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Abstract 

Background  Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed devel-
opment and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, 
and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by 
heat stress during early seed development in Brassica napus.

Results  We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 
8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all 
tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, 
protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative 
analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, 
correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was 
detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On 
the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was character-
ized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant 
hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, 
specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we 
identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or 
sensitive cultivars.

Conclusions  Our transcriptional analysis complements a previous phenotyping analysis by characterizing the 
growth response to elevated temperatures during early seed development and reveals the molecular mechanisms 
underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hor-
monal regulation might be the critical factors for stress tolerance in oilseed rape.
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Background
Ambient temperature is a crucial environmental fac-
tor affecting plant growth and development. Temper-
ate crops are sensitive to growth temperatures above a 
critical threshold of about 30  °C [1]. High temperatures 
have adverse effects on plant sexual reproduction, par-
ticularly on pollen development and pollen tube growth, 
as observed, for example, in tomato, rice, rapeseed, and 
Arabidopsis [2–5]. On the contrary, the impact of high-
temperature stress on female gametophyte development 
is less known. It is considered more tolerant to heat than 
pollen [6]. Because of its inaccessibility due to being 
embedded within the maternal tissue, it has been sparsely 
studied in Arabidopsis [7] and a few crops [8]. We previ-
ously described the effects of elevated temperatures on 
seed development in Brassica napus [9]. Elevated tem-
peratures result in substantial reductions in seed yield, 
consequent to defective ovule development, defective 
fertilization, and aborted seeds.

To dissect the developmental responses of the effects 
of elevated temperatures on seeds in flowering rape-
seed plants, so-called seed thermomorphogenesis, three 
cultivars (DH12075, Topas DH4079, and Westar) were 
cultivated in diurnal growth conditions mimicking cool 
nights (18°C) and warm days (34°C) during the flower-
ing period [9]. The long-term response to warm tem-
peratures in such conditions may differ from acute heat 
stress with short high-temperature treatment at specific 
developmental stages. Our phenotyping analysis deter-
mined that Topas DH4019 was the most tolerant to heat 
stress for parameters including flowering time, number 
of produced flowers, apical dominance, and fertilization 
rate. Topas had the most aborted seeds (15%) at warm 
temperatures. However, embryonic development was 
less frequently defective in the viable seeds produced in 
Topas compared to those produced in the other two cul-
tivars. On the other hand, DH12075 and Westar cultivars 
were more susceptible to elevated temperatures for the 
same analyzed features. Notably, seed abortion caused by 
heat stress was almost absent in DH12075 while having 
the highest frequency of defective embryos.

An embryo staging experiment uncovered that embryo 
development was faster at warm temperatures, mean-
ing that embryos reached the same embryo stage on 
different days after pollination (DAP), depending on 
the growth temperature. In the control condition, the 
fertilized zygote elongates within 3 DAP. It undergoes 
a series of symmetric cell divisions to form an 8-celled 
embryo at 5-to-6 DAP. The following cell divisions are 
asymmetrical, giving rise to a globular embryo display-
ing signs of tissue specification (protoderm, lower tier, 
and upper tier) at 6-to-8 DAP. At 34°C, 8-celled embryos 
were identified at 4 DAP and globular embryos at 5 DAP. 

We, therefore, designed the experiments to compare 
gene expression patterns in seeds bearing embryos at the 
same developmental stage by collecting seeds at 5 DAP 
at 21°C and 4 DAP at 34°C for seeds bearing embryos at 
8-cell stage (SE8) and 7 DAP at 21°C and 5 DAP at 34°C 
for seeds bearing embryos at globular stage (SEG).

We performed comparative transcriptome analyses 
of three cultivars (DH12075, Topas DH4079, Westar) 
in three tissues: unpollinated ovules, seeds bearing 
embryos at the 8-cell stage, and seeds containing globu-
lar embryos, under high-temperature growth conditions 
to complement our phenotyping analysis [9], aiming at 
revealing the molecular mechanisms underlying the ther-
momorphogenesis of embryo development in B. napus.

Results
Summary of the transcriptome sequencing dataset
RNA sequencing generated 1 097 million raw reads from 
90 samples (three cultivars, three tissues, two tempera-
tures, and five biological replicates). The raw reads in 
FASTQ format have been deposited to NCBI (BioPro-
ject accession number PRJNA885424). After filtering and 
trimming, 1 095 million high-quality clean reads were 
used for further analysis. The average Q20 and Q30 val-
ues were 91.5% and 88.7%, respectively (Additional file 1). 
We mapped the clean reads to the B. napus reference 
genome (Bra_napus_v2.0, GCF_000686985.2) with STAR 
v2.5.3a (average mapping rate of 87.4%) and quantified 
them using RSEM tool v1.3.1 [10].

Identification of differentially expressed genes 
in the studied tissues and cultivars
The response to heat stress (differentially expressed 
genes, DEGs, 21 °C vs. 34 °C) was calculated for each tis-
sue from each cultivar (Additional file  2, Fig.  1A). The 
number of up-regulated DEGs declines with the age of 
the samples: ovules > SE8 > SEG, except for Westar hav-
ing a slightly higher number of up-regulated DEGs in 
SEG compared to SE8. In all samples but DH12075 SEG, 
there was a lower number of down-regulated DEGs than 
up-regulated ones for each sample. For example, only 
one-third of all DEGs are down-regulated in the ovules 
of Topas and DH12075. This analysis indicates that (1) 
ovules appear as the most heat-responsive organs from 
all three tested tissues; (2) the response is mainly tran-
scriptional up-regulation. In addition, more genes were 
significantly regulated in the heat-sensitive cultivars 
(DH12075, Westar) than in the heat-tolerant Topas, 
especially in ovules.

