performance of the SPG assay on human colorectal cancer tissue samples. Ap-
plying the established SPG assay workflow, tissue sections were stained with
the GeoMx Human WTA probe set and the 147-plex modular GeoMx Human
NGS Protein panel, along with fluorescent dye–conjugated primary antibod-
ies for CD45 and PanCK. Twelve circular ROIs of 300 μm in diameter were
segmented into the AOIs of CD45-enriched immune and PanCK-enriched
tumor cell subpopulations. The ROIs were selected across the various tu-
mor regions within the tissue section, including tumor regions proximal to
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immune-rich or immune-poor regions (Fig. 3F; Supplementary Fig. S10B). To
analyze expression patterns within the segmented AOIs, we performed unsu-
pervised hierarchical clustering of the top 250 differentially expressed RNA
and detected protein (SNR ≥ 3) targets. As expected, we observed distinct
clustering of targets within immune segments and tumor segments (Fig. 3G
and H).

We performed DE analysis between CD45-enriched immune and PanCK-
enriched tumor segments for both analytes. As shown in the volcano plot
(Fig. 3I), we observed robust codetection of immune-related protein and RNA
targets in the CD45-enriched segments whereas tumor-associated targets were
observed in PanCK-enriched segments. In addition, an examination of expres-
sion levels of key RNA/Protein target pairs associated with either immune or
tumor segments illustrates the variability of certain targets in a distinct immune
or tumor AOI (Supplementary Fig. S12). For example, we observed high levels
of HLA-DR protein/RNA target pair in immune segments and low in tumor.
The opposite was true for cytokeratins, where high levels were observed in tu-
mor segments and low levels in immune. Some RNA/protein target pairs, for
example, RPS6, a critical component to translational activities, were expressed
at high levels in all segments.

When considering the correlations of all detectable protein targets and RNA
targets in either immune or tumor segmented AOIs, we noted distinct pat-
terns of positive and negative correlation. For example, IFNγ-inducible protein
30 (IFI30) is expressed in most antigen-presenting cells (APC), including
monocytes, macrophages, and dendritic cells, where it functions in MHC class
II-restricted antigen processing and has been shown to have a role in the im-
mune response to malignant tumors such as melanoma, prostate cancer, and
glioma (37–40). In the immune AOIs, there was a strong positive correlation
between the IFI gene and protein targets associated with MHC class II pre-
sentation on macrophages (CD68, CD14, HLA-DR), Th cells (CD4, CD127),
dendritic cells (S100B) and tumor cells or activated APCs (B7-H3; Supplemen-
tary Fig. S13). On the contrary, we observed a negative correlation of the IFI
gene with CD20 (B cells) and CD95/Fas (cell death) and CD8 (cytotoxic T
cells; Supplementary Fig. S13). In the tumor segments, a negative correlation
between theMUCAC RNA target associated with mucus production in goblet
cells and the protein target PanCK (tumor cell marker) was observed (ref. 41;
Supplementary Fig. S14). Conversely, there was a positive correlation between
theMUCAC RNA target and autophagy-related protein targets ATG5, ATG12,
LAMP2A, and BAG3. Normal regulation of mucus production commonly in-
volves autophagy for the regulation and secretion ofmucins (42, 43). Abnormal
expression of MUC5AC is commonly associated with malignant colorectal
cancerous cells (41), as observed in our data (Supplementary Fig. S14).

In addition to colorectal cancer tissues, we also evaluated the GeoMx segmen-
tation capabilities on human NSCLC samples. Tissue sections were stained
with the GeoMx Human WTA and the 147-plex modular GeoMx Human
NGS Protein panel, along with primary antibodies for CD45 and PanCK
for visualization. Twelve circular ROIs of 300 μm in diameter were selected
across various tumor regions and segmented into CD45-enriched immune
and PanCK-enriched tumor subpopulations (Supplementary Fig. S15A). As
with colorectal cancer, the DE analysis demonstrated robust codetection and
specificity of both protein and RNA targets within each segment type (Supple-
mentary Fig. S15B). Furthermore, we observed distinct clustering of RNA and
protein targets within immune segments and tumor segments (Supplementary
Fig. S15C).

