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Abstract

With the increasing availability of electronic health records (EHR), significant progress has been 

made on developing predictive inference and algorithms by health data analysts and researchers. 

However, the EHR data are notoriously noisy due to missing and inaccurate inputs despite the 

information is abundant. One serious problem is that only a small portion of patients in the 

database has confirmatory diagnoses while many other patients remain undiagnosed because 

they did not comply with the recommended examinations. The phenomenon leads to a so-called 

positive-unlabelled situation and the labels are extremely imbalanced. In this paper, we propose 

a model-based approach to classify the unlabelled patients by using a Bayesian finite mixture 

model. We also discuss the label switching issue for the imbalanced data and propose a consensus 

Monte Carlo approach to address the imbalance issue and improve computational efficiency 

simultaneously. Simulation studies show that our proposed model-based approach outperforms 

existing positive-unlabelled learning algorithms. The proposed method is applied on the Cerner 

EHR for detecting diabetic retinopathy (DR) patients using laboratory measurements. With only 

3% confirmatory diagnoses in the EHR database, we estimate the actual DR prevalence to be 25% 

which coincides with reported findings in the medical literature.
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1. Introduction.

The health care industry has become more computerized and digital in the past decade. 

The electronic health records (EHR), which are digitally archived data from hospitals and 

clinics, contain a tremendous amount of information on patients’ medical history. The rich 

information in EHR is vital for research in personalized medicine and clinic decision support 

systems, which are potentially revolutionary to many traditional medical fields.
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While offering potential benefits to the clinical decision making process, EHR are highly 

subject to missing and inaccurate inputs (Hripcsak and Albers, 2012), which often leads 

to poor decisions. For instance, in many EHR-based predictive modelling, the diagnosis 

codes (e.g., the ICD-9 codes) are often used to determine the patient cohorts. Patients with 

certain codes of interest are identified as cases, and patients without such codes are typically 

assumed of no disease and thus identified as controls (Ng et al., 2016; Piri et al., 2017). 

However, such practices can be problematic with the assumption that missing diagnosis code 

equals to no disease. In fact, an underlying patient without the ICD-9 codes of interest may 

still have the disease but no examination was performed or the medical care was from a 

different health system. Ignorance of the uncertainty in the binary case-control labelling 

could severely dampen the performance of a predictive model (Zawistowski et al., 2017).

It is necessary to re-consider the data quality for any secondary analysis of EHR 

(Dziadkowiec et al., 2016; Botsis et al., 2010). In fact, the EHR data that we encounter 

are known as presence-only data in which a patient is either positively labelled or unlabelled. 

The problem of (re)labelling undiagnosed patients is referred to as the positive-unlabelled 

(PU) learning (Mordelet and Vert, 2014). The problem of PU learning arises from various 

situations, including disease-related gene identification (Yang et al., 2012; Mordelet and 

Vert, 2011), medical diagnosis (Zuluaga et al., 2011) and text classification (Li and Liu, 

2003; Liu et al., 2003). Algorithm-based approaches are popular in the literature, for 

example, the two-step approach (Li and Liu, 2003; Liu et al., 2002; Li et al., 2009), 

biased support vector machine (SVM) (Liu et al., 2003) and ensemble algorithms based on 

bootstrap aggregating (Mordelet and Vert, 2014; Claesen et al., 2015).

The existing algorithm-based PU learning methods often perform poorly on heavy-tailed 

distributions (Xu, Crammer and Schuurmans, 2006) that are common for medical lab 

measurements. We also find that the existing algorithms can be sensitive to the positive 

proportion in the unlabelled group in simulation studies. Furthermore, parameter estimation 

and uncertainty quantification are in general unavailable for algorithm-based methods. There 

is a lack of model-based approaches for PU learning in the literature and a sophisticated 

statistical model can potentially address the aforementioned issues.

In this paper, we propose a Bayesian finite mixture model and use Markov Chain Monte 

Carlo (MCMC) for the Bayesian computation. It is noteworthy that although the finite 

mixture modelling has been extensively used in clustering and classification problems 

(Huang et al., 2005; Dean, Murphy and Downey, 2006; Martella et al., 2011; McNicholas, 

2016), we are not aware of any direct application on the PU learning problem. There are 

two unique challenges when applying the Bayesian finite mixture model to our EHR data 

whose details are described in Section 6. First, the proposed finite mixture model should 

not suffer from the so-called label-switching issue with the presence of positively labelled 

observations. However, our real EHR data are extremely imbalanced with only 3% positively 

labelled cases, and we show that the label-switching occur and consequently estimates can 

be incorrect. Second, the Bayesian computation is intensive for the large EHR data so that 

an efficient computation is desired. In this paper, we propose to address the two challenges 

simultaneously by using the consensus Monte Carlo approach which splits data and then 

combines posterior subsamples.
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Our contribution in this paper is twofold. First, on the methodological side, we develop a 

model-based approach for extremely imbalanced positive-unlabelled data, and show superior 

performance comparing with existing algorithm-based methods. Moreover, comparing with 

deterministic algorithms, the Bayesian finite fixture model offers better interpretability 

of the unlabelled records from a probabilistic perspective. The distributional assumptions 

and parameter specifications enable statistical inference for researchers and clinical 

physicians, allowing them to better understand the data generating process and population 

characteristics. Second, it is of practical significance to tackle the emerging problem of 

secondary analysis of EHR data. In the application of detecting patients with diabetic 

retinopathy (DR), with only 3% confirmatory diagnoses in the EHR database, we estimate 

the actual prevalence to be 25% which is consistent with reported findings from the medical 

community. In an external validation, we show that machine learning using classified results 

gain improvements. Finally, the proposed solution for PU-learning is generalizable for other 

types of applications that are beyond the scope of EHR data analysis.

The reminder of this paper is organized as follows. In section 2, we propose a Bayesian 

finite mixture model with multivariate t distributions conditional on categories. Section 3 is 

on the Bayesian computation, specifically the details of Gibbs sampling. In section 4, we 

illustrate the issue of label-switching for imbalanced data and propose a consensus Monte 

Carlo approach. We perform simulation studies in section 5 and show that our proposed 

approach outperforms existing approaches under various settings. The real Cerner EHR 

dataset for DR diagnosis and detection is extensively analyzed in section 6. Finally, section 7 

contains concluding remarks for this paper.

2. Bayesian Finite Mixture Modelling.

2.1. Notations.

First we define useful notations. Let  denote the set of positively labelled observations 

and  denote the set of unlabelled observations, which is a mixture of positively and 

negatively labelled observations but the underlying label is unobserved. Let np and nu 

denote the sample size of  and , respectively. Each observation in the data is a vector 

of measurements, which contains values of both categorical and numerical variables. Let 

xi = xi
d, xi

c  be the feature vector, where xi
d is a one-dimensional categorical variable and xi

c

is a vector of continuous variables. Note that multiple categorical variables can be collapsed 

into one categorical variable and thus it is sufficient that xi
d is one-dimensional.