Venn diagrams compare all DEGs in tissues and culti-
vars (Fig. 1B and C). Sets of 284, 220, and 139 genes were 
up-regulated in all three tissues of DH12075, Topas, and 
Westar, respectively (Fig. 1B). In addition, 531, 175, and 
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173 genes were commonly up-regulated in all cultivars in 
ovules, SE8 and SEG, respectively (Fig. 1C).

Heat stress response pathways among the common 
transcriptional response
Gene ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
ses were performed for DEGs of all samples (Additional 
Files 3 and 4). As expected, the up-regulated genes of 
most tissues in all cultivars were involved in response to 
heat, including GO terms “response to temperature stim-
ulus” (GO:0009266), “response to heat” (GO:0009408), 
and “heat acclimation” (GO:0010286). Further, genes 
involved in “protein stabilization” (GO:0050821), “pro-
tein folding” (GO:0006457), and “cellular response to 

unfolded protein” (GO:0034620) were up-regulated in all 
samples. Accordingly, we identified GO terms related to 
Heat Shock Proteins (HSP) and their role as chaperone 
proteins, up-regulated in most (if not all) of the samples 
(Additional File 3). The KEGG analysis identified “Pro-
tein processing in endoplasmic reticulum” (bna04141) 
as the pathway commonly up-regulated in all samples, 
supporting the GO terms enrichment analysis on protein 
processing.

The stress response reduced cell metabolism in all three 
cultivars, which agrees with a study on heat-stressed 20 
DAP B. napus seeds [11]. Among down-regulated genes, 
KEGG pathways enrichment analysis revealed: “biosyn-
thesis of secondary metabolites” (bna01110) in all sam-
ples but Topas SEG and “metabolic pathways” (bna01100) 

Fig. 1  Transcriptional response of three rapeseed cultivars (DH12075, Topas, Westar) in ovules and developing seeds under heat stress. A Number 
of DEGs between control temperature and heat stress in all studied tissues and cultivars. B-C Venn diagrams of up-regulated and down-regulated 
DEGs under heat stress in ovules and seeds bearing embryos at the 8-cell stage (SE8) and seeds containing globular embryos (SEG). The 
heat-tolerant cultivar Topas is highlighted in orange
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in all samples but DH12075 ovules and Topas SEG. This 
is supported by GO term GO:0005975 “carbohydrate 
metabolic process” being significantly enriched in down-
regulated genes in all samples, except Westar SE8 seeds.

Specific transcriptional response in the heat‑tolerant 
cultivar Topas
DEGs identified in the tolerant cultivar Topas are can-
didate genes involved in heat tolerance-related pro-
cesses. We filtered the up-regulated DEGs specific for 
Topas (331, 298, and 308 genes for ovules, SE8, and 
SEG, respectively; Fig.  1C) and performed GO terms 
and KEGG pathway enrichment analyses with these 
datasets. The up-regulated DEGs present only in ovules, 
SE8, and SEG of Topas were not significantly enriched 
(adjusted p-value < 0.05) in any of the KEGG pathways. 
The top enriched GO terms were “cytidine to uridine 
editing” (GO:0016554) and “DNA damage checkpoint” 
(GO:0000077) in ovules, “amine metabolic process” 
(GO:0009308), and “response to heat” (GO:0009408) in 
SE8, and “lipid transport” (GO:0006869) and “cellular 
response to hypoxia” (GO:0071456) in SEG (Additional 

file 5). Among the other significant GO terms, we identi-
fied up-regulated DEGs in pathways of the heat response: 
“regulation of reactive oxygen species biosynthetic pro-
cess” (GO:1903426) and “response to reactive oxygen 
species” (GO:0000302) in SE8 and “positive regulation 
of flavonol biosynthetic process” (GO:1900386), “chaper-
one-mediated protein complex assembly” (GO:0051131), 
and “protein stabilization” (GO:0050821) in SEG (Addi-
tional file 5, Fig. 2A and B). This result suggests that heat 
stress induces the production of ROS molecules, from 
which Topas seeds respond by producing antioxidant 
molecules such as flavonols and flavonoids. Those tissues 
also protect their proteins from the heat with protein 
chaperone activity.

Transcriptional profiling of the selected DEGs con-
nected to ROS and flavonol pathways is shown in Fig. 2C. 
Among the up-regulated DEGs showing the highest 
heat-induced response in SE8 and/or SEG of Topas, 
we identified genes coding for various peroxidases, 
TEMPERATURE-INDUCED LIPOCALIN-1 (TIL1) 
or flavonol-specific transcription activator MYB111. 
Interestingly, the list includes the uncharacterized 

Fig. 2  Specific response to the heat stress in seeds of tolerant cultivar Topas. A-B Gene ontology (GO) term enrichment analysis of DEGs in SE8 
(A) and SEG (B) in the biological process category. Cytoscape networks were generated by REVIGO to reduce redundant GO terms. Color intensity 
represents the significance of enrichment (darker color = lower p-value). For details, see Additional file 5. C Transcriptional profiling of selected 
genes connected to reactive oxygen species (ROS) response and flavonol pathways. C, control conditions; H, high-temperature conditions
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LOC106382353 gene, similar to At1g13340 (coding 
regions of the genes share 83% nucleotide sequence iden-
tity), involved in response to oxidative stress in Arabidop-
sis thaliana [12]. This gene is up-regulated in SE8 of all 
cultivars, with Topas having the highest induction (log2 
fold change of 1.73). In SEG, this gene is significantly 
up-regulated in Topas only (log2 fold change of 1.28). 
Similarly, SENESCENCE-ASSOCIATED GENE 21/LATE 
EMBRYONIC ABUNDANT 5 (SAG21/LEA5) plays a spe-
cific protective role against oxidative stress by repressing 
photosynthesis [13, 14] and displays the highest heat-
induced response in Topas seeds (log2 fold change of 
4.15 and 3.55 in SE8 and SEG, respectively).