Performance of SPG Assay on Mouse Tissue
Given the frequent use of mouse models for studying various human biol-
ogy and diseases, we examined our SPG assay on mouse tissue samples. For
profiling, FFPE mouse multiorgan TMA sections were stained with the Ge-
oMxMouseWTA (21,000+ protein-coding genes) and the 15-modular GeoMx
Mouse NGS Protein panel (137-plex; Supplementary Table S4). In parallel,
TMAs were stained with the standard single-analyte 137-plex GeoMx Mouse
NGS Protein panel or with the standard single-analyte GeoMx Mouse WTA,
used as the protein and RNA controls, respectively. For these experiments, cir-
cular ROIs (100 μm diameter) were selected for multiple tissue types including
thymus, small intestine, kidney, and seminal vesicle (Fig. 4A, middle; Supple-
mentary Fig. S16). In each tissue type, there was a strong correlation between
the single-analyte RNA data and the SPG assay data on the small intestine
(R = 0.82), thymus (R = 0.70), kidney (R = 0.76), and seminal vesicle (R =
0.71; Fig. 4A, top). Like that of human colorectal cancer tissue samples, the cor-
relations were higher in cell lines; however, this is to be expected given variables
associated with section-to-section variability or preciselymatching ROIs across
multiple slides. When we performed unsupervised hierarchical clustering on
matched AOIs between the SPG assay and single-analyte RNA data, there was a
high concordance between matched ROIs as well as a high correlation between
tissue-specific ROIs (Supplementary Fig. S17A). In the unsupervised hierarchi-
cal clustering analysis of the top 400 detected RNA targets, we observed distinct
clustering with respect to tissue type (Fig. 4B).

For protein profiling, the correlation between the SPG assay data to the single-
analyte protein data was strong (R ≥ 0.97) for all mouse tissue types tested
(Fig. 4A, bottom). In an unsupervised hierarchical clustering on matched
ROIs between the SPG assay and single-analyte protein data in each tis-
sue type, there was a high concordance between matched ROIs as well as
a high correlation between tissue-specific ROIs (Supplementary Fig. S17B).
Furthermore, we observed distinct clustering of protein targets within spe-
cific tissue types (Fig. 4C). When we examined the expression level of several
RNA/protein target pairs, there was a high concordance between the two an-
alytes for GAPDH, S6, Histone H3, whereas a subset of targets was detectable
only at the protein level (B7-H3, CD34, CD68, GZMB, S100B; Supplementary
Fig. S18).

Glioblastoma Study Using SPG Assay
After successfully developing a SPG assay and evaluating its performance on
various cell lines and tissues, we assessed the performance of the SPG assay in
another biological context using a brain glioblastoma tissue array. GBM is a
highly aggressive, grade IV astrocytoma that accounts for 49% of all primary
malignant brain tumors (44, 45). Despite low incidence compared with other
human cancers, glioblastomas are considered one of the deadliest (45, 46). The
low numbers of patients coupled with high intratumor and intertumor hetero-
geneity have presented an obstacle to developing glioblastoma treatments or
providing formal subtypes that could contribute to therapeutic understanding
(47). Initially, even cytologic or IHC characteristics were difficult to solidify
(48). The advancement of technology, however, has expanded knowledge of
the molecular and genetic hallmarks of glioblastoma subtypes. The cytolog-
ical hallmark of any GBM subtypes is the result of several mutations acting
in concert. In addition, overactivity of both PI3K/AKT and MAPK/ERK path-
ways drives cell proliferation and differentiation, a characteristic of GBM (49).
It is also clear that these features have a variety of effects on prognosis (50, 51).
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FIGURE 4 Spatial proteogenomics across mouse tissue types. High-plex SPG characterization of mouse tissues with matched circular ROIs. FFPE
sections were stained with GeoMx Mouse WTA (RNA control), 15-stacked GeoMx Mouse Protein Modules (137-plex; protein control), or both analytes
simultaneously with the SPG workflow. A, Concordance and representative images of mouse tissue used in the assessment of the SPG versus the
respective RNA (top) and protein (bottom) control. Unsupervised hierarchical clustering of top 400 expressing RNA targets with an SNR ≥ 4 (B) and
detected protein targets (SNR ≥ 3; C) across all tissue types.
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FIGURE 5 SPG exploration of GBM grade 4. A, A total of 42 cores across 23 distinct sample sources and multiple GBM types. ROIs were segmented
into CD45+, GFAP+, or CD45−/GFAP−. B, Statistics from a single slide and single GeoMx SPG run. UMAP plots for protein (C) and RNA analytes (D).

