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Abstract

Introduction: Placental parenchymal lesions are commonly encountered and carry significant 

clinical associations. However, they are frequently missed or misclassified by general practice 

pathologists. Interpretation of pathology slides has emerged as one of the most successful 

applications of machine learning (ML) in medicine with applications ranging from cancer 

detection and prognostication to transplant medicine. The goal of this study was to use a whole-

slide learning model to identify and classify placental parenchymal lesions including villous 

infarctions, intervillous thrombi (IVT), and perivillous fibrin deposition (PVFD).

Methods: We generated whole slide images from placental discs examined at our institution 

with infarct, IVT, PVFD, or no macroscopic lesion. Slides were analyzed as a set of overlapping 

patches. We extracted feature vectors from each patch using a pretrained convolutional neural 

network (EfficientNetV2L). We trained a model to assign attention to each vector and used the 

attentions as weights to produce a pooled feature vector. The pooled vector was classified as 

normal or 1 of 3 lesions using a fully connected network. Patch attention was plotted to highlight 

informative areas of the slide.

Results: Overall balanced accuracy in a test set of held-out slides was 0.86 with receiver-

operator characteristic areas under the curve of 0.917 to 0.993. Cases of PVFD were frequently 

miscalled as normal or infarcts, the latter possibly due to the perivillous fibrin found at the 

periphery of infarctions. We used attention maps to further understand some errors, including one 

most likely due to poor tissue fixation and processing.

*To whom correspondence should be addresse: Olson 2-455, 710 N. Fairbanks Ave, Chicago IL, 60611, 
ja.goldstein@northwestern.edu.
CONTRIBUTIONS
Conceived of the work: JAG, LADC; Study design / patient selection / scanning: JAG, Technique and tool development: RN, LADC, 
II; Performed experiments: JAG; Analysis: JAG, LADC; Drafted the manuscript: JAG; Edited the manuscript: JAG, LADC, RN; 
Responsibility for the integrity of the data, findings, and analyses: JAG.

DISCLOSURES
The authors have no relevant disclosures.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Placenta. Author manuscript; available in PMC 2024 April 01.

Published in final edited form as:
Placenta. 2023 April ; 135: 43–50. doi:10.1016/j.placenta.2023.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion: We used a whole-slide learning paradigm to train models to recognize three of the 

most common placental parenchymal lesions. We used attention maps to gain insight into model 

function, which differed from intuitive explanations.
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INTRODUCTION

The placenta

The placenta is the temporary organ formed during gestation that performs nutritional, 

respiratory, excretory, endocrine, and immune-regulatory functions throughout fetal 

development.[1–3] The normal placental disc is comprised primarily of terminal villi, which 

contain fetal capillaries and act as the site of uptake of oxygen and nutrients and excretion of 

carbon dioxide and waste.[4]

Placental parenchymal lesions

Vascular and/or inflammatory pathologic conditions can affect placental function and 

compromise pregnancy, and identification of these lesions histologically can be important in 

assessment of placental function. Several lesions have been identified that form in the villous 

portion of the placenta. We have chosen to focuses on a subset of macroscopic lesions 

that cause localized injury or replacement of villi.[5,6] Specifically, we focus on villous 

infarctions, intervillous thrombi, and perivillous fibrin deposition.

Villous infarctions, (hereafter infarcts), are areas where there is a loss of maternal blood 

flow with subsequent ischemic necrosis of the villi. They are thus analogous to ischemic 

infarcts seen at other sites in the body including the myocardium, kidney, and central 

nervous system. Infarcts are seen in ~8% of placentas examined at our institution. They 

are associated with hypertension in pregnancy, preeclampsia, growth restriction, stillbirth, 

and risk of cerebral palsy.[7–11] Microscopically, infarctions are characterized by loss of 

definition in the villi and collapse of the intervillous space or replacement by loose blue-grey 

necrotic material (Figure 1).

Intervillous thrombi (IVT), are foci of clotted blood in the intervillous space. In contrast 

to other macroscopic lesions, IVT show no clear association with adverse pregnancy or 

neonatal outcomes.[12–14] However, they are frequently encountered it is of value to 

distinguish them when there is high interobserver variability or in low resource settings. 

