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Objective: One well-liked less invasive procedure is oblique lumbar interbody fusion (OLIF). The biomechanical charac-
teristics of double-level oblique lumbar interbody fusion in conjunction with various internal fixations are poorly under-
stood. The purpose of this study was to clarify the biomechanical characteristics of double-level oblique lumbar
interbody fusion for osteoporosis spines using various internal fixation techniques.

Methods: Based on CT scans of healthy male volunteers, a complete finite element model of osteoporosis in L1–S1
was established. After validation, L3–L5 was selected as the surgical segment to construct four surgical models:
(a) two stand-alone cages (SA); (b) two cages with unilateral pedicle screws (UPS); (c) two cages with bilateral pedicle
screws (BPS); and (d) two cages with bilateral cortical bone trajectory screws (CBT). Segmental range of motion
(ROM), cage stress, and internal fixation stress were studied in all surgical models and compared with the intact oste-
oporosis model.

Results: The SA model had a minimal reduction in all motions. The CBT model had the most noticeable reduction in
flexion and extension activities, while the reduction in the BPS model was slightly less than that in the CBT model but
larger than that in the UPS model. The BPS model had the greatest limitation in left–right bending and rotation, which
was greater than the UPS and CBT models. CBT had the smallest limitation in left–right rotation. The cage stress of
the SA model was the highest. The cage stress in the BPS model was the lowest. Compared with the UPS model, the
cage stress in the CBT model was larger in terms of flexion and LB and LR but slightly smaller in terms of RB and
RR. In the extension, the cage stress in the CBT model is significantly smaller than in the UPS model. The CBT internal
fixation was subjected to the highest stress of all motions. The BPS group had the lowest internal fixation stress in all
motions.

Conclusions: Supplemental internal fixation can improve segmental stability and lessen cage stress in double-level
OLIF surgery. In limiting segmental mobility and lowering the stress of cage and internal fixation, BPS outperformed
UPS and CBT.
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Introduction

Lumbar interbody fusion (LIF) has been widely used for
the treatment of lumbar degenerative disc disease in

clinics. In recent years, minimally invasive spine surgery

techniques have rapidly developed, such as oblique lateral
interbody fusion (OLIF). Its advantages include less blood
loss, shorter recovery time, less postoperative pain, and
low incidence of associated neurological complications.1–3
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Compared with the conventional posterior fusion cage, OLIF
allows for the use of a larger intervertebral fusion cage, and
because the fusion cage can be implanted across the epiphyseal
ring of the vertebral body, its biomechanical stability is signifi-
cantly improved.4,5 Thus, stand-alone OLIF has been applied in
clinical practice and achieved good efficacy.6,7 However, lumbar
degenerative diseases occur mostly in elderly patients with varying
degrees of bone loss, which increase the risk of cage subsidence.8,9

To prevent subsidence and pseudoarthrosis, the OLIF
technique is often used in clinical practice in combination
with different internal fixation devices to increase the
rigidity of surgical segments. There are many options for
internal fixation; understanding which type of internal fix-
ation offers superior biomechanical characteristics is cur-
rently a hot research topic. Many scholars have performed
biomechanical finite element analysis of OLIF in combination
with different internal fixation methods. Studies have shown
that stand-alone OLIF does not provide sufficient stability.10,11

With the increase in the degree of osteoporosis, stand-alone
OLIF increased the potential risk of implant subsidence.12 The
finite element biomechanical study showed that BPS provides
the best biomechanical properties for OLIF,10,13 and the lateral
locking plate system and UPS can be used as alternatives to
BPS in OLIF.13,14 However, most OLIF biomechanical studies
are limited to a single segment. There is a lack of literature
evaluating the need for supplementary instrumentation after
double-level OLIF.

Finite element (FE) analysis has been used in biome-
chanical research for decades because of its reliability, conve-
nience, and repeatability.15,16 In this study, we used FE
analysis to evaluate the biomechanical stability of double-
level stand-alone OLIF versus double-level OLIF with several
types of supplemental instrumentation. The purpose of this
study was: (i) to compare the biomechanical properties of
different fixation methods; (ii) to analyze the factors associ-
ated with cage subsidence; and (iii) to determine which fixa-
tion method has the best biomechanical performance in the
osteoporosis model.