Giant cell glioblastoma multiforme (gcGBM) are of particular interest, as they
are consistently associated with complete resection and improved survival (52).
As another hallmark of gcGBM, giant, multinucleated cells have been linked
to distinct, dysfunctional aspects of DNA damage signaling (53) and cell-cycle
checkpoints (54). Though many promising molecular targets for therapy have
been identified (37–41), a better understanding of the tumormicroenvironment
and the tumor heterogeneity is needed for the development of more effective
and targeted therapies (55–59).

A SPG approach offers a robust way to identify impactful interactions between
analytes. In this study, we profiled 23 different cases across four different patho-
logic (grade 4) subtypes including GBM (17 cases), epithelioid glioblastoma
(Ep-GBM; three cases), gcGBM (two cases), and primitive neuronal compo-
nents of glioblastoma (PNC-GBM; one case). The TMA was stained with the
GeoMx Human WTA and the 147-plex modular GeoMx Human NGS Pro-
tein panel alongwith fluorophore-conjugated primary antibodies for CD45 and
GFAP to guide ROI selection and segmentation. A total of 76 circular ROIs,
300 μm in diameter, were segmented into CD45+ (Immune), GFAP+ (Astro-
cyte/Tumor), or CD45−/GFAP− (Fig. 5A; Supplementary Fig. S19). GBM is a
highly heterogeneous and disorganized tumor, where more advanced tumor
types are more disorganized. The heterogeneous and disorganized nature of
GBM makes it difficult to select clear tumor- and/or immune-enriched ROIs
compared with colorectal cancer or NSCLC samples. Even in these highly dis-
organized samples, the segmentation capabilities of the GeoMxDSP allowed us

to optically dissect immune and astrocytic/tumor cells (Fig. 5A; Supplementary
Fig. S19 and S20). In total, 224 AOIs were collected; the resulting dataset was
composed of 4.25 million data points (Fig. 5B).

In a UMAP dimension reduction analysis of GBM samples, we observed dis-
tinct clustering based on pathology and tumor anatomic location for both
protein (Fig. 5C) and RNA (Fig. 5D). These findings suggest that the anatomic
location and subtype of GBM contribute to overall pathology and the presence
of molecular signatures. In a DE analysis between GFAP+ (Astrocyte/Tumor)
and CD45+ (immune) segments using a cutoff of FDR < 0.001 and fold
change (FC) >2, we identified 25 proteins and 88 genes that were differentially
expressed in a subset of samples.