2.2. The finite mixture of multivariate t distributions.

Let our samples be  = {xp,i}, i = 1, …, np and  = {xu,i}, i = 1, …, nu. Assume that xp,i ~ 

f+(x) independently and xu,i ~ fu(x) independently, where

fu(x) = πf+(x) + (1 − π)f−(x),

where f−(x) is the underlying distribution of the negatively labelled samples, and the mixing 

probability π is called the contamination rate, which is the proportion of positive instances 

in the unlabelled set. To model f+(x) and f−(x), recall that x has two components, of which 
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xd is categorical and xc is continuous. It is natural that f+(x) is modelled conditionally, f+(x) 

= f+(xc | xd = j)f+(xd = j), where f+(xd = j), j = 1, …, J is a categorical distribution with 

category probabilities p1. Consider a multivariate t distribution for the conditional density 

f+(xc | xd = j) = t(xc | μ1,j, Σ1,j, ν1,j), where μ1,j is the location parameter, Σ1,j is the scale 

matrix and ν1,j is the degrees of freedom, and the density function for an h-dimensional t is

t xc ∣ μ1, j, Σ1, j, ν1, j =
Γ ℎ + ν1, j

2 Σ1, j
−1/2

πν1, j
ℎ/2Γ ν1, j

2 1 + xc − μ1, j
′Σ1, j

−1 xc − μ1, j /ν1, j

ℎ + ν1, j
2

.

The degrees of freedom ν1,j controls the thickness of distribution tails, and the multivariate 

t distribution approaches the multivariate normal distribution N(xc | μ1,j, Σ1,j) as ν1,j → ∞. 

Similarly, let f−(x) = f−(xc | xd = j)f−(xd = j), where f−(xd = j) is a categorical distribution 

with parameters p2 and f−(xc | xd = j) = t(xc | μ2,j, Σ2,j, ν2,j).

In a mixture model, it is convenient to introduce a latent indicator zi ∈ {1, 2} for 

observations in , for which zi = 1 denotes a positively labelled observation and zi = 2 

denotes a negatively labelled observation. Hence, p(zi = 1) = π and p(zi = 2) = 1 − π. Given 

indicators z = {zi, i = 1, …, nu}, the likelihood function for the complete dataset { , } can 

be written as

L μk, j, Σk, j, νk, j, pk , π; P, U, z = ∏
xp, i ∈ P

f xp, i
d = j ∣ p1 t xp, i

c ∣ μ1, j, Σ1, j, ν1, j ∏
xu, i ∈ U

p zi = k ∣ π f xu, i
d = j ∣ pk

t xu, i
c ∣ μk, j, Σk, j, νk, j

for k = 1, 2 and j = 1, …, J. Note that a multivariate t distribution X ~ t(μ, Σ, ν) can be 

constructed hierarchically by a multivariate normal distribution and a gamma distribution

X ∣ τ N(μ, Σ/τ), τ Gamma(ν/2, ν/2),

which is more convenient for statistical inference and computations. This model 

specification using multivariate t distributions has been considered in Andrews, McNicholas 

and Subedi (2011) for model-based classification problems, where the authors proposed an 

expectation-maximization algorithm for the inference. In this paper, we consider a Bayesian 

inference for the proposed model.

2.3. The prior distributions.

We now need to fully specify the Bayesian model by specifying the prior distributions for π 
and {μk,j, Σk,j, νk,j, pk}, k = 1, 2, j = 1, …, J. With the normal-gamma mixture representation 

for the multivariate t distribution, we can choose semi-conjugate priors for most parameters 

in the model. Let π have a beta prior Beta(α0, β0) with α0 = β0 = 1 if no extra information 

is known for the mixing probability. Let p1 and p2 both be Dirichlet(λ1, …, λJ). Let μk,j 

~ N(μ0, Σ0), Σk,j ~ Inv-Wishart(Φ0, ξ0) and νk,j ~ Gamma(a0, b0) for any k and j. We 

assign λ1 = ⋯ = λJ = 1, μ0 = 0, Σ0 = 105I, Φ0 = I and ξ0 = 3 to make these priors only 

weakly informative. In our experience, the degrees of freedom parameter νk,j sometimes can 
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be difficult to identify, depending on the data in practice. Therefore we suggest to use an 

informative prior to avoid a potential non-identifiability situation. In our applications, we 

choose a0 = 5 and b0 = 1 whose mean is 5 and variance is 5. In the literature, a fixed value 

of νk,j = 4 has been suggested to provide good protection against outliers (Lange, Little and 

Taylor, 1989; Stephens, 2000).

3. Bayesian Computations.

With priors specified in Section 2.3, we can use the Gibbs sampler to sample from the 

joint posterior distribution. Recall that np denotes the sample size of  and nu denotes 

the sample size for . Define the following counts for convenience. Let np,1, …, np,J 

denote the counts for categories 1 to J in , i.e. np, j = ∑xp, i ∈ P 1 xp, i
d = j , where 1(·) is an 

indicator function. Let nu,p and nu,n denote the counts of observations in  that are classified 

into the positive group and the negative group, respectively, i.e. nu, p = ∑xu, i ∈ U 1 zi = 1  and 

nu, n = ∑xu, i ∈ U 1 zi = 2 . Dividing nu,p into J categories leads to the counts nu,p,j, j = 1, …, J, i.e. 

nu, p, j = ∑xu, i ∈ U 1 zi = 1 ∩ xu, i
d = j . We define nu,n,j, j = 1, …, J similarly. The full conditional 

distributions for Gibbs sampling are given as follows.

1. Sample the mixing probability π from

p(π ∣ others) Beta α0 + nu, p, β0 + nu, n

2. Sample the latent indicators zi for xu,i ∈  from Bernoulli with probability p(zi = 

1 | others) being

πf xu, i
d = j ∣ p1 t xu, i

c ∣ μ1, j, Σ1, j, ν1, j

πf xu, i
d = j ∣ p1 t xu, i

c ∣ μ1, j, Σ1, j, ν1, j + (1 − π)f xu, i
d = j ∣ p2 t xu, i

c ∣ μ2, j, Σ2, j, ν2, j

and p(zi = 2 | others) = 1−p(zi = 1 | others)

3. Sample p1 from Dirichlet(λ1 + np,1 + nu,p,1, …, λJ + np,J + nu,p,J).

4. Sample p2 from Dirichlet(λ1 + nu,n,1, …, λJ + nu,n,J).

5. Sample μ1,j from p μ1, j ∣ others ∝ N μ1, j, Σ1, j , where 

Σ1, j
−1 = Σ0

−1 + Σ1, j
−1∑xi ∈ D1 τi, μ1, j = Σ1, j Σ0

−1μ0 + Σ1, j
−1∑xi ∈ D1 τixi

c , and define 

D1 = xp, i:xp, i
d = j ∪ xu, i:zi = 1 ∩ xu, i

d = j .