Microscopic examination of IVT show areas with few to no villi containing alternating areas 

of fibrin and red cells – the Lines of Zahn (Figure 1).

Perivillous fibrin deposition (PVFD) can present in several forms, of which two are 

considered here. Massive perivillous fibrin deposition (MPVFD) involves at least 30% of 

the placental parenchyma with significant compromise of placental function and associated 

fetal growth restriction and stillbirth.[15–17] Conversely, focal PVFD forms foci up to a 
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few cm in greatest dimension involving a small proportion of the placenta. Pathogenesis of 

focal PVFD is unclear but they may represent a reparative response following trophoblast 

injury due to turbulent flow.[18,19] Focal PVFD may also be seen as a feature of 

chronic inflammatory pathology.[20] Despite these striking clinical differences, MPVFD 

and focal PVFD appear similar microscopically, and may represent ends of a spectrum with 

“borderline” MPVFD between.[16] The intervillous space is filled with dense fibrin, while 

terminal villi lose their outer syncytiotrophoblast layer (Figure 1).

While these lesions are clinically significant, there is high interobserver variability in 

their diagnosis, limiting their utility in broader clinical practice. Literature is sparse, but 

in examples given to community pathologists, misdiagnosis rates of 68.4% for MPVFD, 

57.1% for IVT, and 32.4% for infarction were reported, with most of the errors being 

underdiagnosis.[21] This underlines the sparseness of perinatal pathology expertise and the 

potential utility of diagnostic aids.

Machine learning (ML) and digital pathology

Interpretation of pathology slides has emerged as one of the most successful applications of 

AI/ML in medicine with applications ranging from cancer detection and prognostication 

to transplant medicine.[22–26] In the realm of placental pathology, accurate diagnosis 

of macroscopic lesions requires expert microscopic examination.[18,27] Machine learning 

approaches promise to reduce interobserver variation and make expert-level examination 

available in general practice and in low and middle income countries.[28–30]

Digital pathology challenges machine learning practitioners due to the large size of scanned 

whole slide images (WSI). While typical image classification software uses small images 

as input (e.g. 256 × 256 pixels), WSI are routinely 120,000 × 80,000 pixels.[31,32] In this 

task, models and humans are confronted with a similar problem – identifying which parts 

of the slide diagnostically relevant. To address this, we employ multiple instance learning, a 

domain of machine learning where models are given several related datapoints and asked to 

infer a single label.[33] MIL has demonstrated remarkable success in identifying cancers of 

unknown primary, and cardiac allograft rejection and is a component of some clinically used 

systems.[22,34–38]

From slide to diagnosis, whole slide learning in practice

A notional illustration of whole-slide classification is given in Figure 2. A hematoxylin and 

eosin (H&E) stained slide is examined. The slide contains an area of infarct (red outlined 

squares) with the remainder normal placental tissue (black squares). The tissue is divided 

into patches – smaller 256 × 256 pixel images that are typical of modern ML. The patches 

are fed to a fixed feature extraction subnetwork, EfficientNetV2L.[39] This subnetwork 

has been pre-trained to parse images into common patterns like edges, simple shapes, and 

textures.[39,40] This results in a feature vector, a list of numbers indicating how much the 

image represents each pattern. To identify salient patches, the feature vectors are fed into an 

attention subnetwork. In a properly functioning model, feature vectors from the infarct (red-

shaded) are assigned a high attention while those of normal tissue (grayscale) are assigned 

a low value. An average feature vector, weighted by the attention values, is generated 
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(weighted features). In a well-functioning model this will largely reflect the lesion. The 

weighted feature vector is fed into a classifier subnetwork that generates a value between 0 

and 1, with values >0.5 classified having infarction. During training, the parameters of the 

attention subnetwork and classification subnetwork are tuned to maximize accuracy in a set 

of training slides. The feature extraction subnetwork is fixed. By tapping into the attention 

subnetwork, the attention value assigned to each feature vector and therefore each patch can 

be visualized as an attention map, with high attention (yellow) given to the diagnostic areas 

and low attention (blue) to normal placental tissue. For this work, four attention subnetworks 

and four classifications are generated, one each for normal, infarct, IVT, and PVFD.