Pathways activated in heat‑sensitive cultivars
The genes that are up-regulated specifically in sensi-
tive cultivars DH12075 and Westar (while not induced 
in tolerant cultivar Topas) are related to stress-induced 
damage in plants contributing to the sensitivity of these 
cultivars. Thus, we extracted 2 335 DEGs in ovules (1 582 
DEGs specifically up-regulated in DH12075 + 444 DEGs 
Westar-specific + 309 DEGs shared by these two culti-
vars), 1 040 DEGs in SE8, and 911 DEGs in SEG (Fig. 1C). 
The KEGG pathway enrichment analysis showed that 
DEGs in ovules are significantly enriched in bna04075 
“Plant hormone signal transduction” and various meta-
bolic pathways (Fig. 3A, Additional file 5). DEGs in SE8 
and SEG were significantly enriched in “Photosynthe-
sis” (bna00195), “Photosynthesis—antenna proteins” 
(bna00196), and “Plant hormone signal transduction” 
(bna04075). According to the GO terms analysis, the 
top-ranked enriched biological processes included the 
response to various stresses (e.g., hypoxia, water depri-
vation, stimulus from bacteria, heat) and metabolic pro-
cesses in ovules, and photosynthesis-related terms in 
both SE8 and SEG (Fig. 3B, C, D, Additional file 5).

Among the genes classified into the “Plant hormone 
signal transduction” pathway, we identified several genes 
connected to auxin signaling. The genes encoding auxin-
responsive proteins Aux/IAA16, Aux/IAA18, and Aux/
IAA26 were up-regulated specifically in ovules of the 
sensitive cultivar(s) upon heat stress (Additional file  5). 
Aux/IAA proteins are transcriptional repressors of auxin 
response genes at low auxin concentrations [15]. Concur-
rently, the gene encoding the auxin influx protein AUX1-
like protein 2 (LAX2) was down-regulated in the ovules 
of heat-sensitive cultivars, and SUPPRESSOR OF MAX2 
(MORE AXILLARY GROWTH 2) 1-LIKE 2 (SMXL2) and 
SMXL8 genes involved in the regulation of auxin trans-
port [16–18], were down-regulated in heat-sensitive 
DH12075 ovules and Westar SE8, respectively (Addi-
tional file 2). These features of altered auxin distribution 
and signaling align with the detection of decreased IAA 

levels in heat-stressed Westar seeds. The same seeds dis-
played aberrant embryonic phenotypes similar to known 
mutants with altered auxin homeostasis [9].

Besides, the TIFY/JAZ (JASMONATE ZIM/TIFY 
DOMAIN protein) genes encoding transcriptional 
repressor proteins degraded upon the activation of the 
jasmonate signaling pathway [19] were over-represented 
among the DEGs in the hormone signaling pathway 
(bna04075) in ovules. The RNA-seq data were verified 
by RT-qPCR analysis and showed the same pattern of 
TIFY9, 10A, and 11A gene expression. The TIFY gene 
expression is induced by stress in heat-sensitive cultivars 
DH12075 and Westar and is not significantly affected in 
heat-tolerant Topas (Fig. 3E).

Heat decreases plant metabolism
The down-regulated DEGs specific for heat-tolerant 
Topas (272, 387, and 264 genes for ovules, SE8 and SEG, 
respectively; Fig.  1C) were mainly enriched in KEGG 
pathways and GO terms connected to metabolic pro-
cesses (e.g., starch, glycogen, glycosphingolipids, or gly-
cine, serine, and threonine metabolism; Additional file 5). 
Down-regulated genes specific for heat-sensitive Westar 
and/or DH12075 (1 271 in ovules, 1 036 in SE8, 1 017 in 
SEG; Fig. 1C) were enriched in GO terms linked to cell 
cycle, cell division and cellularization in ovules, and sul-
fate metabolism in both SE8 and SEG (Additional file 5).

Weighted gene co‑expression network analysis
Weighted gene co-expression network analysis 
(WGCNA) was performed to describe the correlation 
patterns among expressed genes across all studied culti-
vars and tissues. We identified 24 modules (clusters) of 
highly correlated expressed genes (Additional file 6). The 
grey category is not a valid module; it contains genes that 
do not correlate well enough with one of the significant 
modules.

Analysis of significant temperature‑responsive modules
The co-expression network analysis identified ten mod-
ules that were significantly correlated (p-value < 0.05) 
with heat stress. Modules darkmagenta, darkorange, 
orangered4, plum1, and royalblue positively correlated 
with heat stress, while modules darkred, darkolivegreen, 
skyblue, white, and yellowgreen negatively correlated 
with treatment (Fig. 4, Table 1).

KEGG pathways enrichment analysis (Table 1) showed 
that the genes in the module with the highest positive 
correlation coefficient with the heat stress (royalblue 
module, cor = 0.96) were significantly enriched (adjusted 
p-value < 0.05) in “Protein processing in endoplasmic 
reticulum” (bna04141) and “Spliceosome” (bna03040). 
On the other hand, the co-expressed genes in the 
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darkolivegreen module, with the highest positive cor-
relation coefficient with control conditions (cor = 0.46), 
were significantly enriched in “Proteasome” (bna03050). 
The top GO terms (Additional file 7) enriched in the roy-
alblue module positively correlating with the heat stress 
were related to “response to heat” (GO:0009408), “pro-
tein folding” (GO:0006457), and “chaperone-mediated 
protein folding requiring cofactor” (GO:0051085), sug-
gesting a co-expression of genes involved in protecting 
proteins from the heat stress. On the contrary, top GO 
terms associated with the darkolivegreen module of co-
expressed genes negatively correlated with heat stress 

were “GDP-mannose metabolic process” (GO:0019673) 
and “proteolysis involved in cellular protein catabolic 
process” (GO:0051603). Royalblue and darkolivegreen 
modules represent the co-expressed gene clusters associ-
ated with the general response to heat stress, regardless 
of the cultivar.