6. Sample μ2,j from p μ2, j ∣ others ∝ N μ2, j, Σ2, j , where Σ2, j
−1 = Σ0

−1 + Σ2, j
−1∑xi ∈ D2 τi, 

μ2, j = Σ2, j Σ0
−1μ0 + Σ2, j

−1∑xi ∈ D2 τixi
c  and define D2 = xu, i:zi = 2 ∩ xu, i

d = j .

7. Sample Σ1,j from p(Σ1,j | others) ∝ Inv-Wishart(A1 + Φ0, np,j + nu,p,j + ξ0), where 

A1 = ∑xi ∈ D1 τi xi
c − μ1, j xi

c − μ1, j ′.

8. Sample Σ2,j from p(Σ2,j | others) ∝ Inv-Wishart(A2 + Φ0, nu,n,j + ξ0), where 

A2 = ∑xi ∈ D2 τi xi
c − μ2, j xi

c − μ2, j ′.

9. Sample τp,i for xp,i ∈  from
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p τp, i ∣ others ∝ Gamma ν1, j + dim xc
2 , ν1, j + xp, i

c − μ1, j ′Σ1, j
−1 xp, i

c − μ1, j
2 ,

where dim(xc) is the dimension of the continuous random vector xc.

10. Sample τu,i for xu,i ∈  from

p τu, i ∣ others ∝ Gamma
νzi, j + dim xc

2 ,
νzi, j + xu, i

c − μzi, j ′Σzi, j
−1 xu, i

c − μzi, j

2 .

11. Sample νk,j from

p νk, j ∣ others ∝ νk, j
a0 − 1e−b0νk, j ∏

xi ∈ Dk

νk, j/2 νk, j/2
Γ νk, j/2

τi
νk, j/2e−τiνk, j/2 .

We use the Metropolis-Hastings algorithm to sample from a transformed version of this 

density uk,j = log(νk,j) so that the support is (−∞, ∞). The proposal distribution is then 

chosen to be a normal distribution.

4. Label Switching for Imbalanced Data.

4.1. Illustration of label switching.

The label switching is a well-known issue for finite mixture models due to that components 

are unidentifiable in the likelihood. However, it need not be an issue when the likelihood 

contains a component for the positively labelled data, theoretically. Despite components are 

identifiable in the finite mixture model for positive-unlabelled data, the identifiability can 

be weak if the data are extremely imbalanced, i.e. data only contain a small portion of 

positively labelled cases. It can be illustrated that label switching occurs in the computation 

due to the weak identifiability and consequently leads to incorrect estimation and inference.

For the purpose of illustration, consider a finite mixture model as follows,

xp, i f xp, i
d = j ∣ p+ t xp, i

c ∣ μ+, j, Σ+, j, ν+, j ,

xu, i π+f xu, i
d = j ∣ p+ t xu, i

c ∣ μ+, j, Σ+, j, ν+, j + π−f xu, i
d = j ∣ p− t xu, i

c ∣ μ−, j, Σ−, j, ν−, j ,

for xp,i ∈  and xu,i ∈ , where π− = 1 − π+. The log-likelihood function for this model can 

be written as follows,
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l π±, μ±, j, Σ±, j, ν±, j, p± ; P, U = ∑
j = 1

J
∑

xp, i ∈ P
xp, i

d = j

log p+, jt xp, i
c ∣ μ+, j, Σ+, j, ν+, j

+ ∑
j = 1

J
∑

xu, i ∈ U
xu, i

d = j

log π+p+, jt xu, i
c ∣ μ+, j, Σ+, j, ν+, j + π−p−, jt xu, i

c ∣ μ−, j, Σ−, j, ν−, j ,

If we switch the positive label and the negative label, the log-likelihood will differ as the 

first term changes. This log-likelihood function is then unimodal and hence components are 

identifiable as long as there is at least one positively labelled case. However, when the data 

are extremely imbalanced, that is, the sample size of  is much greater than that of , the 

first term in the log-likelihood will be negligible. In that case, the log-likelihood will be 

practically multimodal, although the global maximum is unique. In this mixture model, each 

labelled group is further a mixture of J categories, and each category j is prone to labeling 

switching as well. Therefore there are practically 2J modes with close likelihood values in 

the scenario of imbalanced labels.

To show the non-convergence of Markov chains under the multimodal scenario, we simulate 

two synthetic data sets. For both data sets, we assume np = 100, π+ = 0.3, π− = 0.7, p+,1 

= p+,2 = p−,1 = p−,2 = 0.5, μ+,1 = (1, 1, 1)′, μ+,2 = (2, 2, 2)′, μ−,1 = (3, 3, 3)′, μ−,2 = (4, 

4, 4)′, Σ+,1 = Σ+,2 = Σ−,1 = Σ−,2 = I, ν+,1 = ν+,2 = 2 and ν−,1 = ν−,2 = 5. Then we assign 

nu = 200 for data set 1 and nu = 4, 000 for data set 2 to mimic the balanced scenario and 

the imbalanced scenario. Let {π+, μ+,1, μ+,2, μ−,1, μ−,2, ν+,1, ν+,2, ν−,1, ν−,2, p±, Σ±,j} be 

the parameters of interest. It is obvious that the log-likelihood has the following 22 = 4 local 

maximums.

0.3, (1, 1, 1)′, (2, 2, 2)′, (3, 3, 3)′, (4, 4, 4)′, 2, 2, 5, 5, 0.5, I ,

0.7, (3, 3, 3)′, (4, 4, 4)′, (1, 1, 1)′, (2, 2, 2)′, 5, 5, 2, 2, 0.5, I ,

0.5, (3, 3, 3)′, (2, 2, 2)′, (1, 1, 1)′, (4, 4, 4)′, 5, 2, 2, 5, 0.5, I ,

0.5, (1, 1, 1)′, (4, 4, 4)′, (3, 3, 3)′, (2, 2, 2)′, 2, 5, 5, 2, 0.5, I ,

for which only the first one is the global maximum. For the sake of convenience, refer 

them as Modes 1 to 4, respectively. For the relatively balanced data set 1, we expect that 

Mode 1 be easily identified as the global maximum and label switching does not occur. 

