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Abstract

Danio rerio is a model organism used to investigate vertebrate development. Manipulation of the zebrafish genome and resultant gene 
products by mutation or targeted knockdown has made the zebrafish a good system for investigating gene function, providing a re-
source to investigate genetic contributors to phenotype and human disease. Phenotypic outcomes can be the result of gene mutation, 
targeted knockdown of gene products, manipulation of experimental conditions, or any combination thereof. Zebrafish have been used 
in various genetic and chemical screens to identify genetic and environmental contributors to phenotype and disease outcomes. The 
Zebrafish Information Network (ZFIN, zfin.org) is the central repository for genetic, genomic, and phenotypic data that result from re-
search using D. rerio. Here we describe how ZFIN annotates phenotype, expression, and disease model data across various experimental 
designs, how we computationally determine wild-type gene expression, the phenotypic gene, and how these results allow us to propa-
gate gene expression, phenotype, and disease model data to the correct gene, or gene related entity.
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Introduction
Understanding gene and protein function can provide insight to 
elucidate the intricate cellular mechanisms that are responsible 
for the development, growth, pathology, and senescence of organ-
isms. Observing the results of gene mutations is the cornerstone of 
elucidating and understanding gene function. The zebrafish, Danio 
rerio, has been used in forward and reverse genetic screens to study 
gene function and understand the mechanisms of vertebrate de-
velopment (Driever et al. 1996; Haffter et al. 1996; Golling et al. 
2002; Moens et al. 2008; Varshney et al. 2013). The results of gene 
function studies in zebrafish are relevant to understanding human 
gene function due to the conservation of gene sequences and func-
tions between zebrafish and humans (Postlethwait et al. 2000; 
Howe, Clark et al. 2013). Due to similarities between zebrafish and 
human organ functions and physiology, zebrafish have been used 
to model human diseases that affect the cardiovascular (Smith 
et al. 2009; Liu et al. 2019), nervous (Chapman et al. 2013; Hin et al. 
2020), visual (Zhang et al. 2016), muscular (Majczenko et al. 2012; 
Widrick et al. 2016), and many other systems. In addition to under-
standing gene function and disease pathogenesis, zebrafish are in-
creasingly used for toxicology and drug discovery studies, as well as 
research that explores the effects of genotype and environment on 
phenotype and disease (Zon and Peterson 2005; Kaufman et al. 
2009; Williams et al. 2014; Wheeler et al. 2019; Cassar et al. 2020).

The Zebrafish Information Network, ZFIN (zfin.org), is the data-
base resource for zebrafish research that annotates, curates, and 

makes data available from zebrafish research that spans genetic 
perturbations, chemically induced phenotypes, and human dis-
ease models, as well as gene expression (Sprague et al. 2008; 
Ruzicka et al. 2015; Howe et al. 2017). ZFIN curates gene expression, 
phenotype, and human disease model data by annotating the gen-
otypes, experimental conditions, anatomical structures, pheno-
type statements, and disease models reported in zebrafish 
research publications (Sprague et al. 2006; Howe, Bradford et al. 
2013; Bradford et al. 2017). These annotations can include geno-
types with one or many alleles and experimental conditions that 
range from standard conditions to manipulation of temperature, 
diet, chemicals, or other conditions. Due to the breadth of data 
that represent combinations of genotype and environment that 
produce a phenotypic outcome or human disease model, it can 
be challenging to determine whether a particular allele or envir-
onment is causative. To understand gene function and clarify 
how gene dysfunction contributes to disease, it is necessary to 
separate genetic phenotypes from those caused by the environ-
ment. ZFIN has developed a data model and algorithms that dis-
tinguish the genotype and environment components of an 
annotation to parse genetic and environmental contributors to 
phenotypes, using the results to infer which genes are causative 
of a phenotype. Here we discuss the ZFIN annotation components 
and computational logic used to infer wild-type gene expression, 
gene-phenotype and gene-human disease relationships, and the 
ZFIN webpages and download files (https://zfin.org/downloads) 
where the data are available.
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ZFIN annotation components
There are three main components to ZFIN gene expression, 
phenotype, and human disease model annotations: (1) the geno-
type of the fish including gene knockdown reagents used, (2) the 
experimental conditions applied, and (3) an ontological represen-
tation of the results.