The top 20 hub genes (i.e., genes with the highest mod-
ule membership values, kME) of temperature-responsive 
modules are listed in Additional file 8. The top hub genes 
in the royalblue module mainly encode heat shock pro-
teins. Top hub genes in darkolivegreen module encode 
proteins involved in various cellular processes such 

Fig. 3  Specific heat stress response in ovules and seeds of sensitive cultivars DH12075 and Westar. A Significantly enriched KEGG pathways [20] in 
ovules (green), SE8 (blue), and SEG (orange). B-D Significantly enriched GO terms in the biological process category in ovules (B), SE8 (C), and SEG 
D. Cytoscape networks were generated by REVIGO to reduce redundant GO terms. The key terms are indicated in each network. Color intensity 
represents the significance of enrichment (darker color = lower p-value). For details, see Additional file 5. ETIFY expression in ovules by RNA-seq data 
(green) and RT-qPCR (grey). The heat-tolerant cultivar (Topas) is highlighted in orange. *, significant difference (p < 0.05) between control and high 
temperature
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as ATP synthesis, protein trafficking, or cytoskeleton 
organization.

Co‑expression modules associated with the heat‑tolerant 
cultivar Topas
Our WGCNA identified ten modules with a signifi-
cant positive or negative correlation with cultivar Topas 
(p-value < 0.05, Fig. 4). As Topas plants were more toler-
ant to warmer temperatures than the two other cultivars 
[9], the ten modules were screened for an opposite cor-
relation coefficient in DH12075 and/or Westar. Six mod-
ules met this criterion. The yellow, skyblue3, and plum1 
modules are negatively associated with Topas and posi-
tively with Westar and/or DH12075, while the black, yel-
lowgreen, and white modules are positively associated 
with Topas and negatively with DH12075 and/or Westar 
(Fig. 4, Table 1).

Those modules were analyzed for KEGG pathways 
and GO terms enrichment (Table  1, Additional file  7). 
The co-expressed genes in the modules with the highest 
positive and negative correlation coefficient with Topas 
(black, cor = 1, and yellow, cor = – 1, respectively) were 

not significantly enriched in any of the KEGG pathways. 
Moreover, the genes of the black module did not have any 
significant enrichment (adjusted p-value < 0.05) in GO 
terms analysis, and the top 20 hub genes in this mod-
ule encode mostly uncharacterized proteins (Additional 
file 8). We hypothesized that the set of these co-expressed 
genes may not be properly annotated or that the function 
of these genes does not differ from the entire dataset.

The co-expressed genes in the yellow module are posi-
tively correlated with Westar and DH12075 and nega-
tively correlated with Topas. Therefore, they may be 
involved in the negative regulation of heat tolerance. 
They are significantly enriched in the GO terms “photo-
synthesis” and “ceramide metabolic process” (biological 
process, GO:0015979, and GO:0006672, respectively) and 
“photosystem II” (cellular component, GO:0009523). The 
other module containing potential negative regulators 
associated with heat tolerance is the skyblue3 module 
(cor = – 0.56 with Topas and cor = 0.42 with Westar). The 
co-expressed genes were significantly enriched in “photo-
synthesis – antenna proteins” (bna00196) and “other gly-
can degradation” (bna00511) KEGG pathways (Table 1). 

Fig. 4  Module-trait relationship heatmap for different traits and gene modules provided by weighted gene co-expression network analysis 
(WGCNA). The value in the box indicates the correlation coefficient between the module and the trait, followed by the corresponding p-value (in 
brackets). The boxes are colored based on the correlation of the module with the trait: red is a strong positive correlation, while blue is a strong 
negative correlation. The heat-tolerant cultivar (Topas) is highlighted in orange
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In this module, we detected several significantly enriched 
GO terms connected to photosynthesis (GO:0015979, 
GO:0009765, GO:0018298, GO:0009522) (Additional 
file 7). In the top 20 hub genes of the skyblue3 module, 
we identified several genes associated with chloroplasts 
(chloroplastic UTP-glucose-1-phosphate uridylyl trans-
ferase 3, translocase of chloroplast 33, and ankyrin repeat 
domain-containing protein 2A). Transcriptional profiling 
of photosynthesis-related genes clustered in yellow and 
skyblue3 modules (Fig. 5) shows the overall low expres-
sion of these genes in tolerant cultivar Topas and higher 
expression in sensitive cultivars DH12075 and Westar.

Co‑expression modules associated with heat stress response 
in tolerant rapeseed genotype
To better understand genotype-dependent heat stress 
tolerance mechanisms, we focused on the modules show-
ing simultaneously (1) a significant heat stress response, 
and (2) a significant correlation with the heat-tolerant 
cultivar Topas, (3) while having an opposite correlation 
to heat-sensitive genotype(s). Three modules met this 
criterion: plum1, yellowgreen, and white (Fig. 4, Table 1).