On the other hand, for the extremely imbalanced data set 2, we expect that all four modes 

have close log-likelihood values and label switching occurs. Figure 1 subplots (a) and (b) 

overlap the log-likelihood as a function of π+ with other parameters fixed at the four modes, 

respectively. Subplot (a) is for data set 1. It is clear that π+ takes values 0.3, 0.5, 0.5, 0.7 at 
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the four modes and Mode 1 with π+ = 0.3 is the global maximum. Subplot (b) is for data 

set 2. Mode 1 with π+ = 0.3 is still the global maximum but it is hardly distinguishable from 

other modes, indicating a weak identifiability. Figure 1 subplots (c) and (d) show MCMC 

trace plots for π+ for data set 1 and 2, respectively. We purposely choose dispersed initial 

values for four Markov chains. In subplot (c), all chains converge to the correct mode of π+. 

In subplot (d), the chains do not converge to the correct mode but stuck with local modes 

depending on the initial values. Thus, analysts should be careful about the label switching 

problem when their data appear to be imbalanced.

4.2. Consensus Monte Carlo.

It is obvious that the weak identifiability is not because of the model but is due to the 

imbalanced dataset. An immediate solution is to make the data relatively balanced. Let 

us equally split the unlabelled group  into  subgroups { (1),·⋯ , (S)} such that the 

sample size of a subgroup (s) is comparable to that of . Consider S parallel sub-datasets: 

{ , (1)},·⋯ , { , (S)}, and each of them is relatively balanced. We apply the finite mixture 

model and Bayesian computations on each sub-dataset, and write the sub-likelihood function 

as

L(s) θ1
(s), θ2

(s), π(s); P, U(s) = ∏
xi ∈ P

f+ xi; θ1
(s) ∏

xi ∈ U(s)
π(s)f+ xi; θ1

(s) + 1 − π(s) f− xi; θ2
(s) .

To combine posterior samples obtained from the sub-likelihood functions, we utilize the 

consensus Monte Carlo (Scott et al., 2016), which was introduced for parallelizing MCMC. 

A more efficient computation is a by-product but also desired since EHR data are typically 

large. Note that our implementation is slightly different from the original consensus Monte 

Carlo in that  is repeatedly used instead of being split. The proposed split-and-combine 

procedure is outlined as follows.

1. Split  into S subgroups { (1),·⋯ , (S)} with equal size nu
(s).

2. For s = 1,·⋯ , S, in parallel, apply the Bayesian finite mixture model. The 

MCMC gives posterior samples from

p Θ ∣ P, U(s) ∝ p(Θ)p P, U(s) ∣ Θ ,

where Θ = {{μk,j, Σk,j, νk,j, pk}, π, z, τ}, k = 1, 2, j = 1, …, J.

3. Suppose for a parameter θ, we obtain sub-posterior draws from the S subgroups, 

θt
(1), …, θt

(S) at iteration t. To combine them to an aggregated posterior draw θt, 

according to Scott et al. (2016), compute a weighted average

θt = ∑
s = 1

S
ω(s)

−1
∑

s = 1

S
ω(s)θt

(s),

where ω(s) is the weight for subgroup s.
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a. For parameters {μk,j, Σk,j, νk,j}, choose ω(s) = Var(θ| , (s))−1, where 

Var(θ| , (s)) is estimated by the sample variance of θ1
(s), ⋯, θT

(s) .

b. For parameters {π, pk}, which are [0, 1]-bounded, the arithmetic 

average tends to perform better in practice, that is to choose ω(s) = 

1.

4. After combining posterior samples, compute the posterior classification 

probabilities p(zi = 1| , ), for xu,i ∈  with xu, i
d = j, using the following 

expression

1
T − B ∑

t = B + 1

T π(t)f+ xu, i ∣ p1
(t), μ1, j

(t) , Σ1, j
(t) , ν1, j

(t)

π(t)f+ xu, i ∣ p1
(t), μ1, j

(t) , Σ1, j
(t) , ν1, j

(t) + 1 − π(t) f− xu, i ∣ p2
(t), μ2, j

(t) , Σ2, j
(t) , ν2, j

(t)
,

where B is the burn-in sample size.

5. Classify an unlabelled individual i as a positive case if p(zi = 1| , ) ≥ 0.5, 

otherwise as a negative case.

A related alternative to address the imbalance issue is oversampling the minority group. 

Note that our proposed procedure is equivalent to using the following full likelihood 

function as we repeatedly use  for S times,

L θ1, θ2, π; P, U = ∏
xi ∈ P

f+ xi; θ1
S ∏

xi ∈ U
πf+ xi; θ1 + (1 − π)f− xi; θ2 ,

which is indeed similar as oversampling  with S multiples. However, directly using an 

oversampled large dataset is computationally challenging, and thus a parallel computation 

has its advantages. It is theoretically difficult to justify an optimal choice of the splitting 

size S. The bottom line is that the sample sizes of (s) and  are comparable so that 

label-switching is avoided.

5. Simulation Studies.

5.1. Comparing performance with algorithm-based methods.

In this section, we conduct a simulation study to compare our proposed mixture modelling 

approach with the state-of-the-art PU learning techniques. To mimic the real EHR data 

described in Section 6, we now let  be the group of DR patients and  be the group of 

non-DR patients. We let xi
d be a categorical variable gender (xi

d = 1 denotes male and xi
d = 2

denotes female) and let xi
c be a vector of three continuous laboratory variables. We consider 

three distribution settings for the data generation as follows.

1. We let xi
c for the male DR patients be generated from a multivariate t distribution 

with μ1,1 = (1, 1, 1)′, Σ1,1 = I and ν1,1 = 2, and let xi
c for the female DR patients 

be from a multivariate t distribution with μ1,2 = (2, 2, 2)′, Σ1,2 = I and ν1,2 

= 2. For the non-DR group, we let xi
c for the male non-DR patients be from a 

multivariate t distribution with μ2,1 = (3, 3, 3)′, Σ2,1 = I and ν2,1 = 5, and let xi
c
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for the female non-DR patients be from a multivariate t distribution with μ2,2 = 

(4, 4, 4)′, Σ2,2 = I and ν2,2 = 5. Let the category probabilities be p11 = p12 = p21 

= p22 = 0.5.

2. We consider a skewed distribution model. We let each variable of xi
c for the 

male DR patients be from Gamma(2, 1) and for the female DR patients be from 

Gamma(5, 2). We then shift both gamma distributions to the right by 2 units for 

the non-DR patients. Let the category probabilities be p11 = p12 = p21 = p22 = 

0.5.