The volcano plot highlights the DE of key targets for both protein and
RNA (Fig. 6A). For example, in CD45-enriched segments, we noted the
higher expression of key protein targets associated with immune response
such as T-cell (CD4), macrophage/monocytes (CD68, CD163, CD14, CD11c),
and dendritic cells (CD11c). In GFAP-enriched segments, tumor-associated
proteins, such as CD56, CD44, and Tau (including phosphorylated vari-
ants S199, T231, and S404) were highly expressed (Fig. 6A; refs. 60–62).
Similarly, we observed higher levels of mRNA transcripts associated with im-
mune response, such as macrophages (SRGN, CQA, CQB, CQC, IFI) and
neutrophils (LCP, LAPTM), in CD45-enriched segments, whereas GBM-
associated genes such as GFAP, DDR, CRYAB, SOX, TTYH were expressed
higher in GFAP-enriched segments (Fig. 6A; refs. 62–69). Unsupervised
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FIGURE 6 DE analysis between GFAP- and CD45-enriched segments. A, Combined volcano plot resulting from the DE analysis between GFAP-
and CD45-enriched segments for RNA (●) and protein (�) analytes. Targets with significant DE are highlighted either orange (P < 0.05), green
(FDR < 0.05) or blue (FDR < 0.001); whereas targets in gray show no significant difference in expression. A subset of differentially expressed targets
is labeled. Unsupervised hierarchical clustering analysis of detected RNA (B) and protein (C).

hierarchical clustering analysis revealed distinct clustering of RNA (Fig. 6B)
and protein (Fig. 6C) targets with respect to pathology as well as anatomic lo-
cation. These observations are consistent with the UMAP analysis, showing
that the anatomic location of tumors contributes to the molecular signatures
of GBM subtypes.

As noted above, GBM can be classified into several subtypes, one of which
is gcGBM. In this study, one of our interests was identifying transcriptomic
and proteomic signatures that differentiate gcGBM from GBM. To mitigate the
influence of the tumor anatomic location on these different pathologies, we fo-
cused our analysis on left frontal lobe tumors, as a result, the analysis was based
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FIGURE 7 SPG exploration of gcGBM and GBM. A, Representative images of ROIs segmented into CD45+, GFAP+, or CD45−/GFAP−. Top
differentially expressed protein targets (B) and RNA targets (C) from frontal lobe gcGBM as compared with GBM, all grade 4.

on a limited number of patient cases, one gcGBM and two GBM samples. Each
case contained two tissue cores and two ROIs per core which were segmented
into three AOIs: CD45+, GFAP+, or CD45−/GFAP− (Fig. 7). In a DE analysis
(FDR < 0.001, FC > 2) on detected targets for each AOI within the left frontal
lobe, we identified a total of 19 and four differentially expressed genes and pro-
teins, respectively between the two pathologies (Supplementary Fig. S21). For
protein data, we also performed a DE analysis between GBM and gcGBM for
CD45- (Supplementary Fig. S22A) or GFAP- (Supplementary Fig. S22B) en-
riched segments. Using a cutoff of P < 0.05, FDR < 0.001, and FC > 2, we
identified a total of 14 and seven differentially expressed proteins in CD45- and
GFAP-enriched segments, respectively.

While the limited number of patient cases used in our analysis is insufficient
for the complete elucidation of subtype-specific molecular signatures, we did
observe several genes and proteins in gcGBM with distinct expression profiles
compared with GBM (Fig. 7; Supplementary Fig. S21 and S22). For example,
we observed DE of protein targets, CD3 and CD8, associated with infiltrating
total T cells and CTLs, respectively (Fig. 7B; Supplementary Fig. S22A). Im-
mune infiltration has been noted as a characteristic of gcGBM (57, 70, 71). As
the prognostic role of CD3 and CD8 has yet to be established in gcGBM, there

are numerous reports associating infiltrating lymphocytes with improved prog-
nosis for several cancers (72–75). In our analysis, both CD3 and CD8 proteins
were expressed at least 2-fold higher in several CD45-enriched AOIs of gcGBM
compared with the same type of AOI in GBM samples (Fig. 7B). At the tran-
script level, CDE and CDA did not appear to be significantly differentially
expressed between the two pathologies (Fig. 7C; Supplementary Fig. S21).