The goal of this study is to use whole slide learning to classify infarcts, IVT, and PVFD. We 

have selected these lesions because they are commonly encountered in pathology practice. 

Additionally, diagnosis of these lesions involves integrating information across large regions 

of the slide drawing on the strength of the whole slide learning method. Finally, to the best 

of our knowledge, models for classifying these lesions have not been previously reported.

METHODS

Patients, diagnoses

We identified patients that underwent delivery and placental examination at our institution 

between 2011 and 2022 and had slides available for scanning. Our scanning program is 

ongoing and the material scanned represents a mixture of prospectively scanned slides 

and targeted archival retrieval, e.g. for MPVFD cases. Slides were digitized on a Leica 

GT450 scanner with a 40x objective magnification (0.263 microns per pixel). Corresponding 

placental pathology reports were extracted from the institutional electronic data warehouse 

(EDW). Natural language processing was used to parse reports.[41] Placentas with 

retroplacental hemorrhage / hematoma or chorangioma or with multiple classes of lesions 

were excluded. Placentas were classified as having infarct, IVT, PVFD, or none of 

these (normal). PVFD cases included MPVFD and focal PVFD, which was defined as a 

macroscopic placental lesion characterized by encasement of villi in perivillous fibrin. Both 

lesions are distinguished from the normal degree of perivillous fibrin by the formation of 

macroscopic lesions.[42]

Patient and diagnosis data was stored in REDcap.[43] Slide images were reviewed by a 

perinatal pathologist aware of the original diagnosis using Digital Slide Archive (DSA).[44] 

The study was approved by our local institutional review board (STU00214052).

Feature extraction

One slide was used per patient. Non-tissue regions were identified and ignored by 

using Otsu’s method on low-power slide images. Machine learning was performed using 

TensorFlow version 2.8. Portions of the 10x image containing tissue were broken into 256 × 

256-pixel patches with 64-pixel overlaps. This resulted in 5,000 – 16,000 patches per slide, 

depending on the amount of tissue present. Patches were submitted to the feature extraction 

backbone of EfficientNetV2L, trained on ImageNet.[39]
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Attention, classification

Feature vectors were submitted to the network as N × D arrays, where N is the number 

of patches analyzed from that slides and D is the number of features in the vector from 

one patch, 1536 for EfficientNetV2. Feature vectors underwent further dimensionality 

reduction using a fully connected layer with 512 outputs and a rectified linear unit (relu) 

activation. Attention is generated using the dot product of two parallel 256-neuron layers 

with hyperbolic tangent and sigmoid activations. Four attentions are generated in parallel, 

one for each potential diagnosis. Attention values are used in the weights for weighted 

pooling of the dimensionality reduced layers, which then go through four fully connected 

classifier layers to produce one score for each diagnosis. The four scores undergo a softmax 

transformation to produce the final output – four scores that sum to 1.0 and represent the 

relative confidence of the model that the slide represents each diagnosis. For example, scores 

of [1, 0, 0, 0] would represent complete confidence that the slide is normal placenta, and 

not infarct, IVT, or PVFD (respectively). Scores of [0, 0.5, 0, 0.5] represent a slide that the 

model is equally confident could be infarction or PVFD. Note that confidence is a reflection 

of model output, not epistemic uncertainty or biologic reality. The model can by highly 

confident and dead wrong.

Training, validation, testing

The dataset consists of 790 cases, including 219 normal, 193 infarct, 186 IVT, and 92 

PVFD. The dataset was split 70:15:15 into training, validation, and testing sets. The splits 

were stratified, such that the ratio of each diagnosis was consistent between the sets. The 

model was trained to minimize the categorical crossentropy between the actual and model-

predicted diagnoses. The Adam optimizer, an initial learning rate of 1e-4, cosine decay with 

1000 steps and restarts were used. Model performance was monitored throughout training 

by following the categorical crossentropy of the validation data. Up to 100 epochs were 

allowed, but training was stopped when the categorical crossentropy of the validation data 

did not improve after 15 epochs.