3. We consider Cauchy distributions for which outliers can be extreme. We let 

the male and female DR groups be Cauchy(1, 0.5) and Cauchy(2, 0.5) for xi
c, 

respectively, where the first parameter is the location and the second parameter is 

the scale. We choose Cauchy(3, 0.5) and Cauchy(4, 0.5) for the male and female 

non-DR groups, respectively. Let the category probabilities be p11 = p12 = p21 = 

p22 = 0.5.

Note that in the above three cases, Cases 2 and 3 present a situation where the multivariate 

t mixture model is misspecified, and hence the robustness of each method is examined 

under skewed and heavy-tailed scenarios. For all three cases, we fix the sample size for the 

labelled DR group as np = 100 and that for the unlabelled group as nu = 4,000 to represent 

imbalanced data in real applications. For each of the three cases, we randomly mix a portion 

of DR patients with non-DR patients with a mixing probability π ranging from 0.3 to 0.7. 

We randomly generate 30 datesets under each setting and implement the following four 

methods for each dataset: the two-step method, the biased-SVM, the bagging-SVM and our 

proposed Bayesian finite mixture model. For the two-step method, we adopt the version in 

Liu et al. (2003) for which a Naïve Bayesian classifier is built in Step 1 and the SVM is 

used in Step 2. For the biased-SVM described in Liu et al. (2003), we let C+np = C−nu, 

where C+ and C− are the penalties of misclassifying a positive and a negative, respectively. 

For the bagging-SVM described in Mordelet and Vert (2014), we set the bootstrap sample 

size K = np and the number of bootstrap samples T = 10. For both the biased-SVM and 

the bagging-SVM, we use the grid search and cross-validation to select the optimal cost 

parameter in a defined set {10−12, 10−11, …, 101, 102}. For our proposed mixture modelling 

approach, we set the splitting size S = 20. We adopt the Box-Cox power transformations 

for skewed samples. Lo and Gottardo (2012) argue that the t-mixture model with Box-Cox 

transformation performs favorably in terms of accuracy and robustness compared with the 

skewed-t approach (Azzalini and Capitanio, 2003).

To evaluate the performance of each method, we adopt the conventionally used metrics 

in the PU learning literature. Let TP denote the number of true positives, TN denote the 

number of true negatives, FP denote the number of false positives and FN denote the number 

of false negatives. Define

Accuracy = TP+TN
TP+TN + FP + FN , Precision = TP

TP+FP,
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Sensitivity = TP
TP+FN, Specificity = TN

TN+FP,

and also define the F-score as follows,

F = 2 × Precision × Sensitivity
Precision+Sensitivity .

The accuracy and the F-score are the most popular metrics for comparing PU learning 

methods in the literature.

The results are shown in Tables 1, 2 and 3 for the three distribution settings. A plot of 

accuracy versus π is shown in Figure 2 and a plot of F-score versus π is shown in Figure 

3. As we can see from the tables and plots, in terms of both accuracy and F-score, the 

three algorithm-based methods appear to be sensitive to heavy-tailed distributions. We also 

notice that the performance of the three algorithm-based methods can be compromised by an 

increased mixing probability π. It should be pointed out that F-score does not exist for the 

two-step method because the two-step algorithm classifies all positive cases in the unlabelled 

group as negative. In all settings with various π values, our proposed mixture modelling 

approach seems to be quite stable and outperforms the other methods in general.

5.2. Parameter estimation in the mixture model.

One advantage of using a model-based method is that parameter estimation and statistical 

inference are possible, which are of interest for medical practitioners as the interpretability 

is an important issue despite the goal of classification. Suppose that in our simulation 

scenarios, besides the mixing probability π, a medical practitioner would also like to know 

the proportion of male patients in the DR group p11 and that in the non-DR group p21. The 

practitioner also wants to estimate the difference between the DR and non-DR groups in 

the lab variables for both the male and female populations, that is, to estimate μ21l − μ11l 

and μ22l − μ12l, for l = 1, 2, 3. Table 4 assesses the posterior mean estimates for those 

parameters of interest under the correct t-distribution model. Both the bias and the mean 

squared error (MSE) seem to be reasonably small for all parameters. Note that we cannot 

offer comparisons with the algorithm-based methods since they simply do not produce such 

parameter estimates.

6. Classifying Unspecified Diagnosis Codes in EHR.

6.1. Data description and preliminary analyses.

Diabetic retinopathy is a vision-threatening microvascular complication of diabetes and 

a leading cause of blindness among working-aged adults globally (Kobrin and Barbara, 

2007; Yau et al., 2012). While diabetes is a common chronic disease worldwide, almost all 

patients with type 1 diabetes and more than 60% of patients with type 2 diabetes develop 

retinopathy during their first twenty years of diabetes (Fong et al., 2004). Retinopathy 

is often asymptomatic in early stages and the vision loss can only be prevented but 

not restored. Therefore it is imperative to detect and treat patients in their early stages. 
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However, early detection and screening of DR face challenges from poor adherence to 

annual examination guideline and lack of resources to deploy comprehensive screening 

programs (Ting, Cheung and Wong, 2016; Ciulla, Amador and Zinman, 2003). It is crucial 

to develop cost-effective early detection techniques for medical communities, especially 

for those rural communities. It is conjectured that routine laboratory measurements can be 

useful in detecting DR without needing comprehensive eye exams. With abundant laboratory 

information in EHR data, analysts and researchers have been developing predictive models 

or algorithms for the DR research in recent years, for instance, Piri et al. (2017), Saleh et al. 

(2016), Sun and Zhang (2019) and Skevofilakas et al. (2010).

The Cerner Health Facts EHR database (Cerner Corporation, Kansas City, MO) is one of 

the largest de-identified and HIPAA complied databases in the United States. The database 

contains time-stamped encounter, diagnosis, procedure, medication, and laboratory test data 

contributed voluntarily from hospitals running a Cerner EHR system across the U.S. from 

2000 to 2018. In the step of data pre-processing, the ICD-9 diagnosis codes were used to 

specify the study cohort. Patients with one or more 250.xx ICD-9 codes were defined as 

diabetic patients. Within the set of diabetic patients, those who have 362.0x ICD-9 codes 

were identified as DR patients (case group), and those without any 362.0x code were 

considered non-DR patients (control group). Note that labelling patients without any 362.0x 

code as non-DR is questionable since these codes are in fact unspecified. It is, however, a 

common practice when pre-processing EHR data for secondary analyses.

Based on the existing literature on clinical predictions of DR, we initially included 26 

laboratory variables and 3 demographic variables. For the labelled DR patients, we extracted 

feature values at their first DR diagnosis encounter, and for the labelled non-DR patients, 

we extracted feature values from their most recent hospital visit. In total 1, 207 labelled 

DR patients and 39, 767 labelled non-DR patients were finally included in the study cohort. 