Fish
Gene mutation and sequence targeting reagents (STRs), which 
knockdown gene products, are routinely used in zebrafish to study 
gene function. To represent all of the genes that are affected due 
to either gene mutation or knockdown, ZFIN uses a data model 
that groups the genotype and applied STR in an object called 
Fish. Mutant gene loci are curated as alleles of genes and are 
part of a genotype together with the background strain when 
that information is provided. Zebrafish are also amenable to 
transgene insertion to knock out genes (Amsterdam et al. 2004), 
overexpress endogenous or other species genes (Sabaawy et al. 
2006; Padanad et al. 2012), insert mutant genes (Kimelman et al. 
2017; Endo et al. 2022), or express fluorescent proteins to mark 
anatomical structures (Lawson and Weinstein 2002; Clark et al. 
2011). Transgene insertion is accomplished by the injection of 
DNA constructs (transgenic constructs) into zebrafish embryos, 
which are then raised to maturity and screened for stable germ-
line transmission (Stuart et al. 1990; Culp et al. 1991). ZFIN creates 
records for transgenic constructs and makes an association with 
the transgenic genomic features (alleles) using a phenotypic or in-
nocuous relationship. The phenotypic relationship is used with 
constructs that drive expression of either an endogenous zebra-
fish gene or a gene from another species (Table 1). These con-
structs are expected to produce protein products that can have 
a phenotypic effect. The innocuous relationship is used with con-
structs that drive the expression of fluorescent proteins or are un-
able to transcribe a protein product unless inserted near a native 
promoter, such as gene trap constructs. Information on the in-
nocuous or phenotypic relationship between a genomic feature 
and a construct is available in the “Innocuous/phenotypic con-
struct details” download file. Transgenic alleles are represented 
in the genotype when applicable, and genotypes are considered 
innocuous or phenotypic depending on the relationship between 
the allele and construct. Site-specific mutagenesis using 
CRISPRs and TALENs is also used in zebrafish to screen for candi-
date genes (Jao et al. 2013; Zu et al. 2013). Zebrafish crispants, F0 
founder zebrafish created using CRISPRs, are also used to pheno-
copy loss of function mutants (Bek et al. 2021). In addition, gene 
function can be investigated in zebrafish using morpholinos, 
which knockdown the gene by targeting RNA, effectively silencing 
the gene product (Nasevicius and Ekker 2000; Ekker and Larson 

2001). ZFIN group morpholinos, CRISPRs, and TALENs in a class 
called STR due to the sequence-specific nature of these reagents. 
Both alleles and STRs have relationships with the genes they 
knockout or target. ZFIN developed the Fish data model to facili-
tate the identification of causative genes due to the many ways 
in which gene function is investigated in zebrafish.

Experimental conditions
Zebrafish are used in a wide array of experimental contexts. To re-
present the experiments reported in research publications, the 
conditions applied are curated using ontology terms from the 
Zebrafish Experimental Conditions Ontology (ZECO; Bradford 
et al. 2016) along with terms from the Zebrafish Anatomy 
Ontology (ZFA; Van Slyke et al. 2014), Gene Ontology Cellular 
Component (GO-CC; Ashburner et al. 2000; Carbon et al. 2019), 
Chemical Entities of Biological Interest (ChEBI; Hastings et al. 
2016), and NCBI Taxon (Federhen 2012). The ZECO ontology con-
tains the main types of conditions with high-level nodes that in-
clude standard conditions for zebrafish husbandry as described 
in The Zebrafish Book (Westerfield 2000), control conditions 
(such as vehicle injections), biological treatment (such as expos-
ure to bacteria), chemical treatment, diet alterations, housing 
conditions, in vitro culture, surgical manipulation, lighting condi-
tions, temperature exposure, radiation exposure, and water qual-
ity. ZECO terms from the biological treatment branch are 
combined with NCBI Taxon terms to annotate conditions where 
another organism is added to the environment or when the zebra-
fish are raised in germ-free environments. The chemical treat-
ment branch of ZECO is combined with chemicals from the 
ChEBI ontology to annotate the chemical that was used in the ex-
periment. The surgical manipulation branch is combined with 
terms from the ZFA ontology to denote the anatomical structures 
that underwent ablation, resections, or other surgical manipula-
tions. In instances when a cellular component, such as an axon, 
is ablated, GO-CC terms are used along with ZFA terms.