We also evaluated several targets associated with tumor proliferation and/or
migration to discriminate gcGBM from GBM. GFAP, for example, shows dif-
ferential RNA expression with a lower average (and wider range) of SNR in
gcGBM than GBM samples (Fig. 7C). This difference in expression between
the two pathologies is maintained in GFAP protein (Fig. 7B), which is known
to positively correlate with advancing neuroglial tumor grade (76).

Enrichment of S100B has been shown to be sufficient to drive angiogenesis,
increase tumor inflammation (77), enhance growth (78), and drive migration
(79), all of which are features of GBM. The proposed tumorigenic contribution
of S100B has been associated with its ability to attenuate the tumor-suppressive
activity of p53 by inhibiting p53 phosphorylation and regulating cell pro-
liferation and differentiation through increasing mitogenic kinase Ndr (80)
and Akt (81) activity (78). In vitro studies involving cell lines derived from
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malignant glioblastoma shown that the attenuation of S100B expression de-
creased the number of invading cells whereas upregulation resulted in an
increase in invading cells (82). In our analysis, S100B protein expression in
gcGBM was decreased at least 2-fold in all AOI as compared with GBM
(Fig. 7B; Supplementary Fig. S22). While it has been reported that higher ex-
pression levels of S100B in patientswithGBMare associatedwith shorter overall
survival (82), it is unclear what role S100B may play in the favorable prognosis
of gcGBM compared with GBM.

While CD44, at the protein level, exhibited a broad range of expression for
both pathologies, the average expression level of RNAwas at least 2-fold higher
in gcGBM than that of GBM (Fig. 7B and C). CD44 expression is critical for
GBM invasion and migration; more importantly, GBM cells with higher levels
of CD44 have been associated with poor prognosis (60, 61, 83, 84).

In our analysis, the average expression level for Myelin basic protein (MBP) in
gcGBM was at least 64 times lower in all AOIs compared with GBM samples
(Fig. 7B; Supplementary Fig. S22). On the other hand, DE at the transcript level
was not observed. MBP has been viewed as a potential biomarker for various
types of tumors including glioblastoma in cerebrospinal fluids (85–87). In other
studies, MBP was highly expressed in oligodendroglioma while minimally ex-
pressed in GBM (88). It has been suggested that MBP may play a role in the
progression and potential treatment of multiple sclerosis; however, it is unclear
what role it has in gcGBM biology (89).

As noted earlier, the phosphorylation state of proteins can only be captured
through protein and not transcriptomic analysis. GSK3β is part of the PI3K-
AKT/mTOR pathway whose phosphorylation state plays an important role in
glycogen synthesis, apoptosis, angiogenesis, and cell cycle. In our dataset, pro-
tein expression levels of phospho-GSK3β (Ser9) were broad and at least 2-fold
higher for several AOIs in the gcGBM sample compared with GBM sample
AOIs (Fig. 7B). Phosphorylation at Ser9 of GSK3β leads to its inactivation,
which in turn prevents the phosphorylation and subsequent degradation of β-
catenin. Active β-catenin has been shown to drive cell proliferation in GBM
(90–92). We also observed differential protein expression phosphorylated Tau
variants. Phospho-Thr231 Tau was at least 2-fold higher for several AOIs in
the GBM sample compared with gcGBM (Fig. 7B; Supplementary Fig. S22).
Whereas Tau, pSer199 Tau, and pSer404 Tau were only expressed at higher lev-
els in GBM than gcGBMwithin the GFAP-enriched AOIs (Supplementary Fig.
S22B). While associated with neurodegenerative diseases such as Alzheimer’s
disease, altered Tau expression has been observed in several cancers including
glioblastoma (93–98). Like with the other targets mentioned above, based on
our limited dataset, it is not clear what role these phosphorylated proteins play
in GBM cell migration, survival, and apoptosis. Though limited in size, our
study exemplifies the utility of the SPG assay and its potential contribution to
expanding our understanding of GBMmolecular pathology.