Figure 4 shows the data extraction process. The whole dataset was then divided into a 

training set (70%) and a testing set (30%). To handle the imbalanced dataset at this initial 

stage, we implemented the synthetic minority over-sampling technique (SMOTE) which 

comprises over-sampling the synthetic minority class and under-sampling the majority class 

(Chawla et al., 2002). We then applied the random forest (Breiman, 2001) on the training 

dataset and used a ten-fold cross-validation to select the optimal model in terms of the area 

under the receiver operating characteristic curve (ROC AUC). The model was evaluated on 

the testing set and the AUC was 0.8709. The model performance was satisfactory on the 

testing set but in a later section we will see that the prediction can be disappointing in a 

completely external validating.

6.2. Applying the proposed PU learning method.

It is a questionable practice to treat patients without any 362.0x code as non-DR patients. As 

discussed in Section 1, it often happens when a medical examination is not performed on the 

underlying patient or the record of examination is missing. The apparent consequence is that 

any secondary analysis based on these data may be misleading as the key label is unreliable. 

In this section, we consider such a problem as a PU learning task and by applying the 

proposed Bayesian mixture model, we are able to re-label patients with unspecified codes. 
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Under the PU learning framework, the case group is denoted by  and the control group is 

denoted by .

The preliminary analysis using machine learning algorithms helped us to identify a 

few important predictors. We also carefully surveyed the relevant medical literature and 

determined three laboratory variables that would be used in the PU learning: HbA1c, 

hemoglobin and BUN. There is also a general interest to compare male patients with 

female patients so that the categorical variable gender is also included. It is noteworthy that 

distributions of laboratory measurements are often skewed and heavy-tailed (MIT-Critical-

Data, 2016). Therefore, the proposed multivariate t-mixture after appropriate Box-Cox 

transformations is suitable for such data. The prior distributions are chosen based on Section 

2.3. We divided  into S = 20 subgroups. For each subgroup, we ran three Markov chains 

with distinct initial values and each chain had 10, 000 iterations with burn-in size 4, 

000. The convergence for the key parameter π is shown in Figure 5 for an illustration. 

The Gelman-Rubin diagnostic (Gelman and Rubin, 1992) is performed on all continuous 

parameters {π, μk,j, Σk,j, νk,j, pk} and the worst-case potential scale reduction factor is 1.02 

(97.5% upper bound 1.06), well below the commonly used threshold of 1.1.

From the posterior samples, we obtained the posterior mean and standard deviation for 

the mixing probability π as 0.23 and 0.0043, respectively, indicating roughly one fourth 

of unspecified cases may be classified into the DR patients group based on the extracted 

laboratory measurements. From the posterior mean of π, we can estimate the DR prevalence 

rate for the Cerner Health Facts EHR database, which is np + πnu
np + nu

= 0.25. This estimate is in 

line with the reported incidence of DR among US adults with diabetes, which is 28.5% (95% 

CI : 24.9% – 32.5%) (Zhang et al., 2010).

For inferential interest in parameters, the posterior estimates for p1, p2 and μk,j are given in 

Table 5. Notice that while some categories are not distinguishable (HbA1c DR female vs. 

non-DR female), some others are clearly distinct (Hemoglobin DR male vs. non-DR male). 

A patient was classified into the DR group if the posterior probability p(zi = 1 | Data) ≥ 

0.5. Eventually, among 39, 767 unspecified diabetic patients, 7, 010 were classified into 

the DR patients group. Figure 6 shows, for all three continuous laboratory variables, the 

distributions of the positive group , the unlabelled group , re-labelled positives from the 

unlabelled group p and re-labelled negatives from the unlabelled group n.

To assess the classification accuracy in the environment of real data analysis, we conduct a 

further simulation study. We acknowledge that the misclassification rate cannot be properly 

evaluated due to that true labels are unknown in the unlabelled group. Instead, a simulation 

that mimics the real data situation is used. Consider now all 1207 positive cases are known 

positives, and we resample 1207 negative cases from patients who are labelled “negative” 

after mixture model analysis. These samples are treated as known positives and negatives in 

the simulation setting. Then 30% randomly selected positive cases are masked and mixed 

with all negative cases, called unlabelled patients. We fit the Bayesian finite mixture model 

using the synthetic dataset and record classification accuracy and the area under the receiver 

operating characteristics curve (AUC). The simulation is repeated for 30 times. The mean 
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accuracy is 0.8982 with standard deviation 0.0115, and the mean AUC is 0.8996 with 

standard deviation 0.0092.

6.3. Sensitivity Analysis.

We conduct a sensitivity analysis for the mixing probability π with both a formal approach 

and an informal approach. We adopt a formal sensitivity analysis in Roos et al. (2015) 

for the Bayesian ϵ-local sensitivity. Given a scalar parameter θ, we denote the base prior 

and the corresponding marginal posterior by pγ0(θ) and pγ0(θ | y), where γ0 denotes fixed 

hyperparameters in the base prior. The ϵ-local circular sensitivity Sγ0
c (ϵ) is defined as

Sγ0
c (ϵ) =

d pγ(θ ∣ y), pγ0(θ ∣ y)
ϵ ,  for γ ∈ Gγ0(ϵ) ,

where the grid Gγ0(ϵ) is a contour line around γ0 and Gγ0(ϵ) = {γ : d(pγ(θ), pγ0(θ)) = 

ϵ}. In Roos et al. (2015), the distance d(·, ·) is recommended to be the Hellinger distance, 

and ϵ = 0.00354 as it is calibrated to measure the distance between N(0, 1) and N(0.01, 

1), a local perturbation. In our case, the base prior chosen for the mixing probability is 

a beta distribution with γ0 = (α0, β0) = (1, 1). Such a contour line Gγ0(ϵ) is depicted 

in Figure 7 (a). It is recommended to check the worst-case sensitivity max Sγ0
c (ϵ)  in the 

ϵ-local grid. A sensitivity value larger than 1 leads to the scenario of super-sensitivity as 

the marginal posterior changes more than the prior change. Figure 7 (a) shows that our 

worst-case sensitivity is 0.021, indicating that the marginal posterior is robust against a prior 

change.

An informal sensitivity analysis is then performed by modifying prior hyperparameters in an 

ad hoc way. The following five scenarios are considered: (1) base-case with no modification; 

(2) Beta(0.5, 0.5) for π; (3) Beta(5, 12) for π, which centers at about 0.3 with 95% interval 

(0.1, 0.5); (4) Beta(5, 12) for π and Gamma(3, 1) for the degrees of freedom νk,j; (5) Beta(5, 

12) for π and Gamma(10, 1) for νk,j. For all scenarios, models are re-fitted and resulting 

marginal posterior distributions for π against each prior choice are shown in Figure 7 (b). 