Methods

Construction of an Intact Lumbar Finite Element Model
In this study, a 30-year-old healthy male volunteer with a
height of 178 cm and weight of 81 kg was selected for a CT
scan with a slice thickness of 0.625 mm, excluding a history
of spinal deformity and lumbar disease. A total of 570 CT
scan images were stored in DICOM format. The CT scan
images were processed using commercial software (Mimics
21.0; Materialize, Leuven, Belgium) to create a 3D model.
The model was reconstructed using reverse engineering soft-
ware (Geomagic studio 12.0; Geomagic Inc., North Carolina,
USA). Subsequently, models of soft tissue structures such as
intervertebral discs were established by Croe8.0 software.
After repair, the FE meshes of the different lumbar compo-
nents were constructed using computer-aided engineering
(ANSA) software (BETA CAE Systems S. A, Thessaloniki,

Greece). Finally, biomechanical simulation and results analy-
sis were carried out by finite element analysis software
(Abaqus, Simulia, Providence, RI, USA). The finite element
model (FEM) construct comprised L1–S1 vertebrae, posterior
elements, end-plates, intervertebral discs, and the ligament
system. The thickness of the cortical bone was 1 mm.17 The
intervertebral discs consist of the annulus fibrosus, nucleus
pulposus, and superior and inferior end-plates. The discs
were defined to be composed of 44% nucleus pulposus and
56% annulus fibrosus based on histological data,18 and the
thickness of the end-plate was 0.5 mm.19 The ligaments con-
sisted of the anterior longitudinal ligament, the posterior
longitudinal ligament, the ligamentum flavum, the inter-
spinous ligament, the supraspinal ligament, the capsular liga-
ments, and the intertransverse ligament. They were set as
truss elements (T3D2) bearing tensile loads only. The FEM
was meshed using tetrahedral and hexahedral elements,
except for the ligaments. The material properties of the com-
ponents are shown in Table 1.16,20–22 The osteoporosis model
was established by simulating the loss of elastic modulus of
normal bone, with the elastic modulus of cortical and cancel-
lous bones decreasing by 33% and 66%, respectively.23

Construction of the Surgical Finite Element Model
Three-dimensional geometric models of internal fixation
instrumentation were constructed based on the actual
parameters of the interbody cage and supplemental fixations
using the part interface of Creo8.0. The interbody cage was
modeled based on the Oracle cage (DePuy Synthes). It was
40 mm long, 22 mm wide, 11 mm high in front, 8 mm high
in back, and had an 8� lordosis. The diameter of the pedicle
screw was 6.5 mm, and the length was 50 mm. The diameter
of the cortical bone screw was 5.0 mm, and the length was
30 mm. The diameter of the rod was 5.5 mm. The cage and
supplemental fixations were selected for tetrahedral mesh

TABLE 1 Material properties of the FEM and implants

Components
Young’s

modulus (MPa)
Poisson
ratio

Cortical bone 12,000 0.3
Cancellous bone 100 0.2
End-plate 4000 0.3
Nucleus pulposus 1 0.49
Annulus 4.2 0.45
Anterior longitudinal
ligament

20 0.3

Posterior longitudinal
ligament

20 0.3

Ligamentum flavum 19.5 0.3
Interspinous ligament 11.6 0.3
Supraspinous ligament 15 0.3
Transverse ligament 58.7 0.3
Capsular ligament 32.9 0.3
Cage 3500 0.3
Screw and rod 110,000 0.3
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processing. The detailed material properties of each compo-
nent are listed in Table 1.

The L3–L5 intervertebral space was used as the surgical
segment, and the annulus fibrosus, nucleus pulposus, and
cartilage endplate were removed from the left side. Then, we
constructed four surgical models: (a) two stand-alone cages
(SA); (b) two cages with UPS; (c) two cages with BPS; and
(d) two cages with CBT. The interbody cage was fixed in the

same position in all surgical models. Finite element models
of various fixations are shown in Figure 1.