Attention maps

Attention values were output from the model as 1 × N arrays, with 1 attention value for 

each of the N examined patches. Attention values were normalized with 255 indicating 

the highest attention. Patches not analyzed were assigned a value of 0. TFR files contain 

similar 1 × N arrays of each tile’s left edge and upper edge, which are used to produce a 2 

dimensional array, where each pixel corresponds to a single patch. False color and overlay of 

slide images was performed using MatPlotLib.

Convolutional whole slide models

We tested two alternative models for whole slide learning (Figure 3). These models use 

the same feature extractor network to generate feature vectors but use convolutional neural 

networks in subsequent steps. Convolutional neural networks have shown extreme facility 

in classifying images that present as 3-dimensional matrices with the shape W × H × C, 

where W and H are the width and height of the image and C is the number channels, often 

3 (red, green blue).[45] While the main model treats each feature vector independently, 
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the convolutional models arrange the feature vectors based on their location in the original 

image. The resulting data structure forms a 3-dimensional matrix with the shape of W 

× H × F, where W and H are the number of patches horizontally (Width) and vertically 

(Height) present in the image and F is the number of features in each patch. Convolutional 

neural networks can treat this matrix as they would an image, identifying patterns among 

neighboring patches. In principle, these models should be superior at tasks that require 

identification of patterns larger than a single patch.

We used two convolutional models, “convolutional simple” and “convolutional attention”. 

In the convolutional simple model, the structured matrix of feature vectors is submitted to 

a 2-dimensional convolutional layer with 128 filters and a kernel size of 3. Kernel size of 3 

means that the feature vectors are studied in 3 × 3 groups – that is, each vector is studied 

in the context of its immediate neighbors. Each filter is a different pattern 3 × 3 pattern that 

is sought in each 3 × 3 region for each feature. For example, a filter might check whether 

the 2nd feature in the feature vector is above a certain threshold in the central patch, the 

patch up and to the left, and the patch down and to the right, forming a diagonal line. 

After convolution, the simple model uses 2-dimensional global max pooling to find the 3 

× 3 region with the highest signal for each filter. That information is submitted to a fully 

connected classifier layer that outputs softmax values for each of the 4 classes.

In the convolutional attention model, the structured matrix of feature vectors is submitted 

first to a convolutional layer with 256 filters and a kernel size of 3, followed by a second 

convolutional layer with 128 filters and a kernel size of 3. The first convolutional layer is 

similar to the convolutional layer in the convolutional simple model, albeit with more filters. 

However, the second convolutional layer operates on the output from the first convolutional 

layer. This allows more complex patterns to be built up, for example an open diamond 

adjacent to a diagonal line. At this point, the output is split into 4 branches – one for each 

class. For each class, an attention map is generated by using a convolutional layer with 

a single filter and a kernel size of 1, that is, it uses only the information from a single 

patch at a time. A consensus feature vector is generated by calculating an average of the 

2nd convolutional layer output, weighted for the attention. Each of the 4 consensus feature 

vectors is assigned a score, then they are brought together and go through a softmax to 

produce the expected output of 4 values, 1 for each class, that sum to 1.

RESULTS

We developed at dataset of 790 cases, including 219 normal, 193 infarct, 186 IVT, and 92 

PVFD. Slides were split into a training set of 543 cases, 120 validation cases, and 127 test 

cases. The model was trained through 29 epochs before early stopping was triggered due to 

non-improvement in the validation categorical crossentropy (Supplementary Figure 1). The 

test set was evaluated, producing a balanced accuracy of 0.86 and a Matthews correlation 

coefficient (MCC) of 0.86. Further metrics are presented in Table 1 and Figure 4.