The yellowgreen and white modules are negatively cor-
related with high-temperature conditions (cor = – 0.36 
and cor = – 0.32, respectively), positively correlated with 
heat-tolerant cultivar Topas and negatively correlated 
with heat-sensitive cultivar DH12075 (Fig.  4, Table  1). 
GO terms and KEGG pathway enrichment analyses 
(Table 1, Additional file 7) revealed the genes connected 
to translation and ribosomes to be enriched in both mod-
ules. Top hub genes of yellowgreen and white modules 
code predominantly for ribosomal proteins (Additional 
file 8).

The plum1 module shows a positive correlation with 
heat stress (cor = 0.53), a negative correlation with the 
heat-tolerant cultivar Topas and an opposite (positive) 
correlation with the heat-sensitive cultivar Westar. This 
module is significantly over-represented in photosyn-
thesis. KEGG pathways enrichment analysis revealed 
two pathways, “Photosynthesis—antenna proteins” 
(bna00196) and “Photosynthesis” (bna00195). The top 
enriched GO terms are “photosynthesis” (GO:0015979) 
and “photosynthesis, light harvesting” (GO:0009765) 
in the biological processes and “photosystem I” 
(GO:0009522) and “thylakoid” (GO:0009579) in the cel-
lular components (Additional file 7).

Table 1  Selected modules from WGCNA and their correlation with heat stress (H) or control conditions (C). G represents the 
significant correlation (positive or negative) with the tolerant genotype (Topas); such a module also displays the opposite correlation 
with sensitive cultivar(s). Significantly enriched KEGG pathways [20] and corresponding adjusted p-values are indicated at each module

Module Correlation (correlation coefficient) Significantly enriched KEGG pathways adj p-value

Royalblue H (cor = 0.96) Protein processing in endoplasmic reticulum (bna04141)
Spliceosome (bna03040)

5.56e-40
6.00e-06

Orangered4 H (cor = 0.8) - -

Darkmagenta H (cor = 0.74) Protein processing in endoplasmic reticulum (bna04141) 2.61e-06

Plum1 H (cor = 0.53)
G (cor = -0.41)

Photosynthesis—antenna proteins (bna00196)
Photosynthesis (bna00195)

7.70e-21
9.02e-20

Darkorange H (cor = 0.39) Plant hormone signal transduction (bna04075) 0.0212

Darkolivegreen C (cor = 0.46) Proteasome (bna03050) 6.73e-10

Skyblue C (cor = 0.41) Ribosome (bna03010) 1.15e-64

Yellowgreen C (cor = 0.36) G (cor = 0.21) Ribosome (bna03010) 1.12e-64

White C (cor = 0.32) G (cor = 0.27) Ribosome (bna03010) 2.18e-35

Darkred C (cor = 0.3) DNA replication (bna03030)
Mismatch repair (bna03430)
Ribosome biogenesis in eukaryotes (bna03008)
Base excision repair (bna03410)
Nucleotide excision repair (bna03420)
Spliceosome (bna03040)
Homologous recombination (bna03440)
mRNA surveillance pathway (bna03015)
Aminoacyl-tRNA biosynthesis (bna00970)
RNA degradation (bna03018)

3.46e-05
4.06e-05
0.0003
0.0038
0.0075
0.0075
0.0103
0.0122
0.0171
0.0274

Black G (cor = 1) - -

Yellow G (cor = -1) - -

Skyblue3 G (cor = -0.56) Photosynthesis—antenna proteins (bna00196)
Other glycan degradation (bna00511)

0.0204
0.0322



Page 9 of 15Jedličková et al. BMC Genomics          (2023) 24:236 	

Transcriptional profiling of all genes in the plum1 
module was performed (Fig.  6A). The top hub genes of 
this module encode mainly proteins associated with pho-
tosynthesis (Additional file 8). The expression profiles of 
the top two hub genes of this module coding for chloro-
phyll a-b binding protein 2.4 and chlorophyll a-b bind-
ing protein 4 of light-harvesting complexes (LHC) are 
depicted in Fig. 6B, together with the verification by RT-
qPCR analysis. The heat-sensitive cultivars DH12075 and 
Westar display the stress-induced up-regulation of the 
two genes in both SE8 and SEG. On the contrary, expres-
sion of these genes in Topas seeds is not significantly 
induced by heat stress.

Discussion
The genetic and physiological impact of heat stress on 
different developmental stages of B. napus has been 
recently reviewed [21]. The transcriptome profile during 
B. napus seed and embryo development under normal 
growth conditions has been published [22–24], together 
with transcriptome responses to short-term heat stress 
in developing B. napus seeds [11]. Our previous pheno-
typing study of three cultivars of B. napus grown under 
long-term heat stress [9] revealed that Topas was more 
tolerant to high temperatures for most of the measured 
traits related to seed set and early seed development 

than the other two cultivars (DH12075 and Westar). 
To identify genes and pathways that may be involved in 
the higher tolerance of Topas compared to Westar and 
DH12075, we performed a comparative transcript pro-
filing of ovules and young seeds from control and heat-
stressed rapeseed plants of these three cultivars.