Ontological representation of results
ZFIN uses multiple ontologies to annotate gene expression, 
phenotype, and human disease models. Disease, expression, 
and phenotype annotations include the Fish and experimental 
conditions. To complete disease annotations, terms from the 
Disease Ontology (DO; Schriml et al. 2019) are added as well as evi-
dence terms from the Evidence and Conclusion Ontology (ECO; 
Nadendla et al. 2022). To describe the location of the expression 
or phenotype annotation, terms from the ZFA, the Zebrafish 
Stage Ontology (ZFS; Van Slyke et al. 2014), GO-CC, and Spatial 
Ontology (BSPO; Dahdul et al. 2014) are used. Expression annota-
tions include the gene that is expressed as well as the assay type 
using terms from the Measurement Method Ontology (Smith 

Table 1. Innocuous and phenotypic constructs.

Genomic 
feature

Relationship Construct Construct description

rw021Tg Contains innocuous 
sequence feature

Tg(atoh7:GFP) Promoter for atoh7 drives expression of GFP

ncu102Tg Contains innocuous 
sequence feature

Tg(hsp70l: 
cyfip2_C179R-EGFP)

Promoter for hsp70l drives mutant cyfip2 that produces protein 
change of C to R at position 179

ua3162Tg Contains phenotypic 
sequence feature

Tg(opn1sw1:nrl) Promoter for opn1sw1 drives expression of nrl

ns103Tg Contains phenotypic 
sequence feature

Tg(rag2:Hsa.ALDH1A2) Promoter for rag2 drives expression of Human gene ALD1A2 
expression
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et al. 2013). Annotations that describe the phenotypes of biological 
metabolites use ChEBI terms and those pertaining to the biological 
process or molecular function of a gene use GO Molecular 
Function (GO-MF) or GO Biological Process (GO-BP) terms. All 
phenotype annotations use terms from the Phenotype and Trait 
Ontology (PATO; Gkoutos et al. 2005) as well as tags for “normal,” 
“abnormal,” “ameliorated,” or “exacerbated.” Phenotype annota-
tions that use terms from GO-BP or GO-MF only use PATO terms 
from the process quality branch, while anatomical entity pheno-
type annotations use terms from the physical object quality 
branch. All ZFIN annotations refer to the publication that re-
ported the results.

In summary, ZFIN gene expression, phenotype, and disease 
model annotations are multipartite, including the genotype and 
applied knockdown reagents as Fish, the experimental conditions, 
and the ontological representation of the results. See Tables 2–4
for examples of gene expression, phenotype, and human disease 
model annotations.

Database logic for gene expression, 
gene-phenotype, and gene-disease 
associations
As described in the previous section, each data type provides dif-
ferent information used to construct an annotation. To be able to 

understand the function of a single gene, it is necessary to isolate 
the environmental factors from the genetic interactions within an 
annotation and ensure correct attribution of the experimental 
outcome to a single gene, if appropriate. To ensure the correct re-
presentation of data sets and data displays on the gene page, ZFIN 
has established query logic or algorithms to parse the details of 
existing annotations such that the gene page only displays those 
data that show where a gene is normally expressed and the 
phenotypic results of mutation or knockdown of that specific 
gene, as explained in the sections below.

Wild-type gene expression
Understanding the wild-type expression profile of genes is essen-
tial to understand what systems and structures a gene contri-
butes to developmentally and is necessary as a comparator 
when evaluating gene expression in mutant or gene-knockdown 
zebrafish. ZFIN curators annotate gene expression in both wild- 
type and mutant backgrounds as well as what experimental con-
ditions are present. To determine wild-type gene expression, algo-
rithms are designed to identify gene expression in Fish that have 
wild-type backgrounds, no mutant alleles, in standard or control 
conditions. Gene expression results that meet these criteria are 
displayed on the gene page (Fig. 1) and are provided in the 
“Expression data for wild-type fish” download file available on 
the downloads page. ZFIN also provides wild-type gene expression 

Table 2. Gene expression annotations.