Model performance

We compared the performance of our network with two convolutional neural networks to 

capture information about patches in the context of their neighbors (see Methods). The 
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convolutional information is then either simply averaged (“convolutional simple”) or used 

to generate an attention map with weights assigned to high attention groups of patches 

(“convolutional attention”). We generated receiver-operator characteristic curves for each 

classifier for each lesion (Supplementary Tables 1, 2, and 3, Supplementary Figures 2 and 

3). Performance was slightly inferior, with balanced accuracies 0.79 and 0.82 and MCC of 

0.78 and 0.8 for the convolutional simple and convolutional attention models, respectively.

Examination of errors

Some trends emerge in the errors. We had the largest number of normal slides, and they were 

identified with the highest accuracy. Concordantly, we had the smallest number of slides 

with PVFD and they showed the lowest sensitivity. Normal slides were rarely called as one 

of the lesions, while each lesions was sometimes miscalled as normal. For each class, we 

manually reviewed cases in the test set that were misclassified, and discuss a few illustrative 

examples.

One case of subchorionic PVFD was miscalled as normal, possibly due to large portions or 

normal. Small amounts of subchorionic fibrin are frequently encountered, and are included 

in the training set as “normal” if they are below the diagnostic threshold (Figure 5A). 

Some cases of normal were miscalled as IVT (Figure 5B). One IVT was surrounded by 

compressed villi, and was misclassified as an infarct (Figure 5C).

DISCUSSION

Placental parenchymal lesions are commonly encountered and carry significant clinical 

associations. [46,47] However, they are frequently missed or misclassified by pathologists in 

general.[21] Artificial intelligence raises the possibility of rapid, uniform diagnosis of these 

findings. Our findings indicate that lesions can be distinguished from one another and from 

normal tissue.

Our study is noteworthy for the use of whole-slide learning. In contrast to approaches in 

which human annotators select a portion of the image for analysis, the model ingests the 

entire image to produce a unified diagnosis. This represents an increase in sophistication for 

the model, but also exposes challenges and errors that stem from the heterogeneity of data 

across a whole slide.

Even the slides of normal placenta in our data set contain multiple tissue types. In addition 

to the stem and terminal villi, sections of normal parenchyma often contain decidua – 

uterine lining transformed under the influence of progesterone, and chorionic plate – a 

layer of fibrous tissue supporting the largest fetal vessels and dividing the villi from the 

amniotic fluid. Pathology guidelines recommend sampling the interface between normal and 

abnormal tissues.[5] Therefore slides of parenchymal lesions generally contain stem and 

terminal villi as well as the lesion of interest. Lesions themselves are often heterogeneous, 

with both IVT and infarcts showing villi trapped in PVFD around their edges.[48]
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Attention maps in explaining and improving models

When human experts and AI disagree, methods are needed to evaluate why the AI renders 

its diagnosis. However, AI models often operate as “black boxes” that lack the ability to 

explain their predictions. This hampers efforts to improve models in development and reason 

with their findings after deployment. [49] While several approaches have been employed, 

this study uses attention maps.[50–54]

We examined the attention maps for appropriately and misclassified cases to gain insight 

into model performance and possible improvements. In an appropriately classified case of 

IVT, the model showed high attention for IVT within the IVT (Figure 6). IVT frequently 

have a thin surrounding layer of fibrin with or without entrapped villi. Examination of the 

attention values for PVFD showed the model appropriately attending to areas of fibrin. This 

did not result in misclassification.

To examine the utility of attention maps for understanding misclassification, we examined 

the attention values for an IVT that was misclassified as infarct (Figure 7). In contrast to the 

more typical IVT seen in Figure 5, the perivillous fibrin surrounding this IVT contains large 

numbers of compressed villi. Despite significant attention in lines of Zahn and perivillous 

fibrin, a single high-attention patch seems to have overthrown the diagnosis.

Limitations and future work

As a first attempt, we have chosen to focus on a subset of the most common lesions. Other 

parenchymal lesions include chorangiomas, retroplacental hematomas, subchorionic cysts, 

septal cysts, choriocarcinomas, macroscopic foci of avascular villi, and abscesses.[5,55–59] 

Additionally lesions may be seen together either coincidentally or in hybrid lesions, such 

as the infarction hematoma (infarct + retroplacental hematoma).[60,61] Future studies will 

expand the number and diversity of lesions studied.