In all studied tissues and cultivars, we observed a gen-
eral heat-stress response characterized by the induction 
of heat shock proteins (HSPs). These chaperone proteins 
prevent the thermal aggregation of substrate proteins and 
facilitate their subsequent refolding and reactivation [25]. 
Activation of this conserved heat-response mechanism 
was also identified by comparative transcriptome pro-
filing of non-stressed and heat-stressed B. napus plants 
in various organs and tissues, namely leaves, roots, pis-
tils, pollen, and siliques at the seed-filling stage [26–29]. 
Some HSPs are developmentally regulated, having spe-
cific functions during seed maturation and desiccation. In 
Arabidopsis, heat-stressed embryos showed an increase 
in HSP17.4 promoter activity and different spatial regula-
tion of the promoter when compared to the non-stressed 
embryos, suggesting that the expression of some HSPs is 
regulated by distinct stress-mediated and developmental 
factors [30]. In our study, a small HSP, BOBBER1, was up-
regulated in most tissues in B. napus (LOC106390591; 
Additional file 2). In Arabidopsis, BOBBER 1 is required 

Fig. 5  Transcriptional profiling of photosynthesis-related genes co-expressed in (A) yellow and (B) skyblue3 modules. Genes are associated 
with GO terms “photosynthesis” (GO:0015979) and “photosystem II” (GO:0009523) for the yellow module, and “photosynthesis” (GO:0015979) 
and “photosystem I” (GO:0009522) for skyblue3 module. The heat-tolerant cultivar Topas is highlighted in orange. C, control conditions; H, 
high-temperature conditions
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for thermotolerance in seedlings [31] and embryonic 
development [32]. Thus, it may be interesting to inves-
tigate the involvement of such small HSP in the seed 
thermoresponse.

Genes specifically up-regulated in the heat-tolerant 
Topas cultivar upon high-temperature treatment may 
play an essential role in heat stress tolerance. An analy-
sis of the DEGs specific to Topas revealed the induc-
tion of genes connected to the reactive oxygen species 
(ROS) production and response. ROS are highly reac-
tive reduced forms of atmospheric oxygen capable of 
oxidizing various cellular components leading to cel-
lular oxidative damage. In plants, the cellular level of 

hydrogen peroxide, one of the reduced oxygen species, 
is mainly regulated by the enzymatic actions of catalases 
and peroxidases [33]. Peroxidases respond to environ-
mental stresses, such as drought or salinity [34]. Toler-
ance to aluminum stress in transgenic tobacco plants was 
improved by overexpressing the Arabidopsis AtPrx64 
peroxidase [35]. Peroxidases are also responsive to heat 
stress. For example, peroxidase activities were induced 
in strawberry plants in response to heat shock and 
even more strongly in heat-acclimated plants under-
going gradual heat stress [36]. In our analysis, several 
peroxidases (peroxidase 47, peroxidase 64, glutathione 

Fig. 6  The expression profiles of the genes associated with the plum1 module. A Transcriptional profiling of all genes co-expressed in the plum1 
module. B Expression by RNA-seq data (blue) and RT-qPCR analysis (grey) of two top hub genes of the plum1 module. The heat-tolerant cultivar 
Topas is highlighted in orange. *, significant difference (p < 0.05) between control and high temperature
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peroxidase 7) showed the highest heat-induced transcrip-
tional response in Topas seeds.

A similar expression pattern was also observed for 
the TIL1 gene. Plant temperature-induced lipocalins 
are associated with tolerance to abiotic stresses, such as 
low or high temperature, oxidative stress, drought, and 
high light stress, probably through the promoted scav-
enging of ROS [37–41]. The absence of the Arabidopsis 
TIL1 induced severe defects in basal and acquired ther-
motolerance. However, TIL1 over-expressing plants did 
not display significant thermotolerance enhancement 
[38]. Similarly, the Arabidopsis til1 mutants were more 
susceptible to salt. But the heterologous expression of 
TIL from the salt-resistant poplar did not rescue growth 
defects induced by salinity stress in Arabidopsis plants 
[42]. Nevertheless, compared to the wild-type, TIL over-
expression significantly protected the photosynthetic 
pigments, especially chlorophyll b, from salt exposure. 
TIL1 may protect chlorophyll b from degradation by pre-
venting an excess of sodium and chloride accumulation 
in the chloroplasts, probably by salt-induced trafficking 
of TIL [42].

Another candidate gene for thermotolerance is 
SAG21/LEA5, having the highest induction in Topas 
seeds upon heat stress. LATE EMBRYOGENESIS ABUN-
DANT (LEA) proteins are a diverse family of hydrophilic 
proteins that are abundantly synthesized during the late 
maturation phase of seed development. LEA proteins 
are essential in protecting plant tissues against a wide 
range of abiotic stresses, particularly dehydration and 
cold stress [43]. SAG21/LEA5 protein improved oxida-
tive stress tolerance when expressed in yeast. Arabidopsis 
plants ectopically expressing the SAG21/LEA5 gene per-
formed better for shoot and root growth under optimal 
conditions and oxidative stress [14]. Interestingly, over-
expression of SAG21/LEA5 in Arabidopsis and barley 
resulted in greater drought-induced inhibition of photo-
synthesis than in wild-type plants [13, 14]. Thus, SAG21/
LEA5 may play a specific protective function against oxi-
dative stress involving reduced photosynthesis.

Green seeds of oilseed rape contain chloroplasts with 
thylakoid structures and enzymes of the photosynthetic 
machinery. Photosynthesis herein plays a crucial role 
in the improved efficiency of oil accumulation [44–46]. 
After exposure to high temperatures, oil accumulation, 
photosynthetic and respiration rates, and the maximum 
quantum yield of photosystem II are negatively affected 
in the developing B. napus seeds. Moreover, heat stress 
reduces the contents of light-harvest pigments [11]. 
Comparative transcriptome analysis of the heat-stress 
response in 20 DAP B. napus seeds revealed the up-reg-
ulation of genes involved in the response to high light 

intensity and genes associated with chloroplasts and pho-
toinhibition [11].