Discussion
To better understand the relationship between RNA and protein within a spa-
tially defined cell population, we have developed a high-plex, GeoMxDSP SPG
assay with NGS readout to simultaneously detect RNA (whole transcriptome,
>18,000-plex) and protein (>100-plex) from a single tissue section slide. We
have confirmed that the sensitivity and specificity for both analytes under SPG
assay conditions are comparable with single-analyte conditions where only a

slight loss of sensitivity (<15%) is observed for both analytes. The slight loss
in sensitivity is a tradeoff when implanting the SPG assay given that the two
analytes required two distinct and disparate antigen retrieval conditions for
optimal detection. We have highlighted several use cases in cell lines and tis-
sue derived from human and mouse to demonstrate how this workflow can
be leveraged to accurately measure RNA and protein within the same sample.
In addition, we demonstrate simultaneous high-plex detection of distinct im-
mune or tumor RNA and protein targets from spatially resolved individual cell
subpopulations in human colorectal cancer, NSCLC, and GBM using the tis-
sue segmentation capabilities of the GeoMx DSP with the SPG assay. Unlike
colorectal cancer and NSCLC, GBM is a highly heterogeneous and disorga-
nized tumor, where selecting the clearly defined immune- and/or tumor-enrich
regions can be challenging. However, using the GeoMx DSP, we were able to
optically dissect immune and astrocytic/tumor cells in various GBM subtypes.
While the GBM study was restricted in scope due to the limited number of case
samples, we did observe distinct clustering of both RNA and protein data based
on pathology and anatomic location. Furthermore, we were able to identify the
DE between GBM and gcGBM for several protein and RNA targets.

Overall, the SPG assay expands upon the capabilities of theGeoMxDSP and en-
ables researchers to conduct a comprehensivemolecular analysis while preserv-
ing precious samples. Profiling RNAor protein alone will only provide a limited
picture of the biological system under study, especially when the correlation
between RNA expression and protein abundance can be poor, as highlighted
in several of our use case studies (2–5). We also identified several targets that
could only be detected by protein and not by RNA. One of the key advantages
of implementing the SPG assay is that it enables the profiling of both RNA and
protein from identical cell populationswhile eliminating the technical variation
(i.e., section-to-section variation and precisely matching ROIs across multiple
samples) introducedwhen performing single-analyte assays.More importantly,
the SPG assay provides an efficientmeans of profiling two analytes from a single
slide as opposed to running two separate slides, one for each analyte.

Another advantage of the SPG workflow, as with all GeoMx assays, is that the
process is nondestructive which allows the researcher to store and reprofile
their samples. Furthermore, it uses modular GeoMx reagent panels that are
validated for use in high-plex studies and can be customized with additional
targets. More importantly, GeoMx Protein reagents contain antibodies specific
to intracellular and phosphorylated protein targets. The detection and quan-
tification of phosphorylated proteins can only be achieved at the protein and
not RNA level by using phospho-specific antibodies. We have shown that the
GeoMx SPG assay in FFPE tissues across species gives comparable specificity
to the single-analyte GeoMx assays, with only a minor decrease in overall sen-
sitivities, demonstrating a high-quality multimodal omic workflow compatible
with the GeoMx DSP platform.

Transcriptomics and proteomics work in concert to describe cell activity, cell
function, and cell-to-cell communication. Profiling RNA expression gives in-
sight into the cellular blueprints and assessing proteins describes the cellular
architecture, functions, and cell-to-cell communications. But each in isolation
is only part of the necessary whole. The ability to profile both RNA and pro-
tein analytes simultaneously, at ultra high-plex within a spatially resolved single
population of cell types, helps to close the knowledge gap between these two
omics, paving the way for critical SPG investigations and discoveries within the
rapidly emerging field of spatial biology.
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