Boundary and Loading Conditions
The inferior surface of the S1 vertebra was fixed so that
all nodes of the inferior end plate of the S1 vertebra were
constrained from moving in any direction. Then, a verti-
cal load of 400 N10 was applied to the upper surface of L1

A B

D E

C

Fig. 1 Various finite element models: (A) intact

osteoporosis model, (B) two stand-alone

cages, (C) two cages with unilateral pedicle

screws, (D) two cages with bilateral pedicle

screws, and (E) two cages with bilateral

cortical bone trajectory screws

Fig. 2 Comparison of the ROM between the normal intact model and the previous in vitro experimental study. LB: left bending; RB: right bending; LR:

left rotation; RR: right rotation; ROM: range of motion
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to simulate the axial load (upright state) of physiological
compression, and a torsional moment of 10 Nm was
imposed to simulate six different physiological move-
ments of the lumbar spine: flexion, extension, left bending
(LB), right bending (RB), left rotation, and right rotation
(RR). After numerical calculation, the surgical segment
range of motion (ROM) was obtained and compared with
the intact osteoporosis model. In addition, the surgical
segment ROM, cage stress, and supplemental fixation
stress were compared among different internal fixation
methods.

Validation of the Model
The L3–L5 segment ROMs for different motions of the nor-
mal intact model were compared with the in vitro experi-
mental data by Yamamoto et al.24 As shown in Figure 2, the
L3–L5 ROM of the normal intact model was in good agree-
ment with that reported in the literature, which verifies the
validity of the intact model.

Results

Range of Motion of the Surgical Segment [L3–L5]
Compared with the ROM of the intact osteoporosis model,
the SA model had a minimal reduction in mobility, with
reductions of 51.65%–55.16% in flexion, 43.96%–45.20% in
extension, 47.50%–50.99% in LB, 48.77%–50.88% in RB,
25.13%–29.57% in LR, and 24.39%–29.95% in RR. In flexion
and extension activities, the UPS model decreased by
79.89%–83.71% and 78.91%–83.73%, the BPS model
decreased by 89.90%–94.68% and 88.74%–93.01%, and the
CBT model decreased by 92.45%– 95.77% and 92.12%–
95.40%. The CBT model had the most obvious reduction in
flexion and extension activity, and the BPS model was
slightly less than the CBT model but larger than the UPS
model. For left–right bending and rotation, the UPS model
decreased by 62.21%–72.11% and 54.81%–63.20%, the BPS
model decreased by 86.27%–87.96% and 86.03%–87.05%,
and the CBT model decreased by 69.05%– 70.77% and
47.70%–49.59%, respectively. The BPS model had the
greatest limitation in left–right bending and rotation, which

Fig. 3 The ROM of segment (L3–L5). Intact: intact osteoporosis model; SA: stand-alone cage; UPS: cage with unilateral pedicle screws; BPS: cage

with bilateral pedicle screws; CBT: cage with bilateral cortical bone trajectory screws; LB: left bending; RB: right bending; LR: left rotation; RR: right

rotation; ROM: range of motion

Fig. 4 Stress on cage (L3–L5). SA: stand-alone cage; UPS: cage with unilateral pedicle screws; BPS: cage with bilateral pedicle screws; CBT: cage

with bilateral cortical bone trajectory screws; LB: left bending; RB: right bending; LR: left rotation; RR: right rotation
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was greater than the UPS and CBT models. Compared with
the BPS and UPS models, the CBT model had the smallest
limitation in left–right rotation. The ROMs of segments
L3–L5 in all models are shown in Figure 3.

Cage Stress [L3–L5]
The highest stresses of the SA model during flexion, extension,
LB, RB, LR, and RR were 129.30–141.4 MPa, 76.37–83.24 MPa,

59.93–65.96 MPa, 57.93–66.85 MPa, 95.47–113 MPa, and
93.89–118.60 MPa, respectively, which were higher than
those of the other surgical models. Among all surgical
models, the cage stress in the BPS model was the lowest.
Compared with the UPS model, the cage stress in the CBT
model was larger in terms of flexion and LB and LR but
slightly smaller in terms of RB and RR. In the extension, the
cage stress in the CBT model is significantly smaller than in

Fig. 5 Cage stress distribution was observed in four groups of surgical models during all motions. Pictures of each group of models from top to

bottom are flexion, extension, left rotation, right rotation, left bending, and right bending. UPS: cage with unilateral pedicle screws; BPS: cage with

bilateral pedicle screws; CBT: cage with bilateral cortical bone trajectory screws
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the UPS model. The stress of the cage in the L3–L5 segments
is shown in Figure 4. In all motions, stress was distributed
outside the cage, as shown in Figure 5.