Gene Fish Experimental Condition Stage Expression Reference

pax2a AB Standard conditions 
[ZECO:0000103]

Pharyngula: Prim-25 
[ZFS:0000031]

Optic furrow 
[ZFA:0005491]

ZDB-PUB-180407-9; 
PMID: 29625437

pax2a aldh1ai26/i26 Standard conditions 
[ZECO:0000103]

Segmentation: 10–13 
somites 
[ZFS:0000025]

Lateral plate mesoderm 
[ZFA:0000121]

ZDB-PUB-011002-4; 
PMID: 11688558

pax2a cyp26a1rw716/rw716 Chemical treatment: 
all-trans-retinoic acid 
[ZECO:0000111], 
[CHEBI:15367]

Segmentation: 1–4 
somites 
[ZFS:0000023]

Midbrain hindbrain 
boundary neural keel 
[ZFA:0007045]

ZDB-PUB-061227-41; 
PMID: 17164423

pax2a AB + MO6-pax8 +  
MO7-pax8

Standard conditions 
[ZECO:0000103]

Segmentations: 5–9 
somites 
[ZFS:0000024]

Epibranchial field 
[ZFA:0007061]

ZDB-PUB-110119-6; 
PMID: 21215261

Table 3. Phenotype annotations.

Fish Experimental conditions Stage Phenotype Reference

sox9atw37/tw37 Standard conditions 
[ZECO:0000103]

Larval: Day 5 
[ZFS:0000037]

Ceratohyal cartilage decreased 
size, abnormal 
[ZFA:0001400], 
[PATO:0000587]

ZDB-PUB-970210-30; 
PMID: 9007254

hu11688Tg +  
MO1-tnnt2a(TL)

Chemical treatment by 
environment: isoprenaline 
[ZECO:0000238], 
[CHEBI:64317]

Larval: 
Protruding-mouth 
[ZFS:0000035]

Heart contraction increased 
rate, abnormal [GO:0060047], 
[PATO:0000912]

ZDB-PUB-181004-5; 
PMID: 30279735

AB +  
CRISPR1-cyp1b1 +  
CRISPR2-cyp1b1

Standard Conditions 
[ZECO:0000103]

Larval: Day 6 
[ZFS:0000038]

Ventral mandibular arch 
immature, abnormal 
[ZFA:0001273], 
[PATO:0001501]

ZDB-PUB-210703-31; 
PMID: 34208498

x17Tg Heat shock [ZECO:0000166] Larval: 
Protruding-mouth 
[ZFS:0000035]

Posterior macula mislocalized, 
abnormal [ZFA:0000558], 
[PATO:0000628]

ZDB-PUB-190426-5; 
PMID: 31022185

AB Chemical treatment by diet: 
resveratrol [ZECO:0000239], 
[CHEBI:27881]

Adult [ZFS:0000044] Blood triglyceride decreased 
amount, abnormal 
[ZFA:0000007], 
[CHEBI:17855], 
[PATO:0001997]

ZDB-PUB-170708-6; 
PMID: 28686680
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annotations to the Alliance of Genome Resources (Alliance, www. 
alliancegenome.org; (Agapite et al. 2022). Mutant or non-wild-type 
zebrafish gene expression can be found on the Fish page, via the 
search interface, in the download file “ZFIN genes with expression 
assay records,” and on STR pages. The STR page displays expres-
sion only in Fish where a single STR is used in a wild-type back-
ground, highlighting the effects of the individual STR on gene 
expression (Fig. 4).

Affected genes for phenotype and disease models
To determine the function of a gene, it is instructive to look at the 
phenotypic outcomes of mutant and gene-knockdown zebrafish. 
Phenotype can encompass many levels of observation from mor-
phologic changes at the level of the whole organism to changes in 
gene expression and protein location within a cell. To draw 

conclusions about what functions a gene has in the cell or organ-
ism, it is necessary to ensure that the phenotypes attributed to the 
gene are solely caused by changes to that gene. ZFIN has devel-
oped algorithms to determine the total number of altered or af-
fected genes in a Fish, with the resulting number determining if 
a causative gene can be inferred. The number of affected genes 
is determined by counting distinct genes associated with alleles 
and STRs that are associated with a Fish. When the affected 
gene count equals one and the experimental conditions are stand-
ard/generic control, the phenotype or disease association is in-
ferred or calculated to be caused by the gene associated with 
the Fish either by its allele relationship or by its STR target rela-
tionship. There are various ways to arrive at gene count equals 
one. As illustrated in Fig. 2, Fish can have one affected gene but 
can be more or less complex in their genetic makeup. For example, 

Table 4. Human disease model annotations.