The marginal posterior distribution is in general robust against prior modifications.

6.4. Secondary analyses and external validation.

After we re-labelled the EHR dataset based on the PU learning, an analyst now can use the 

“new” dataset for a secondary analysis. In this section, we show that a machine learning 

algorithm using the “new” re-labelled data will enjoy a great improvement in terms of 

predicting a completely external dataset, comparing with using the original dataset.

Suppose now an analyst wants to build a DR predictive model using our Cerner EHR 

data. We provide him/her two datasets: the original dataset where unspecified patients are 

labelled non-DR and the re-labelled dataset where unspecified patients are classified based 

on our PU learning results. The analyst has an external EHR dataset from the University of 

Kansas Medical Center, which contains 1, 060 confirmed DR patients and can be used as 

a validation dataset. The validation dataset includes 19 laboratory variables so the analyst 

builds a random forest model using 19 laboratory variables and 3 demographic variables 
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from the Cerner EHR data. The SMOTE technique has been used for both the original 

EHR dataset and the re-labelled EHR dataset before building the random forest model. The 

analyst then uses the fitted model to predict DR cases from the 1, 060 confirmed cases in 

the validation dataset. Using the original EHR dataset, the analyst is able to detect only 338 

or 32% DR patients from the validation dataset, while using the re-labelled EHR dataset, 

he/she is able to detect 587 or 55% DR patients, which is a remarkable improvement. It is 

noteworthy that in this validation, the specificity cannot be computed because the number of 

true negatives is unknown.

7. Concluding Remarks.

In this paper, we proposed to use a Bayesian finite mixture model with multivariate t 
distributions to solve a PU learning problem that arises from labelling diagnosis codes in 

EHR data. A split-and-combine strategy known as consensus Monte Carlo is used to address 

the issue of imbalanced data and improve computational efficiency. We demonstrated its 

performance in the simulation study compared with existing algorithm-based PU learning 

methods. We applied the proposed approach to a real application where diabetic patients’ 

DR codes need to be re-labelled and showed an improved predictive performance in an 

external validation. It has been warned in the literature that the quality of EHR data is often 

compromised due to missing or erroneous inputs. In this paper, we showed that a large 

EHR database only contains about 3% diagnosed DR cases, which is inconsistent with the 

medical consensus. We estimate about one fourth of diabetic patients potentially labelled as 

DR patients, in line with the literature. The proposed method can be used as a pre-processing 

tool for secondary analyses on positive unlabelled EHR data.
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Fig 1. 
Plots of log-likelihood function with respect to π and MCMC trace plots with distinct initial 

values for π: (a)(c). Synthetic data set 1: np = 100, nu = 200. (b)(d). Synthetic data set 2: np 

= 100, nu = 4, 000
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Fig 2. 
Accuracy under different settings: (a). Multivariate t. (b). Gamma. (c). Cauchy
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Fig 3. 
F-score under different settings: (a). Multivariate t. (b). Gamma. (c). Cauchy
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Fig 4. 
Data extraction and initial analysis
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Fig 5. 
MCMC convergence for π: three chains with distinct initial values.
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Fig 6. 
Distributions of the positive group  (black solid line), the unlabelled group  (black dashed 

line), the re-labelled positives p (red dashed line) and the re-labelled negatives n (blue 

dotted line). Plot (a): HbA1c; plot (b): Hemoglobin; plot (c): BUN.
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Fig 7. 
Sensitivity analysis for π: (a). The ϵ-local circular sensitivity. The ellipse is the contour line 

around the centroid (blue dot) at (α, β) = (1, 1) with Hellinger distance ϵ = 0.00354. The 

worst-case sensitivity is obtained at the red triangle with sensitivity value 0.021. (b). An ad 

hoc sensitivity analysis with modified prior hyperparameters. The box plots show posterior 

samples of π with respect to each prior modification.
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Table 1

Performance metrics under Case 1: t-distribution. Table shows mean metrics (standard deviation).

π Method Accuracy F-score Sensitivity Specificity

0.3 Two-step 0.6991 (0.0067) - 0 (0) 1 (0)

Biased-SVM 0.8968 (0.0237) 0.8137 (0.0571) 0.7675 (0.1034) 0.9526 (0.0137)

Bagging-SVM 0.9182 (0.0055) 0.8587 (0.0103) 0.8269 (0.0179) 0.9574 (0.0061)

Mixture model 0.9223 (0.0051) 0.8696 (0.0104) 0.8586 (0.0258) 0.9498 (0.0091)

0.4 Two-step 0.5992 (0.0074) - 0 (0) 1 (0)

Biased-SVM 0.8111 (0.1159) 0.6462 (0.1440) 0.5785 (0.3160) 0.9679 (0.0230)

Bagging-SVM 0.8996 (0.0087) 0.8649 (0.0132) 0.8031 (0.0222) 0.9641 (0.0058)

Mixture model 0.9144 (0.0041) 0.8921 (0.0068) 0.8890 (0.0174) 0.9311 (0.0090)

0.5 Two-step 0.4991 (0.0073) - 0 (0) 1(0)

Biased-SVM 0.7511 (0.1882) 0.5760 (0.0792) 0.5348 (0.3939) 0.9703 (0.0233)

Bagging-SVM 0.8709 (0.0121) 0.8567 (0.0156) 0.7721 (0.0249) 0.9700 (0.0046)

Mixture model 0.9112 (0.0061) 0.9115 (0.0068) 0.9134 (0.0196) 0.9087 (0.0192)

0.6 Two-step 0.4009 (0.0074) - 0 (0) 1 (0)

Biased-SVM 0.5581 (0.2157) 0.3130 (0.0454) 0.2945 (0.3963) 0.9522 (0.1811)

Bagging-SVM 0.8328 (0.0256) 0.8410 (0.0270) 0.7403 (0.0379) 0.9713 (0.0110)

Mixture model 0.9111 (0.0078) 0.9264 (0.0065) 0.9381 (0.0167) 0.8713 (0.0259)

0.7 Two-step 0.3009 (0.0067) - 0 (0) 1 (0)

Biased-SVM 0.5082 (0.2436) 0.3527 (0.0467) 0.3028 (0.3553) 0.9858 (0.0193)

Bagging-SVM 0.7796 (0.0469) 0.8142 (0.0472) 0.6983 (0.0659) 0.9690 (0.0179)

Mixture model 0.9136 (0.0123) 0.9393 (0.0082) 0.9560 (0.0147) 0.8154 (0.0523)
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Table 2

Performance metrics under Case 2: gamma distribution. Table shows mean metrics (standard deviation).