Supplemental Fixation Stress[L3-L5]
For the USP model, the internal fixation stress was 280.10 MPa,
256.60 MPa, 180.90 MPa, 172 MPa, 211.90 MPa, and 191 MPa
in flexion, extension, LB, RB, LR, and RR, respectively. The
internal fixation stress of the BPS model during flexion,
extension, LB, RB, LR, and RR was 255.30 MPa, 233.80 MPa,
167.90 MPa, 169.70 MPa, 186.10 MPa, and 183.90 MPa,
respectively. For the CBT model, the internal fixation stress
was 338.80 MPa, 295.50 MPa, 306.70 MPa, 310.1 MPa,
316.80 MPa, and 320.20 MPa in flexion, extension, LB, RB,
LR, and RR, respectively. The CBT internal fixation was sub-
jected to the highest stress of all motions. The BPS group had
the lowest internal fixation stress in all motions. The internal
fixation stress in all models is shown in Figure 6. The stress of
the internal fixation device was concentrated at the junction
of the screw and the vertebrae, as shown in Figure 7.

Discussion

In this study, ROM of segment, cage stress, and internal
fixation stress were studied in all surgical models. Our

major findings are: (i) The CBT model had the most notice-
able reduction in flexion and extension activities, and had
the smallest limitation in left–right rotation. The BPS model
had the greatest limitation in left–right bending and rotation,
which was greater than the UPS and CBT models. Mean-
while, BPS also had obvious restrictions in flexion and exten-
sion activities. The BPS model had the lowest internal
fixation stress and cage stress in all motions. The CBT inter-
nal fixation was subjected to the highest stress of all motions.
(ii) The biomechanical performance of BPS model is better
than that of CBT model and UPS model.

With the increasing application of OLIF surgery,
extensive attention has been given to its complications. As
with other traditional fusion procedures, OLIF surgery has a
risk of cage subsidence and postoperative segmental instabil-
ity.25,26 Lumbar degenerative diseases are usually associated
with two or more degenerative segments in elderly patients
with osteoporosis, which often require auxiliary posterior fix-
ation. At present, few studies have used FE analysis methods
to research the biomechanical stability of double-level OLIF
with different supplementary fixations.

Effects of All Surgical Models on ROM of Segment
The purpose of LIF is to increase the segmental stability of
the operation. The worse the stability, the higher the inci-
dence of cage subsidence and nonfusion.27 Compared to the
intact model, our study showed that the SA model had the
least decline in ROM across all motion modes, resulting in
the least ability to maintain lumbar spine stability. The BPS
model had greater limitations than the UPS model in all
motions. These results are consistent with the findings of
previous studies.28,29 The results of this study suggested that,
compared with the SA model, all supplemental fixation
modalities enhanced the stability of the lumbar spine struc-
ture. A literature review by Oxland et al.30 found that the
addition of posterior instrumentation to the interbody spacer
significantly increased structural stability, regardless of cage
insertion trajectory or screw type. Matsukawa et al.31 con-
ducted a biomechanical finite element study and showed that
the CBT method is superior to the BPS in flexion and exten-
sion, while the BPS is superior in rotation and bending. Our
research also found that the CBT model had the smallest
limitation on left–right rotation and the most obvious
restriction in flexion and extension. The reason for this result
is related to the diameter and length of the screw and the
trajectory of screw placement. In clinical studies, the fusion
rate of CBTs was lower than that of BPSs, which may be
related to fewer restrictions in bending and rotation.32 How-
ever, the BPS model is only slightly less restrictive to flexion
and extension than the CBT model. The stability of the BPS
model was stronger than that of the UPS model in all motion
states. This is because BPS further increases the stiffness of
the operative segment and reduces the coupling motion
effect. A cadaveric study of multilevel lateral lumbar inter-
body fusion (LLIF) found that even in multilevel LLIF sur-
gery, the BPS provided greater stability than UPS.33

Therefore, our study suggests that BPS has more advantages
in limiting segmental motion.