Fish Experimental conditions Human disease Reference

rps19zf556/zf5556 Standard conditions [ZECO:0000103] Diamond-Blackfan anemia 
[DOID:1339]

ZDB-PUB-140728-17; PMID: 
25058426

WT + MO1-rpl11 Standard conditions [ZECO:0000103] Diamond-Blackfan anemia 
[DOID:1339]

ZDB-PUB-151021-8; PMID: 
26484089

WT Chemical treatment: pentetrazol [ZECO:0000111], 
[CHEBI:34910]

Epilepsy [DOID:1826] ZDB-PUB-160311-7; PMID: 
26961169

AB Fungal treatment by injection: Candida albicans 
[ZECO:0000232], [NCBITaxon:5476]

Candidiasis [DOID:1508] ZDB-PUB-200119-2; PMID: 
31952292

Fig. 1. Gene page gene expression. Gene expression displayed on the gene page is limited to gene expression results in wild-type backgrounds. The 
Wild-Type Expression Summary displays a graphical ribbon that denotes the anatomical systems and stages that have gene expression annotations. The 
table lists the anatomical terms, stages, and citations.

http://www.alliancegenome.org
http://www.alliancegenome.org
;
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Fig. 2. Logic for determining Fish affected gene count. a) A logic flow diagram describing the algorithm used to determine number of affected genes in a 
Fish and whether phenotype data can be shown on a gene page. b) A table of examples of Fish that result in variable numbers of affected genes.
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a Fish with a single allele with one affected gene, a Fish with mul-
tiple alleles where all alleles affect the same gene, a wild-type Fish 
injected with one or more STRs targeting one gene, and a nonphe-
notypic transgenic line injected with one or more STRs targeting 
one gene all have only a single affected gene.

We have recently added rules to the algorithm that do not 
count tp53 as an affected gene in Fish, where morpholinos against 
tp53 were used in addition to non-tp53 morpholinos due to the 
way zebrafish researchers use morpholinos against tp53 to deal 
with nonspecific effects (Robu et al. 2007). Previously, a Fish that 
had two morpholinos, one of which was against tp53, would be 
considered to have two affected genes, and the phenotype would 
be excluded from gene pages. The algorithm now ignores tp53 
morpholinos in the Fish and the resulting group of morpholinos 
is used to obtain the affected gene count, with data propagated 
to the gene page when the gene count equals one (Fig. 3).

In addition to counting the number of affected genes, the algo-
rithms account for transgenic lines, both those that are treated as 
wild-type equivalents by the research community and those used 
to alter the expression of a gene. As explained in the previous Fish 
section, Fish containing genomic features that have a phenotypic 
relationship to a construct are considered phenotypic lines. These 
Fish are excluded by affected gene count algorithms because 
phenotype and disease annotations using such Fish cannot be at-
tributed to a single gene. This is due to the lack of gene counting 
for genes expressed by transgenic constructs, as the algorithm 
does not count the genes associated with constructs, instead it 
solely relies on the phenotypic relationship between transgenic 
allele and construct. Since the algorithm does not count genes 

associated with transgenic constructs, it is unable to identify the 
number of genes a construct has. Fish that have genomic features 
with an innocuous relationship to a construct are considered in-
nocuous and are counted as wild-type equivalents by the affected 
gene count algorithms. The resulting data allow us to determine 
computationally the affected gene count. In addition to gene 
count and innocuous or phenotypic genomic features, the experi-
mental conditions are also taken into account when determining 
whether the phenotype or disease model data can be attributed to 
a gene. When the experimental conditions are standard or generic 
control and the affected gene count is one, the resulting pheno-
type or disease association is inferred to be caused by the one af-
fected gene. These data are then propagated to the gene page, 
gene-related entity pages, and download files. Currently, only 
phenotype annotations that are tagged as “abnormal” are dis-
played in the phenotype section of gene pages, as those annota-
tions directly relate to individual gene functions. Phenotype 
statements that are tagged, “ameliorated,” or “exacerbated” are 
usually the result of genetic interactions or applied experimental 
conditions and do not conform to the single affected gene algo-
rithm. Ameliorated and exacerbated annotations are displayed 
on the Fish page, can be found via the search interface, and in 
“Ameliorated phenotypes” and “Exacerbated phenotype” down-
load files.