Differences in staining over time and between institutions are a major barrier to 

generalizability of ML models.[62,63] Innovative approaches, including color normalization, 

color augmentation, and style transfer have been used to address this challenge.[63,64] In 

our study, images passed once through the feature extraction network, which did not undergo 

training. Thus, the opportunity for these approaches or other image augmentations (flip / 

rotation / noise etc.) was lost. Augmentation and tests of generalizability will be foci of 

future work.

Conclusion

In conclusion, we developed models to identify placental parenchymal lesions using un-

annotated whole slide images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• A machine learning model can identify macroscopic placental lesions in 

whole slide images

• Attention maps made by machine learning models highlight diagnostic areas 

of interest.

• When models are wrong, attention maps can help interpret the model results.
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Figure 1. Placental anatomy and parenchymal lesions:
Normal placental histology showing villi are bathed in maternal blood (A). Infarctions 

are due to loss of maternal blood flow and characterized by indistinct villi that are either 

back-to-back or with loose material between (B). PVFD shows loss of syncytiotrophoblast 

layer from the villous surface with replacement of the intervillous space by dense pink fibrin 

(C). IVT displace villi and show characteristic lines of Zahn (D). Scale bar 200 μm.
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Figure 2. Whole-slide learning method - diagram:
A whole slide image (WSI) is divided into a set of smaller images (patches). Images pass 

through a feature extraction network to become feature vectors. The attention subnetwork 

generates an attention value for each vector and uses that value to produce a weighted 

average (weighted features). The classifier subnetwork then generates a single label for the 

whole slide. Attention values for each patch are plotted on the attention map (blue-yellow: 

low-high attention). Note that a separate attention subnetwork and classifier subnetwork 

exist for each diagnosis, though only that for infarction is shown.
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Figure 3, Convolutional-based models:
A whole slide image (WSI, detail of slide from Figure 2) is divided into a set of smaller 

images (patches). Images pass through a feature extraction network to become feature 

vectors. Unlike the dense attention model, the values across the slide from a single feature 

formed into 2-dimensional feature maps. There is one feature map for each of the 1280 

features. A simplified 2×2 kernel is shown, which outputs the average of the values 

in the upper left and lower left squares (tinted aqua). The kernel is moved across and 

down the feature map, giving the Convolutional output shown. In the convolutional simple 

model, the maximum value for each feature map is used to generate a feature vector, 

which is then classified (upper path). For the convolutional attention model, an additional 

convolutional step is performed (not shown) and the feature vectors are submitted to an 

attention subnetwork.
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Figure 4, Confusion matrix for the dense attention model:
Values show the proportion of cases classified into each class for each lesion (or normal).
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Figure 5, Morphology of misclassified cases:
A: Focus of PVFD miscalled as normal, possibly due to large portions or normal. B: 

Section of normal placenta miscalled as IVT. The basis for this error is non-obvious. C: IVT 

miscalled as infarct, possibly related to compressed villi around the edge. Scale bar = 1 mm
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Figure 6, attention maps for understanding appropriate classification.
A: Low power view showing the interface between IVT (T) and normal villi (V). B: 

Attention for IVT is appropriately highest within the IVT and overlapping lines of Zahn. C: 

Attention for PVFD highlighting expected thin rim of fibrin between IVT and normal tissue. 

Scale bar: 250 μm. Attention: Blue – low, Yellow – high.
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Figure 7, attention maps for understanding inappropriate classification.
A: Low power view showing the interface between thrombus (IVT) and rim of compressed 

villi (V). B: Attention for IVT is appropriately highest within the thrombus and overlapping 

lines of Zahn. C: Attention for infarct highlighting expected a single very high-attention 

focus. D: Expected rim of PVFD between thrombus and normal tissue. Scale bar: 250 um. 

Attention: Blue – low, Yellow – high.
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Table 1:

Performance of the dense attention model

Precision Recall F1-score

Normal 0.94 0.96 0.95

Infarct 0.93 0.87 0.9

IVT 0.91 0.94 0.92

PVFD 0.67 0.67 0.67

Overall 0.9 0.9 0.90
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