Photosynthesis as a critical factor impacting the B. 
napus seeds’ heat-stress response was also revealed in 
our analysis. We detected an overall higher expression 
of photosynthesis-related genes clustered in yellow and 
skyblue3 modules in sensitive cultivars DH12075 and 
Westar compared to their expression in the tolerant gen-
otype Topas (Fig. 5), together with the heat-stress induc-
tion of specific genes connected to photosynthesis and 
antenna light-harvesting proteins in SE8 and SEG of heat-
sensitive cultivars. In contrast, their expression remained 
unaffected in Topas seeds (Figs. 3 and 6). In Arabidopsis 
plants, enhanced expression of genes encoding photosyn-
thetic proteins and several LHC antenna proteins corre-
lated with impaired photosynthetic machinery upon the 
combination of high light and heat stress [47]. We can, 
therefore, speculate that the heat stress may damage the 
photosynthetic apparatus in seeds of the sensitive culti-
vars, and the proteins encoded by photosynthesis-related 
heat-induced genes might be involved in the renewal of 
damaged photosystem parts.

Impaired photosynthetic processes correlate with 
reduced oil accumulation in B. napus seed [11]. Oil pro-
duction was reduced only by 2% in Topas seeds after the 
heat stress, while heat-sensitive cultivars DH12075 and 
Westar showed a 6% and 5% reduction, respectively [9]. 
Thus, the photosystems in Topas seeds might be less 
damaged, requiring less induction of photosynthetic 
genes. The potential higher protection of photosys-
tems in Topas might be connected to the increased ROS 
response. Heat stress stimulates the over-production 
of ROS [48], which can cause damage to the photosyn-
thetic apparatus [49], including LHC proteins [50]. Since 
we detected higher heat-induction of certain peroxidases 
in Topas SE8 and SEG (Fig. 2), this cultivar might exploit 
ROS-scavenging and quenching mechanisms to reduce 
damage to photosynthetic machinery in developing 
seeds.

Photosynthesis is also affected by the biosynthesis and 
signal transduction of some plant hormones [51]. Jas-
monic acid (JA) is a plant hormone involved in many 
stress responses [19]. Notably, JA and salicylic acid 
confer a basal thermotolerance in Arabidopsis plants 
in response to acute heat stress [52]. JA is perceived by 
a nuclear SCFCOI1 receptor complex. COI1 (CORO-
NATINE INSENSITIVE1) is an F-box protein that tar-
gets the TIFY/JAZ proteins to degradation after its 
interaction with JA. The TIFY/JAZ proteins are negative 
regulators of the JA signaling, blocking JA-induced gene 
expression in the absence of JA. They do so by interact-
ing with transcription factors; among them, some may 
be involved in the temperature stress response [19, 53]. 
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The TIFY/JAZ gene expression is induced by JA, which 
contributes to fine-tuning JA signaling [54]. In our study, 
we observed the up-regulation of some TIFY/JAZ genes 
(Fig. 3) in the heat-sensitive cultivars, which could indi-
cate an activation of the JA signaling pathway. It has been 
shown that JA plays a key role in the plant response to 
the combination of high light and heat stress [47, 55]. 
The increase of TIFY/JAZ and photosynthetic-related 
gene expression in the heat-sensitive cultivars may be an 
attempt to cope with the temperature stress. However, 
the molecular mechanisms remain elusive.

Conclusions
To reveal mechanisms involved in thermomorphogen-
esis in ovules and young seeds in rapeseed, we compared 
transcriptome profiles of selected cultivars that differ in 
tolerance to long-term heat stress. We discovered a con-
siderable number of DEGs specifically induced in heat-
tolerant cultivar Topas that were connected to a response 
to oxidative stress. Besides, photosynthesis and plant 
hormone pathways, especially JA signaling, were shown 
to be important factors influencing the stress response 
in heat-sensitive cultivars DH12075 and Westar. Further 
examination can provide a more detailed understanding 
of interactions within the complex network of response 
to heat stress in seeds of the important oil crop B. napus 
and help to select the candidate genes for improving the 
seed development and hence seed yield and oil seed pro-
duction under elevated temperatures.

Methods
Plant material, experimental conditions, and sample 
collection
Three B. napus spring cultivars (DH12075, Topas 
DH4079, and Westar) were cultivated as described pre-
viously [9]. Cultivar DH12075 is a double haploid line 
from a Cresor x Westar cross. DH4019 is a double hap-
loid line selected from cultivar Topas. Briefly, bleach-
sterilized seeds on MS plates were cold-stratified at 4 °C 
for 24  h and cultivated at 21  °C (16  h light / 8  h dark, 
150  µmol/m2/s). Five-day-old plantlets were transferred 
to the soil. After two weeks, plants were fertilized with 
KRISTALON™ Start (N-P-K (19–6-20), 3% Mg, 7.5% S). 
With the first visible flower buds, the pots were trans-
ferred to the greenhouse chambers (Photon Systems 
Instruments, s.r.o.). The chambers were maintained with 
a 16 h light/8 h dark regime (150 µmol/m2/s light inten-
sity, 35–45% humidity) and 18 °C during the night. Dur-
ing the day, control (CT) and high-temperature (HT) 
chambers were set to 21 °C and 34 °C, respectively, with 
ramping of the temperature up and down by 4  °C per 
hour. Watering was done manually in the trays to avoid 
any effect associated with drought stress. Plants were 

once fertilized with KRISTALON™ Fruit and Flower 
(N-P-K (15–5-30), 3% Mg, 5% S) at the flowering start. 
The samples were collected between October 2019 and 
March 2020. The collection of material was performed 
during specific hours of the day (12 – 3 p.m.) to reduce 
the circadian rhythms influence. Tissue was collected 
only from flowers in positions 5 to 65 on the main flow-
ering stem (counted from the bottom) and 5 to 25 on 
the side flowering stem. For the collection of ovules, 
the flowers were emasculated one day before opening 
and harvested the day after. For the collection of seeds, 
flowers were pollinated on the day of opening and har-
vested 5 days after pollination (DAP) and 7 DAP in CT, 
4 DAP and 5 DAP in HT to match the phases of embryo 
development in both temperature regimes (8-cell stage 
and globular stage). Samples (100 mg per biological rep-
licate) were snap-frozen in liquid nitrogen and stored in 
a − 80 °C freezer. Five biological replicates were used for 
each treatment.