Similar rules are employed for determining whether a pheno-
type is caused by an STR or may be the result of a combination 
of genetic affectors. On the STR page, phenotype in Fish with 
only a single STR targeting a single gene in a wild-type or nonphe-
notypic transgenic background is displayed in the section where 

Fig. 3. Display of MO-tp53 Fish data on gene page. a) Phenotype data for Fish WT + MO1-emx3 + MO4-emx3 + MO4-tp53 in standard conditions as reported 
in Viktorin et al. (2009). b) The phenotype summary section on the emx3 gene page has a ribbon that denotes systems, stages, biological processes, and 
cellular components that have annotations, with individual annotations displayed in the table. Thumbnail images are displayed when available. 
Phenotype corresponding to Fish in A is denoted by bracket.
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the label starts with “Phenotype resulting from” followed by the 
STR name (Fig. 4). For more complex Fish or when the STR has 
multiple targets, the phenotypes are displayed in a section labeled 
“Phenotype of all Fish created by or utilizing” followed by the STR 
name(s).

The algorithm for determining the number of affected genes in 
Fish for phenotype displays is also used to display disease model 

data on a gene page. Zebrafish models of human disease can be ei-
ther genetic models or models induced by experimental condi-
tions or a combination of these (Kawahara et al. 2011; Cronin 
and Grealy 2017; Yu et al. 2021). ZFIN curators make disease model 
annotations when research publications report zebrafish models 
of human diseases. Zebrafish disease model annotations contain 
Fish, experimental conditions, disease terms, ECO evidence codes, 

Fig. 5. Display of disease model data. a) Zebrafish Models table from the Alzheimer’s disease term page displaying all Fish and experimental conditions 
that are annotated as disease models. b) Human disease model table from the psen1 gene page, showing the diseases associated with psen1 via 
experimental models that have a single affected gene Fish in standard conditions.

Fig. 4. STR page. Expression display is limited to Fish with a wild-type background under standard or control conditions. Phenotype display is divided into 
two sections, the first labeled “Phenotype resulting from MO1-vcana” contains phenotype only in wild-type or innocuous transgenic fish with standard 
conditions. Phenotype in more complex fish or under nonstandard conditions as well as the phenotype from the previous section is displayed in the 
section labeled “Phenotype of all Fish created by or utilizing MO1-vcana.”
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and references. All annotated zebrafish models of a disease are 
displayed on ZFIN disease term pages (Fig. 5a). Disease models 
that have a Fish with a single affected gene with standard or con-
trol experimental conditions are displayed on the corresponding 
gene page in the human disease model table (Fig. 5b). ZFIN does 
not annotate when a Fish is not a model of a human disease, as 
this is not usually reported in the literature. Zebrafish models of 
human disease data are provided in the “Human disease models” 
download file. In addition, ZFIN provides phenotype and disease 
model data to the Alliance.

Conclusion
The development, growth, and senescence of organisms are the 
result of an elegant orchestra of gene expression, protein func-
tion, pathology, and the environment. Understanding gene and 
protein function is essential knowledge that provides insight 
into the cellular mechanisms of developmental and disease pro-
cesses. Gene function has traditionally been elucidated using 
gene mutation and targeted gene knockdown. Genetic and experi-
mental condition manipulation, either singly or in combination, 
produces phenotypic outcomes. Zebrafish have been used in for-
ward and reverse genetic screens to study gene function, model 
human disease, understand toxicology, and discover drugs. ZFIN 
curates genetic, genomic, phenotypic, and disease model data 
that result from zebrafish research. The algorithms used by 
ZFIN support the identification of wild-type expression patterns, 
genes that are causative for phenotypes, and disease models 
from data collected in a wide variety of Fish and experimental 
conditions. The resulting data are presented on the gene, STR, 
and disease pages as well as in specialized download files. The ag-
gregation of these data on discrete pages and download files al-
lows users to quickly synthesize data about gene function, 
phenotypic outcomes, and disease models without having to 
manually compile the research from many genotypes, gene 
knockdowns, and experimental conditions.

Data availability
All relevant data are available at ZFIN, zfin.org.
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