Differences in Cage Pressure and Correlation with Cage
Subsidence Risk
The increase in pressure on the cage leads to a
corresponding increase in end-plate stress, and the risk of
end-plate collapse and cage subsidence increases. In our
study, the cage pressure of the SA model was greater than
that of all auxiliary internal fixation models. This indicates
that cage subsidence and endplate collapse are at higher

Fig. 6 Stress of internal fixation devices. UPS: cage with unilateral

pedicle screws; BPS: cage with bilateral pedicle screws; CBT: cage with

bilateral cortical bone trajectory screws; LB: left bending; RB: right

bending; LR: left rotation; RR: right rotation
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Fig. 7 Stress distribution of internal fixation

devices. The models of all internal fixation

groups from top to bottom are flexion,

extension, left rotation, right rotation, left

bending, and right bending. UPS: cage with

unilateral pedicle screws; BPS: cage with

bilateral pedicle screws; CBT: cage with

bilateral cortical bone trajectory screws
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risk in stand-alone surgery. Cheng et al.34 reviewed
79 patients who underwent OLIF surgery and found that
SA OLFI was significantly associated with cage subsidence.
The BPS model had the smallest cage pressure of all surgical
models. BPS fixation is a three-column fixation for spinal
stability and has sufficient stiffness so that the cage is sub-
jected to minimal pressure in all directions of motion. A ret-
rospective case study showed that SA OLIF had a greater
incidence of cage subsidence than BPS OLIF.35 Aoki et al.36

conducted a study on 125 patients undergoing trans-
foraminal lumbar interbody fusion and found that the inci-
dence of cage displacement in the UPS group (8.3%) was
higher than that in the BPS group (2.1%). The cage pressure
of the CBT model was higher than that of the BPS model
and UPS model in flexion, which may be caused by the fact
that CBT only strengthened the rigidity of the middle and
posterior column but failed to fix the anterior column. How-
ever, the pressure on cages decreased in extension because
the CBT is more rigid than the UPS in bilateral fixation.
Interestingly, it was found in our study that cage pressures in
the CBT model were larger in LB and LR but slightly smaller
in RB and RR compared to the UPS model. This may be due
to the inherent imbalance in the operative segment caused by
unilateral pedicle fixation, leading to stress redistribution and
requiring further investigation.

Analysis of Stress Difference of Internal Fixation Devices
The stress of internal fixation is related to the loosening and
fracture of internal fixation. In the present study, we found
that the CBT model had the highest internal fixed stress,
while the BPS model had the lowest internal fixed stress.
Because the diameter and length of CBT screws are smaller
than those of BPS screws, the contact area between the
screws and bone is small, which leads to increased pressure.
The oblique upwards trajectory of CBT screws is subjected
to more concentrated stress. Akpolat et al.37 conducted a
lumbar cadaver study and found that the standard pedicle
screw had better fatigue performance than the CBT screw in
vertebrae with compromised bone quality. Matsukawa et al.38

concluded in a biomechanical study that increasing the screw
diameter and length could reduce the mechanical stress on
the bone-screw interface. Due to the unilateral fixation of
UPS, the internal fixation stress is concentrated, resulting in
greater internal fixation stress than BPS. Our experimental
results showed that regardless of the kind of internal fixation,
the pressure was less than the yield strength of titanium alloy
897–1034 MPa.39 Based on the results, we suggest that osteo-
porotic patients are not eligible for stand-alone OLIF surgery
and that patients after CBT-assisted internal fixation should
avoid rotation and bending as much as possible.

Limitation and Strengths
There are some limitations to this research. First, our model
has the common problem of finite element analysis, ignoring
the influence of paraspinal muscles on the biomechanical func-
tion of the spine, and cannot perfectly replicate the complex
bioactive structure of the human body. Second, we did not
consider peripheral soft tissue injuries for each surgical mode,
which may have an impact on lumbar stability. Third, the
results may be influenced by different degrees of osteoporosis,
which were not evaluated in this study. Nevertheless, our study
has been validated, and the results obtained are in good agree-
ment with previous studies, which have guiding significance
for clinical practice. The main strength of this study is its focus
on double-level OLIF. To our knowledge, this may be the first
study to evaluate the biomechanical properties of double-level
OLIF with different supplementary fixations. This will provide
some reference for future multi-level OLIF research and even
the research of degenerative lumbar scoliosis.

Conclusions
Supplemental internal fixation can improve segmental stabil-
ity and lessen cage stress in double-level OLIF surgery. In
limiting segmental mobility and lowering the stress of cage
and internal fixation, BPS outperformed UPS and CBT.
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