RNA extraction, library construction, and sequencing
Total RNA from 100 mg of ovules or seeds was extracted 
using TRIzol reagent (Thermo Fisher Scientific) following 
the manufacturer’s protocol. RNA isolates were treated 
with rDNase (Macherey–Nagel) to remove traces of con-
taminant DNA, and the samples were subsequently puri-
fied using an RNeasy MinElute Cleanup Kit (Qiagen). 
RNA integrity was assessed with the Fragment Analyzer 
(AATI). RNA libraries were prepared using 500  ng of 
high-quality RNA (RQN values ≥ 8.5) with QuantSeq 3’ 
mRNA-Seq Library Prep Kit FWD for Illumina (Lexo-
gen). We used unique molecular identifiers (UMI Second 
Strand Synthesis Mix, Lexogen) to identify PCR dupli-
cates and a unique dual indexing strategy (i5 Unique 
Dual Indexing Add-on Kit for Illumina, Lexogen) to 
reduce sample index crosstalk. Libraries were sequenced 
with an Illumina sequencing platform (NextSeq 500), 
and 75-bp single-end reads were generated. Per-cycle 
base call (BCL) files were converted to fastq format using 
bcl2fastq v.2.20.0.422 Illumina software for base-calling. 
The raw reads in FASTQ format have been deposited to 
NCBI (BioProject accession number PRJNA885424).

Sequence data analyses
Quality check of raw single-end fastq reads was carried 
out by FastQC v0.11.8, and a quality trimming was per-
formed using Trimmomatic v0.36 [56]. The clean reads 
were mapped to the reference B. napus genome (Bra_
napus_v2.0, GCF_000686985.2) using STAR v2.5.3a [57] 
and quantified using the RSEM tool v1.3.1 [10]. Biocon-
ductor package DESeq2 v1.20.0 [58] was used to perform 
differential expression analysis. Differentially expressed 
genes (DEGs) with |log2 (fold change)| ˃ 1 and adjusted 
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p-value < 0.05 were identified as significant DEGs. We 
used clusterProfiler v3.12.0 package to test the statisti-
cal enrichment of DEGs in The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways [20]. The adjusted 
p-value < 0.05 was used as the enrichment cut-off criterion.

For the gene ontology (GO) enrichment analysis, we 
populated GO terms in poorly annotated B. napus genome 
using a similarity search of annotated nucleotide sequences 
from the Arabidopsis genus and Brassiceae tribe taxa against 
extracted genes of B. napus genome (GCF_000686985.2). 
The result of the local alignment search was filtered by 
the percentage of identical matches ≥ 80, the percentage 
of query coverage per subject ≥ 80, the ratio of alignment 
length to query and subject length ≥ 0.8, and the expected 
value of alignment ≤ 0.01. The matched sequences were then 
cross-referenced to UniProtKB. The genes aligned to Arabi-
dopsis thaliana (taxon 3702) nucleotide sequences were 
considered as the genes with the highest credibility of anno-
tation. These data were combined with annotated B. napus 
genes in The Gene Ontology Annotation (GOA) Database 
v2020-02–21 [59]. Finally, the genes aligned with other spe-
cies, and corresponding annotations were included. The GO 
enrichment analysis was performed using the clusterPro-
filer v3.12.0 package. The resulting p-values were corrected 
using the Benjamini–Hochberg procedure. For the graphi-
cal representation of data, REVIGO [60] was used to reduce 
redundant GO terms.

The weighted gene correlation network analysis 
(WGCNA) was performed using the R package WGCNA 
v1.69 [61]. We removed features with consistently low nor-
malized counts (norm. count < 20 in more than 90% of the 
samples). A signed hybrid network (power β = 6) was gener-
ated from 43 301 genes. The dynamic tree-cutting algorithm 
with parameters deep split = 2 and cut height for merging 
modules = 0.2 detected 25 distinct gene modules. Eigen-
gene-based connectivity (kME) and corresponding p-value 
were calculated for the 43 082 genes clustered into 24 mod-
ules. The other 219 genes were outliers (grey module).

Quantitative reverse transcription PCR (RT–qPCR)
To validate the reliability of the RNA-seq analysis, RT-
qPCR of selected genes was performed. The sequences 
of the primer pairs are listed in Additional file 9. Since B. 
napus is an allotetraploid species, the primers might also 
amplify the homeologous genes. The rapeseed ACTIN7 
gene (LOC106384924, LOC106441419) was used as the 
internal control. The cDNA synthesis was performed 
with 1.5  μg RNA using M-MLV Reverse Transcriptase 
(Promega). The PCR reaction was performed using the 
FastStart Essential DNA Green Master (Roche) on a Light-
cycler 96 (Roche) at 95 °C for 10 min followed by 40 cycles 
of 95  °C for 10  s, 60  °C for 10  s and 72  °C for 26  s. The 
efficiency of each primer pair was assessed by constructing 

a standard curve through five serial dilutions. A final melt-
curve step was included post-PCR to confirm the absence 
of any non-specific amplification. Each sample was ana-
lyzed in three biological replicates with three technical 
replicates. Relative gene expression was determined using 
the method previously described [62]. The expression lev-
els were evaluated by Welch’s t-test.
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