π Method Accuracy F-score Sensitivity Specificity

0.3 Two-step 0.6988 (0.0062) - 0 (0) 1 (0)

Biased-SVM 0.9178 (0.1160) 0.8781 (0.0782) 0.8443 (0.0377) 0.9496 (0.1795)

Bagging-SVM 0.9380(0.0042) 0.8888 (0.0090) 0.8233 (0.0238) 0.9875 (0.0059)

Mixture model 0.9481 (0.0067) 0.9058 (0.0131) 0.8303 (0.0233) 0.9989 (0.0010)

0.4 Two-step 0.5986 (0.0064) - 0 (0) 1 (0)

Biased-SVM 0.9010 (0.0836) 0.8360 (0.0109) 0.7720 (0.2110) 0.9879 (0.0069)

Bagging-SVM 0.9131 (0.0091) 0.8796 (0.0144) 0.7923 (0.0255) 0.9940 (0.0035)

Mixture model 0.9402 (0.0073) 0.9197 (0.0106) 0.8542 (0.0198) 0.9979 (0.0017)

0.5 Two-step 0.4982 (0.0062) - 0 (0) 1 (0)

Biased-SVM 0.8320 (0.1507) 0.7402 (0.0133) 0.6734 (0.3071) 0.9909 (0.0069)

Bagging-SVM 0.8780 (0.0136) 0.8620 (0.0174) 0.7608 (0.0276) 0.9961 (0.0034)

Mixture model 0.9333 (0.0100) 0.9290 (0.0115) 0.8713 (0.0223) 0.9958 (0.0034)

0.6 Two-step 0.4014 (0.0064) - 0 (0) 1 (0)

Biased-SVM 0.6536 (0.2411) 0.4715 (0.0150) 0.4255 (0.4052) 0.9948 (0.0064)

Bagging-SVM 0.8367 (0.0200) 0.8421 (0.0221) 0.7292 (0.0337) 0.9972 (0.0031)

Mixture model 0.9310 (0.0116) 0.9390 (0.0112) 0.8895 (0.0224) 0.9928 (0.0061)

0.7 Two-step 0.3012 (0.0063) - 0 (0) 1 (0)

Biased-SVM 0.3755 (0.1901) 0.1184 (0.0347) 0.1152 (0.3015) 0.9759 (0.0906)

Bagging-SVM 0.7858 (0.0220) 0.8188 (0.0224) 0.6946 (0.0321) 0.9975 (0.0034)

Mixture model 0.9292 (0.0136) 0.9472 (0.0103) 0.9109 (0.0249) 0.9720 (0.0563)

Ann Appl Stat. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 27

Table 3

Performance metrics under Case 3: Cauchy distribution. Table shows mean metrics (standard deviation).

π Method Accuracy F-score Sensitivity Specificity

0.3 Two-step 0.6994 (0.0062) - 0 (0) 1 (0)

Biased-SVM 0.6746 (0.1430) 0.4143 (0.2151) 0.4759 (0.3115) 0.7604 (0.2360)

Bagging-SVM 0.8146 (0.1036) 0.7422 (0.0705) 0.8372 (0.0468) 0.8047 (0.1614)

Mixture model 0.8570 (0.0141) 0.7819 (0.0133) 0.8509 (0.0352) 0.8596 (0.0326)

0.4 Two-step 0.5991 (0.0066) - 0 (0) 1 (0)

Biased-SVM 0.6101 (0.1161) 0.3326 (0.2237) 0.3550 (0.3290) 0.7819 (0.2557)

Bagging-SVM 0.7906 (0.0953) 0.7581 (0.0887) 0.7957 (0.0790) 0.7871 (0.1385)

Mixture model 0.8418 (0.0093) 0.8219 (0.0079) 0.9104 (0.0278) 0.7959 (0.0303)

0.5 Two-step 0.4911 (0.0068) - 0 (0) 1 (0)

Biased-SVM 0.5193 (0.0561) 0.2312 (0.2179) 0.2286 (0.2854) 0.8127 (0.2630)

Bagging-SVM 0.7275 (0.1225) 0.7303 (0.1148) 0.7277 (0.1170) 0.7275 (0.1743)

Mixture model 0.8468 (0.0077) 0.8612 (0.0056) 0.9484 (0.0191) 0.7448 (0.0291)

0.6 Two-step 0.4009 (0.0066) - 0 (0) 1 (0)

Biased-SVM 0.4549 (0.0768) 0.2302 (0.2137) 0.2146 (0.2818) 0.8130 (0.2729)

Bagging-SVM 0.6719 (0.1523) 0.6992 (0.1646) 0.6588 (0.1735) 0.6908 (0.2009)

Mixture model 0.8614 (0.0073) 0.8935 (0.0052) 0.9703 (0.0105) 0.6987 (0.0272)

0.7 Two-step 0.3006 (0.0061) - 0 (0) 1 (0)

Biased-SVM 0.3800 (0.0997) 0.2329 (0.2107) 0.1995 (0.2483) 0.8010 (0.2483)

Bagging-SVM 0.6058 (0.1291) 0.6736 (0.1193) 0.5984 (0.1445) 0.6230 (0.2268)

Mixture model 0.8837 (0.0062) 0.9221 (0.0041) 0.9845 (0.0053) 0.6500 (0.0238)

Ann Appl Stat. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 28

Table 4

Parameter estimation under the t-distribution for π = 0.3

True Value Bias MSE

π 0.3 0.0019 0.0192

p11 0.5 −0.0164 0.0294

p21 0.5 0.0063 0.0109

Male μ211 – μ111 2 0.0043 0.1147

μ212 – μ112 2 −0.0682 0.1113

μ213 – μ113 2 −0.0027 0.1027

Female μ221 – μ121 2 −0.0079 0.0842

μ222 – μ122 2 −0.0127 0.0867

μ223 – μ123 2 −0.0257 0.0963
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Table 5

Posterior means (standard deviations) for parameters of inferential interest in the mixture model for Cerner 

EHR data.

DR Non-DR

Male Female Male Female

Proportion 0.5344 (0.0030) 0.4656 (0.0030) 0.4735 (0.0032) 0.5265 (0.0032)

HbA1c 0.9503 (0.0004) 0.8901 (0.0004) 0.9303 (0.0005) 0.8678 (0.0004)

Hemoglobin 4.0014 (0.0037) 2.1320 (0.0012) 4.6537 (0.0034) 2.2783 (0.0010)

BUN 3.7724 (0.0067) 3.2758 (0.0057) 3.1203 (0.0042) 2.7608 (0.0039)
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